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PRIMAL-DUAL METHODS FOR

THE COMPUTATION OF TRADING REGIONS

UNDER PROPORTIONAL TRANSACTION COSTS

ROLAND HERZOG, KARL KUNISCH*, AND JÖRN SASS

Abstract. Portfolio optimization problems on a finite time horizon under

proportional transaction costs are considered. The objective is to maximize
the expected utility of the terminal wealth. The ensuing non-smooth time-

dependent Hamilton-Jacobi-Bellman (HJB) equation is solved by regulariza-

tion and the application of a semi-smooth Newton method. Discretization in
space is carried out by finite differences or finite elements. Computational

results for one and two risky assets are provided.

1 Introduction

We consider numerical methods for the solution of a continuous-time portfolio op-
timization problem with a finite time horizon and under proportional transaction
costs. An investor aims at maximizing the expected utility of the terminal value of
the liquidated investment portfolio (wealth). The supremum of this expected value
over all admissible trading strategies, the value function, satisfies a non-smooth
time-dependent Hamilton-Jacobi-Bellman equation of the form

max{Vt + LV, max
1≤i≤n

LBiV, max
1≤i≤n

LSiV } = 0, (1.1)

cf. ? for a finite-time horizon and ??? for an optimization problem with infinite
time horizon. The latter leads to a stationary problem (no dependency on time).

In our case, (1.1) is posed on the so-called solvency region S times the time interval
(0, T ) and it is endowed with appropriate boundary and terminal conditions. The
number n denotes the number of risky assets (stocks) in the portfolio. While L is
a second-order differential operator, the buy and sell operators LBi

and LSi
are of

first order.

The sought-after optimal trading strategy is determined in terms of the time-
dependent partitioning of the solvency region S into subregions determined by
which of the 2n + 1 terms in (1.1) are zero (active), and by the manifolds sep-
arating these subregions. These subregions, the trading regions, describe which
action is optimal, e.g., if the first term Vt(y) + LV (y) in (1.1) is zero for a risky
fraction y, then it is optimal not to trade. The component yi of the risky fraction
y = (y1, . . . , yn)> is the proportion of wealth invested in stock i. This is differ-
ent from the corresponding problem without costs, for which ? showed that it is
optimal to keep the risky fraction constant. This strategy requires continuous trad-
ing and cannot be followed when facing realistic transaction costs. Regions where
one or several of the other operators in (1.1) are zero correspond to regions where
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buying or selling a particular stock is optimal. For more references and other cost
structures we refer to the introduction of ?. For our model with proportional costs
these trading regions characterize the optimal strategy which is of the form that
no trading occurs as long as the fractions invested in the stocks stay inside the
no-trading (NT) region. Due to the dynamics of the stocks, these fractions might
hit the boundary; then infinitesimal small trading to keep the fractions inside the
NT-region is optimal, cf. [?, Section 9] for the stationary case.

It is the purpose of this paper to devise numerical methods for the solution of this
problem, i.e. for finding the trading regions, on the basis of methods that were first
analyzