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Abstract We introduce the ray-projection dynamics in evolutionary game theory
by employing a ray projection of the relative fitness (vector) function, i.e., a projec-
tion unto the unit simplex along a ray through the origin. Ray-projection dynamics
are weakly compatible in the terminology of Friedman (Econometrica 59:637–666,
1991), each of their interior fixed points is an equilibrium and each interior equilibrium
is one of its fixed points. Furthermore, every interior evolutionarily stable strategy is
an asymptotically stable fixed point, and every strict equilibrium is an evolutionarily
stable state and an evolutionarily stable equilibrium. We also employ the ray-projec-
tion on a set of functions related to the relative fitness function and show that several
well-known evolutionary dynamics can be obtained in this manner.

Keywords Evolutionary games · Ray-projection dynamics ·
Dynamic and evolutionary stability

1 Introduction

We introduce a class of dynamics to model evolutionary changes in game theory. We
draw inspiration from rather early literature on price-adjustment processes as intro-
duced by Samuelson (1941) and subsequent results by Arrow and Hurwicz (1958),
Arrow and Hurwicz (1960a,b) and Arrow et al. (1959). Our second source of inspiration
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is recent work featuring projection dynamics, e.g., Lahkar and Sandholm (2008),
Hofbauer and Sandholm (2009).

In the latter papers it is shown that if a so-called stable game possesses an interior
evolutionarily stable state [ESS, Maynard Smith and Price (1973)], the so-called pro-
jection dynamics converge to it from any starting point. In fact, the proofs imply that
for these dynamics every interior evolutionarily stable state is an evolutionarily stable
equilibrium [ESE, Joosten (1996)], i.e., trajectories converge to the equilibrium and
along any such trajectory the Euclidean distance to it decreases strictly in time.

In the literature on price-adjustment processes, a similar result1 was established
about half a century ago, see e.g., Uzawa (1961), Negishi (1962). If the Weak Axiom
of Revealed Preferences [WARP, Samuelson (1938)] holds, the price-adjustment pro-
cess, or tâtonnement, of Samuelson (1941) given by

·
x = dx

dt
= f (x) for all x ∈ P = R

n+1+ \{0n+1}, (1)

converges to an economic equilibrium. Here, x denotes a vector of prices for n + 1
commodities in the price space P = R

n+1+ \{0n+1}, 0n+1 denotes the n + 1-vector of
zeros, and the (vector) function f : P → R

n+1 is an excess demand function. An
excess demand function gives for each commodity the difference between its demand
and supply given a price for all commodities. An equilibrium is a price vector for which
there exists no positive excess demand for any commodity, i.e., y is an equilibrium
iff f (y) ≤ 0n+1. A fixed point of the dynamics is a price vector for which the time
derivative under the dynamics evaluated at that state equals zero in all components,

i.e., y is a fixed point iff
·
y = 0n+1.

Our basic idea is to project a(ny) trajectory of Samuelson’s tâtonnement process in
P on the n-dimensional unit simplex such that every point of the original is projected
on the unit simplex along the ray through this point and the origin. By the conver-
gence result of the unrestricted dynamics under WARP mentioned, it follows that the
projected dynamics also converge to an equilibrium. We show that the ray-projection
dynamics of Samuelson’s tâtonnement process on the unit simplex after a nonlinear
time-transformation, for every x ∈ int �n , given by

·
x = f (x) − x

n+1∑

i=1

fi (x), (2)

where �n = {z ∈ R
n+1|z j ≥ 0 for all j ∈ {1, 2, . . . , n + 1} and

∑n+1
j=1 z j = 1}.

1 For analogies between models, concepts, results and dynamics in economics and biology, see Joosten
(1996, 2006). For instance, a Walrasian equilibrium in economics is equivalent to a Nash equilibrium in an
evolutionary game. Moreover, an implication of WARP in economics is equivalent to an implication of ESS
in evolutionary game theory.
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The orthogonal-projection dynamics of Lahkar and Sandholm (2008), as we will
call them, are for x ∈ int �n given by

·
x = f (x) − 1

n + 1
1n+1

n+1∑

i=1

fi (x).

Here, f : �n → R
n+1 is a relative fitness function [cf., Joosten (1996)], and 1n+1 =

(1, . . . , 1)� ∈ R
n+1.

We define our evolutionary ray-projection dynamics by (2) where f is a relative
fitness function. We prove that under these dynamics every interior ESS is an asymptoti-
cally stable fixed point. We also show that the concept of a strict saturated equilibrium
unifies two notions of evolutionary stability, namely static evolutionary stability as
embodied by the ESS and dynamic evolutionary stability as embodied by ESE.

We extend the dynamics to the boundary of the state space and define ray-
projection dynamics for modifications of the relative fitness function. As it turns out,
the dynamics of Brown and von Neumann (1950), the logit dynamics of Fudenberg
and Levine (1998), but also the replicator dynamics of Taylor and Jonker (1978), can
be represented as ray-projection dynamics by choosing appropriate variants of the
relative fitness function.

Next, we present our ideas leading to the ray-projection dynamics. Section 3 extends
the scope of ray-projection dynamics, Sect. 4 concludes, all proofs are to be found in
the Appendix.

2 Comparing the old and the new

We first give a very concise introduction on pure exchange economies and price-
adjustment dynamics, then we show that the price-adjustment dynamics of Samuelson
(1941) can be projected on the unit simplex and we provide explicit formulas for these
projected dynamics. Next, we give a very brief introduction on dynamics and equilibria
in evolutionary game theory to continue with projection dynamics in an evolutionary
framework; we discuss the dynamics of Lahkar and Sandholm (2008) and propose
our own variant of projection dynamics as evolutionary dynamics. The final subsec-
tion is devoted to stability of interior equilibria. The reader interested beyond what is
presented, is referred to e.g., Joosten (1996, 2006).

2.1 On price-adjustment dynamics

The condition implied by WARP, cf., e.g., Uzawa (1961), is the following

(y − x) · f (x) > 0,

for all x, y ∈ P = R
n+1+ \{0n+1} such that y ∈ E = {

z ∈ P}| f (z) ≤ 0n+1
}
, x /∈ E .

Here, f : P → R
n+1 satisfies continuity, homogeneity (of degree zero in prices),

i.e., f (λx) = f (x) for all λ > 0, and complementarity, i.e., x · f (x) = 0 for all
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x ∈ P. Often, since the function f satisfies homogeneity of degree zero, analysis is

restricted to the n-dimensional unit simplex �n =
{

x ∈ P| ∑ j∈I n+1 x j = 1
}

, where

I n+1 = {1, . . . , n + 1}.
In economics, x ∈ �n represents a vector of relative prices adding up to unity; the

function f represents a so called generalized excess demand function. A price vector
y ∈ �n satisfying f (y) ≤ 0n+1 is called an equilibrium or a Walrasian equilibrium.
At an equilibrium no commodity has positive excess demand. Existence of an equi-
librium (ray) is readily shown by using homogeneity in order to restrict analysis to
�n , constructing an adequate continuous function from �n unto itself, and then using
Brouwer’s fixed point theorem. A generalized excess demand function on the unit
simplex satisfies continuity and complementarity.

A well-known result by Arrow and Hurwicz (1958, 1960a,b), Arrow et al. (1959)
is that the tâtonnement process of Samuelson (1941):

·
x = dx

dt
= f (x),

converges to an equilibrium if (y − x) · f (x) > 0 for all y ∈ E , and x /∈ E and
if desirability holds. Here, E = {

x ∈ R
n+1| f (x) ≤ 0n+1

}
denotes the set of (eco-

nomic) equilibria, and if the condition mentioned holds, it can be shown that E is
convex [cf., Arrow and Hurwicz (1960b)]. Moreover the Euclidean distance to the
set of equilibrium price vectors decreases monotonically in time along any trajectory
started in a non-equilibrium price vector.

2.2 Ray-projection of Samuelson’s tâtonnement process

Now, we derive the dynamics (2) as the projection of Samuelson’s tâtonnement pro-
cess on the unit simplex. Note that the trajectory {yt }t≥0 with y0 ∈ P under (1) may be
approximated at y ∈ {yt }t≥0 by y + �t f (y). Let the projection of y, and y + �t f (y)

unto the unit simplex �n be given by

x = y
∑n+1

i=1 yi
and x̃ = y + �t f (y)

∑n+1
i=1 yi + �t

∑n+1
i=1 fi (y)

.

So, �t is the length of the time interval elapsed,
∑n+1

i=1 yi + �t
∑n+1

i=1 fi (y) is a num-
ber, whereas y and f (y) are vectors. Then, this implies a move from x ∈ �n to x̃ ∈ �n

and therefore

�x = x̃ − x
y=λx= λx + �t f (λx)

∑n+1
i=1 λxi + �t

∑n+1
i=1 fi (λx)

− λx
∑n+1

i=1 λxi
∑n+1

i=1 λxi =λ= λx + �t f (λx)

λ + �t
∑n+1

i=1 fi (λx)
− x
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=
λx + �t f (λx) − x

(
λ + �t

∑n+1
i=1 fi (λx)

)

λ + �t
∑n+1

i=1 fi (λx)

f (λx)= f (x)= �t
f (x) − x

∑n+1
i=1 fi (x)

λ + �t
∑n+1

i=1 fi (x)
.

So, this means that

·
x = lim

�t↓0

�x

�t
= lim

�t↓0

�t

�t

f (x) − x
∑n+1

i=1 fi (x)

λ + �t
∑n+1

i=1 fi (x)
= 1

λ

[
f (x) − x

n+1∑

i=1

fi (x)

]
.

The direction of the dynamics are not influenced by the term 1
λ

, hence a transformation
of time allows its omission. This motivated the following.

Definition 1 Let f : P → R
n+1 satisfy continuity, complementarity, and (positive)

homogeneity of degree zero. Let for all y ∈ P,
·
y = dy

dt = f (y). Then, the ray-
projection dynamics on the unit simplex are for every x = 1∑n+1

i=1 yi
y ∈ int �n given

by
·
x = f (x) − x

∑n+1
i=1 fi (x).

Here, we are not concerned with the behavior of these dynamics on the boundary of
the unit simplex (boundary behavior is treated in Sect. 3).

2.3 On dynamics and equilibria in evolutionary game theory

In evolutionary game theory, for a population having n +1 distinguishable subgroups,
x ∈ �n is a vector of population shares for each subgroup. Let F : �n → R

n+1

be a fitness function, i.e., a function attributing to each subgroup in the population
its fitness. The fitness of a subgroup may be interpreted as its potential to reproduce
depending on the composition of the population.

The relative fitness function f : �n → R
n+1 is given by

fi (x) = Fi (x) − x · F(x) for all x ∈ �n and all i ∈ I n+1.

So, a relative fitness function [cf., Joosten (1996)] attributes to each subgroup the
difference between its fitness and the population share weighted average fitness of the
population. Continuity of F immediately implies continuity of f . Observe furthermore
that for all x ∈ �n , it holds that x · f (x) = 0.

The evolution of the composition of the population is usually represented by a
system of n + 1 autonomous differential equations:

·
x = dx

dt
= h(x).

Here, the function h : �n → R
n+1 is connected to the relative fitness function f

in one of the ways proposed, cf., e.g., Nachbar (1990), Friedman (1991), Swinkels
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(1993), Joosten (1996), Ritzberger and Weibull (1995). (Lipschitz) continuity of h
implies existence (and uniqueness) of a solution to the differential equation for every
starting point; differentiability of h implies both existence and uniqueness [cf., e.g.,
Perko (1991)]. We do not impose conditions on the function h at this point since many
interesting evolutionary dynamics are neither differentiable, nor continuous.

For sign-compatible dynamics, we have

sign hi (x) = sign fi (x) whenever xi > 0.

i.e., the change in population share of each subgroup with positive population share cor-
responds in sign with its relative fitness. A slightly more general alternative is provided
by Friedman (1991), evolutionary dynamics are weakly compatible if f (x) · h(x) ≥ 0
for all x ∈ �n .

The state y ∈ �n is a saturated equilibrium if f (y) ≤ 0n+1, a fixed point if
h(y) = 0n+1 ; a fixed point y is (asymptotically) stable if, for any neighborhood
U ⊂ �n of y, there exists an open neighborhood V ⊂ U of y such that any trajectory
starting in V remains in U (and converges to y). A limit point is a point y ∈ �n satis-
fying limt→∞ xt = y for at least one solution {xt }t≥0 to x0 ∈ �n and the differential
equation above. At a saturated equilibrium all subgroups with below average fitness
have population share equal to zero. The term is due to Hofbauer and Sigmund (1988),
in the sequel we often omit the term ‘saturated’.

The fixed point y ∈ �n is a generalized evolutionarily stable state [GESS, Joosten
(1996)] if and only if there exists an open neighborhood U ⊂ �n of y satisfying

(y − x) · f (x) > 0 for all x ∈ U\{y}. (3)

The GESS generalizes the concept of an ESS of Maynard Smith and Price (1973) in
order to deal with arbitrary (relative) fitness functions. For the more standard fitness
functions, the two notions coincide.

Joosten (1996) defined another concept as follows. The fixed point y ∈ �n is an
evolutionarily stable equilibrium (ESE) if and only if there exists an open neighbor-
hood U ⊂ �n of y satisfying

(y − x) · h(x) > 0 for all x ∈ U\{y}. (4)

The concept was inspired by the Euclidean distance approach of early contributions
in economics as mentioned, since (4) implies that the (squared) Euclidean distance is
a (strict) Lyapunov function for U .

2.4 Projection dynamics in evolutionary games

Lahkar and Sandholm (2008) introduce the following dynamics into evolutionary
game theory.
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x

f(x)

(1,0,0)

x

x

o

r

(0,1,0)

(0,0,1)

Fig. 1 The point xo is the orthogonal projection of x + f (x) on the S2; xr is the ray-projection of x + f (x)

on Sn

Definition 2 Let f : �n → R
n+1 be a relative fitness function, then, the orthog-

onal-projection dynamics are for every x ∈ int �n given by:
·
x = f (x) −(

1
n+1 1n+1

) ∑n+1
i=1 fi (x).

Recall that the part between brackets represents a number and 1n+1 is an (n+1)-vector
of ones. For the time being, we are only interested in the behavior of these dynamics
on the interior of the unit simplex. The authors actually define their dynamics on the
fitness function, but for the interior of the unit simplex their definition and the one
given above concur.

Our evolutionary ray-projection dynamics can be formalized as follows. Let f :
�n → R

n+1 be a relative fitness function, then the ray-projection dynamics are for
every x ∈ int �n given by Definition 1, i.e.,

·
x = f (x) − x

n+1∑

i=1

fi (x).

These dynamics are weakly-compatible in the sense of Friedman (1991).
Informally stated, both processes move from x ∈ �n into the direction f (x),

hence outside the unit simplex in general. Lahkar and Sandholm’s dynamics return
to the unit simplex by continuously changing all components with identical amounts,
whereas our dynamics are brought back to the unit simplex by continuously changing
all components proportional to x , see Fig. 1 for an illustration.

For the framework presented, we have the following result.
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Proposition 1 Every interior equilibrium is a fixed point of both types of projection
dynamics and every interior fixed point of both types of projection dynamics is an
equilibrium.

2.5 On stability of interior equilibria

Hofbauer and Sandholm (2009) introduce the class of stable games in which the fol-
lowing property holds:

(y − x) · ( f (y) − f (x)) ≤ 0 for all x, y ∈ �n .

This property is called monotonicity (M O N ) elsewhere and is connected to a multi-
tude of results guaranteeing uniqueness and dynamic stability of equilibria and fixed
points [see Joosten (2006)]. M O N is a weaker version of strict monotonicity (SM O N )
and the latter can be written as

(y − x) · ( f (y) − f (x)) < 0 for all x, y ∈ �n, x 
= y.

A game in which SM O N holds for all states x, y ∈ �n, x 
= y, is called a strictly
stable game. It can be shown that SM O N implies that there is a unique saturated
equilibrium, and that M O N implies that the set of equilibria is compact and convex.

For an interior equilibrium y ∈ �n , (S)M O N implies

(y − x) · f (x) ≥ (>)0 for all x ∈ �n\{y}.

So, an interior equilibrium of a strictly stable game is a GESS [cf., Joosten (1996)].
For a stable game, every interior equilibrium is a neutrally stable state [cf., Joosten
(2006), Maynard Smith (1982)].

For the orthogonal-projection dynamics it can be seen that every interior evolution-
arily stable equilibrium is a generalized evolutionarily stable state and every interior
generalized evolutionarily stable state is an evolutionarily stable equilibrium , as for
y ∈ int �n we have

(y − x) · h(x) > 0

⇐⇒ (y − x) · f (x) − (y − x)

(
1

n + 1
1n+1

) n+1∑

i=1

fi (x) > 0

⇐⇒ (y − x) · f (x) > 0.

We now present a corresponding result for ray-projection dynamics.

Proposition 2 Under the ray-projection dynamics, every interior generalized evolu-
tionarily stable state is an asymptotically stable fixed point.
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3 Extending the scope for projection dynamics

In this section we extend the scope for projection dynamics into two directions. First,
we propose several manners in which to extend the dynamics from the interior of
the unit simplex to its boundary. Second, we pursue the idea of replacing the relative
fitness functions in the definitions of projection dynamics by other functions which, in
order to make sense in an evolutionary framework, should be connected to the relative
fitness function.

3.1 To the boundary

The standard way of dealing with Samuelson’s dynamics on the boundary of P is to
define them as being zero for every zero component of the state variable, see e.g., Arrow
and Hurwicz (1958, 1960a,b), Arrow et al. (1959). In our notations the extension to
include the boundary of P would be given by

·
xi =

{
0 if xi = 0,

fi (x) otherwise.

So, the dynamics extended to the boundary may be discontinuous. For the ray-
projection dynamics this extension to the boundary does not pose great problems
as we may (re)define

·
x

r

i =
⎧
⎨

⎩
0 if xi = 0,

fi (x) − xi
∑

j :x j >0
f j (x) otherwise. (a)

Under (a), a trajectory might in finite time reach the boundary of the unit simplex, and
then remain on it (even if the relative fitness of a subgroup with population share zero
becomes positive again).

An alternative is to define the dynamics extended as

·
x

r

i =

⎧
⎪⎨

⎪⎩

0 if xi = 0 and fi (x) < 0,

fi (x) − xi
∑

j :x j >0
or f j (x)≥0

f j (x) otherwise. (b)

This way, the dynamics escape the boundary of �n as soon as fi (x) > 0. So, at a limit
point y ∈ bd �n , we can never have yi = 0 and fi (y) > 0. Note, however, that the
dynamics are discontinuous at the boundary of the state space as before.

A final way of covering the boundary conditions in an appropriate way is inspired
by Nikaidô and Uzawa (1960). Let ρ be a non-negative real number, then we may
extend the ray-projection dynamics to the boundary in the following manner

123



156 R. Joosten, B. Roorda

·
x

r

i = lim
ρ↓0

1

ρ

⎡

⎣max{0, ρ fi (x) + xi } − xi

n+1∑

j=1

max{0, ρ f j (x) + x j }
⎤

⎦ . (c)

These dynamics have non-negative sign at the boundary of the state space. Moreover,
the discontinuity problem is solved and on a very large subset of the state space, the
dynamics are equivalent to the original.

The following result has interesting implications. Let, Z P = {x ∈ �n| f (x) =
0n+1}, F P = {x ∈ �n| ·

x = 0n+1} and note that Z P ⊆ (F P ∩ E).

Proposition 3 Let {xt }t≥0 be a trajectory under the ray-projection dynamics and let
y = limt→∞ xt . If t∗ exists such that {xt }t≥t∗ ⊂ int �n, then y ∈ Z P; otherwise,
y ∈ bd �n and under (a) y ∈ F P, under (b or c) y ∈ E.

Boundary conditions are of high relevance for boundary equilibria, fixed points and
limit points. A refinement of the saturated equilibrium concept is the strict saturated
equilibrium [cf., Joosten (1996)] which is a saturated equilibrium satisfying f j (y) = 0
for precisely one j ∈ I n+1. For this type of equilibrium we have the following result
and in its proof the exact details about the boundary conditions become obsolete.

Proposition 4 Every strict saturated equilibrium is an evolutionarily stable equilib-
rium of the ray-projection dynamics.

3.2 To functions connected to the relative fitness function

Let g : R
n+1 → R

n+1, and take the ray-projection dynamics induced by g as follows:

·
xg = g(x) − x

n+1∑

i=1

gi (x).

Then, the following straightforward observations are useful.

• If g is weakly compatible with f , i.e., g(x) · f (x) ≥ 0 for all x ∈ int �n , then the
associated dynamics are weakly compatible.

• If g is non-negative, i.e., g : R
n+1 → R

n+1+ , then the dynamics remain on the unit
simplex.

The first observation gives a criterion to determine the status of the ensuing dynam-
ics. Recall that evolutionary dynamics should be connected with the relative fitness
function. Weak compatibility of Friedman (1991) is one of the ways to accomplish
this. Hence, if g is sign-compatible with f , then the resulting ray-projection dynam-
ics are weakly compatible. The second one deals with a criterion to guarantee that
ray-projection dynamics do not cross the boundary of the unit simplex.

In order to be relevant in an evolutionary framework it is of utmost importance to
link the function g to the relative fitness function. It is not the purpose of this sec-
tion to give a classification of functions suitable for evolutionary modeling purposes.
Instead we show that several well-known dynamics can be represented as ray-projec-
tion dynamics, allowing a unified analysis of important evolutionary dynamics.
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Example 1 Let g : int �n → R
n+1 be given (componentwise) by

a. gi (x) = xi Fi (x),
b. gi (x) = z (max{0, fi (x)}) where z : R+ → R+ is continuous and satisfies

z(0) = 0 and z(x) > 0 for all x > 0,
c. gi (x) = max{0, ρ fi (x) + xi } − xi where ρ > 0,
d. gi (x) = eβ fi (x) where β > 0,
e. gi (x) = xi eβ fi (x) where β > 0.

(a) Here, ray-projection yields the replicator dynamics of Taylor and Jonker (1978).
For these weakly compatible dynamics, each interior equilibrium is a fixed point
and vice versa, also all boundary equilibria are fixed points.

(b) These ray-projections were called ‘Brownian motions’ in Hofbauer (2000) after
G.W. Brown (not R. Brown, the (re)discoverer of Brownian motion). If z(x) = xα

for α > 0, x ≥ 0, then α = 1 yields the dynamics of Brown and von Neumann
(1950), or BN-dynamics. For α → ∞, the dynamics are a continuous version
of the best-response dynamics of Matsui (1992), or BR-dynamics, which have a
predecessor in the dynamics of Rosenmüller (1971), a continuous-time version of
fictitious play (Brown 1951). For these weakly compatible ‘Brownian motions’,
each interior equilibrium is a fixed point and vice versa, and all boundary equilibria
are fixed points as well.

(c) This variant yields another ‘Brownian motion’. The function is used by Nikaidô
and Uzawa (1960) in the framework of price-adjustment. The ray-projection
dynamics are weakly compatible and each interior equilibrium is a fixed point
and vice versa. All boundary equilibria are fixed points, too.

(d) Here, the ray-projection dynamics are (up to a nonlinear transformation of time)
equivalent to the logit dynamics (Fudenberg and Levine 1998). For β → ∞ these
dynamics become similar to the BR-dynamics, but remain continuous. A glaring
shortcoming of the logit dynamics is that an interior equilibrium need not be a
fixed point of the dynamics. Clearly, the ray-projection dynamics do not cross the
boundary of �n .

(e) Here, the ray-projection dynamics are equivalent to those of Björnerstedt and
Weibull (1996). Cabrales and Sobel (1992) have presented a discrete-time version.
Note that the ray-projection does not cross the boundary �n .

For the replicator dynamics, Taylor and Jonker (1978) provided conditions guaran-
teeing that each ESS is an asymptotically stable fixed point; Zeeman (1981) extended
this result; the most general stability result on these dynamics and the ESS is probably
Hofbauer et al. (1979).

BN-dynamics converge to a Nash equilibrium for zero-sum games. Moreover,
BN-dynamics are globally stable under strict monotonicity (SMON) of the general-
ized excess demand function [cf., Nikaidô (1959)]. Hofbauer (2000) treats families of
dynamics including (smoothed) BN-dynamics, BR-dynamics and replicator dynam-
ics. His convergence results on the ESS complement Nikaidô’s. Stability of the ESS
for the logit dynamics is shown in Hopkins (1999) and Hofbauer (2000).
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Nikaidô and Uzawa (1960) show that any interior equilibrium is asymptotically sta-
ble for their dynamics under WARP. For ρ → +∞ the ray-projection of their process
‘approximates’ the BN-dynamics ‘almost everywhere’; for ρ ↓ 0 the ray-projection
dynamics are equivalent to the ray-projection of Samuelson’s process ‘almost every-
where’. Clearly, for any interior equilibrium, there exists a neighborhood such that the
latter two concur. So, any interior ESS is an asymptotically stable fixed point of the
ray-projection of the dynamics of Nikaidô and Uzawa.

4 Conclusions

We introduced new evolutionary dynamics in game theory, the ray-projection dynam-
ics. We have shown that every interior (generalized) evolutionarily stable strategy is
an asymptotically stable fixed point of the ray-projection dynamics. We showed that
each strict saturated (Hofbauer and Sigmund 1988) equilibrium is both a generalized
evolutionarily stable state [Joosten (1996) after Maynard Smith and Price (1973)] and
an evolutionarily stable equilibrium (Joosten 1996) for ray-projection dynamics.

We applied projections to dynamics driven by functions connected to the relative
fitness function. It turns out that well-known dynamics in evolutionary game theory
can be represented as projection dynamics for appropriately chosen functions. Even if
well-known dynamics can not be recovered in full, attractive elements may be used for
new projection dynamics. For instance, the generalized replicator dynamics of Sethi
(1998) introduced in a learning framework in which strategies are not equally easily
adopted, can not be recovered by ray projection. Yet, the ‘inflows’ incorporating the
possible differences in which strategies can be adopted, can be taken to motivate new
evolutionary dynamics.

The strategy of proof for our first major result contains some promise for future
research. We transformed a dynamic process on the unit simplex into a dynamic pro-
cess in the positive orthant, then projected the latter unto the unit simplex. We took a
known result on price-adjustment dynamics in the positive orthant to show stability of
the unrestricted dynamics, i.e., convergence to an equilibrium ray, implying the same
properties for the connected ray-projection dynamics on the unit simplex. There is an
abundance of stability results on both restricted and unrestricted tâtonnements [cf.,
e.g., Uzawa (1961), Negishi (1962)] which may be used to derive stability results for
evolutionary dynamics using a similar strategy of proof. In this context, an important
topic for further research is to find a classification for the functions admissible for
projection.

Microfoundations were not a theme of this paper, but connections between the ones
given by e.g., Lahkar and Sandholm (2008) seem immediate. Tsakas and Voorneveld
(2009) show that target-projection dynamics (Sandholm 2005) can be associated to
rational choice behavior if control costs [as in e.g., Van Damme (1991)] can be assumed
[see also Mattson and Weibull (2002), Voorneveld (2006)]. Further research must
reveal which dynamics can be motivated with such microeconomic foundations.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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Appendix

Proof of Proposition 3 The part ‘interior equilibrium implies fixed point’ is evident.
Conversely, let y ∈ int �n be a fixed point of the ray-projection dynamics. Then,

fi (y) − yi

(∑n+1
j=1 f j (y)

)
= 0 for all i ∈ I n+1. This in turn implies yi fi (y) =

y2
i

(∑n+1
j=1 f j (y)

)
for all i ∈ I n+1. Then, summing over all i ∈ I n+1 and comple-

mentarity of f lead to 0 = y · f (y) = ∑n+1
i=1 y2

i

(∑n+1
j=1 f j (y)

)
. This can only hold

if
∑n+1

j=1 f j (y) = 0, hence f (y) = 0n+1. For orthogonal-projection dynamics, the
reasoning is similar.

Proof of Proposition 4 Let f : �n → R
n+1 be a continuous relative fitness function.

Define f̃ : P → R
n+1 by f̃ (λx) = f (x) for all λ > 0. Then, f̃ is continuous,

homogeneous of degree zero, and satisfies complementarity. Define for all x ∈ P :
·
x = f̃ (x). (5)

Clearly, this implies that d||x ||2
dt = 2

∑n+1
j=1 x j

·
x j = 2

∑n+1
j=1 x j f̃ j (x) = 0. Let {xt }t≥0

denote a solution to x0 ∈ P and Eq. (5). Then, {xt }t≥0 remains on the sphere with the
origin as center and with radius r = ||x0||.
Let y ∈ �n be an interior generalized evolutionarily stable state, i.e., an open
neighborhood U ⊆ int �n containing y exists such that (y − x) · f (x) > 0
for all x ∈ U\{y}. Let E = {x ∈ P| x = λy, λ > 0}. Define for z ∈ P, λz =∑n+1

k=1 zk . Then, let x∗ ∈ P satisfy 1
λx∗ x∗ ∈ U\{y} and let y∗ ∈ E such that

||x∗|| = ||y∗||. Then, obviously d (x∗, y∗)2 > 0, d (y∗, y∗)2 = 0 and under (5):
·

1
2 d (x, y∗)2 = −∑n+1

j=1(y∗
j − x∗

j ) f̃ j (x∗) = −∑n+1
j=1

(
λy∗ y j − λx∗ x j

)
f̃ j (λx∗ x) =

−∑n+1
j=1

(
λy∗ y j − λy∗ x j + (

λy∗ − λx∗
)

x j
)

f j (x) = −λy∗ (y − x) · f (x) < 0. This
means that the squared (Euclidean) distance is a strict Lyapunov function for U ′ ={

x ∈ P| 1
λx

x ∈ U
}

. Hence, an open neighborhood U ′′ of y∗ exists such that every

trajectory {xt }t≥0 with x0 ∈ U ′′\{y∗} such that ||x0|| = ||y∗||, converges to y∗, i.e.,
limt→∞ xt = y∗.

The ray-projection
{

x ′
t

}
t≥0 of such a trajectory {xt }t≥0 with x0 ∈ U ′′\{y∗} such

that ||x0|| = ||y∗||, and limt→∞ xt = y∗ is given by x ′ = x0∑n+1
j=1(x0) j

and

·
x ′ = 1

λx

[
f (x) − x

n+1∑

i=1

fi (x)

]
for every x ∈ {xt }t≥0 .

Clearly, limt→∞ x ′
t = y. As the factor 1

λx
only influences the speed of the dynamics

but not the direction, it follows that any trajectory {xt }t≥0with x0 ∈ U
′′′

converges to
y under the ray-projection dynamics given by
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·
x = f (x) − x

n+1∑

i=1

fi (x). (6)

So, y is an asymptotically stable fixed point for (6).

Proof of Proposition 5 Let h : �n → R
n+1 be given by h(x) = f (x)−x

∑n+1
j=1 f j (x)

for all x ∈ �n . Clearly, h is continuous because f is continuous on �n .

(1) Let {xt }t≥0 satisfy that some t∗ exists such that {xt }t≥t∗ ⊂ int �n and
limt→∞ xt = y. If y ∈ int �n , then by continuity of h it follows that
h(y) = 0n+1. So, Proposition 3 applies, i.e., y ∈ Z P ⊆ E . If on the
other hand, y ∈ bd �n , let y j = 0 and assume f j (y) > 0. By continu-
ity of h we have h j (y) > 0, and an open neighborhood U � y exists such
that h j (x) > 0 for all x ∈ U . However, since y j = 0 and x j > 0 for
all x ∈ {xt }t≥t∗ a subsequence

{
xtk

}
k∈N

⊆ {xt }t≥t∗ must exist such that
·(

xtk

)
j = h j

(
xtk

)
< 0 for all k ∈ N. Since limk→∞ xtk = y,

{
xtk

}
k∈N

∩U 
= ∅.
This yields a contradiction. Hence, y j = 0 implies f j (y) ≤ 0. Furthermore, for

y j > 0 we have h j (y) = 0 = f j (y) − y j

(∑n+1
k=1 fk(y)

)
which by continuity

implies f j (y) = y j

(∑n+1
k=1 fk(x)

)
. However, then 0 = ∑

j :y j >0 y j f j (y) =
∑

j :y j >0 y2
j

(∑n+1
k=1 fk(x)

)
, hence

∑n+1
k=1 fk(x) = 0 and f (y) = 0n+1.

(2) Suppose {xt }t≥0
t→∞→ y and it does not hold that t∗ exists such that {xt }t≥t∗ ⊂

int Sn . Let T = {k ∈ I n+1| yk > 0 or [yk = 0 and (xt )k > 0 for all t > t ′
for some t ′ ≥ 0]}. It follows from the above that for k ∈ T it must hold that

fk(y) = 0. Now, let h ∈ I n+1\T then yh = (xt )h = 0. If (a) holds, then
·
xh = 0

regardless the sign of fh(x), hence y ∈ F P . Under (b and c),
·
xh > 0 whenever

fh(x) > 0 and xh = 0, therefore y ∈ E .

Proof of Proposition 6 Let y be a strict saturated equilibrium, then m = maxh 
= j

fh(y) < 0 and continuity implies that a neighborhood U � y exists such that
maxh 
= j fh(x) ≤ m

2 for all x ∈ U . Complementarity implies y = e j . Let
CS(x) = ∑

h∈S∪{ j} fh(x) for ∅ 
= S ⊆ I n+1\{ j}. Then, clearly CS(y) ≤ m < 0

for all nonempty S ⊆ I n+1\{ j} and a neighborhood U ′ � y exists such that

maxS⊆I n+1\{ j} CS(x) ≤ m
2 for all x ∈ U ′. Next, let x ∈ U ∩ U ′, then (y − x) · ·

x =
(e j −x) · f (x)−CS′(x)(e j −x) ·x ≥ −

(∑
h 
= j xh fh(x)

)

x j
−(

x j − x · x
) m

2 ≥ − 1−x j
x j

m
2 −

(
1 − x j

) m
2

(
x j − maxh 
= j xh

) = − (
1 − x j

) m
2

(
1
x j

+ (
x j − maxh 
= j xh

)) ≥
− (

1 − x j
) m

2 ≥ 0. Here, we have a strict inequality whenever x j 
= 1. So, y ∈ E SE .
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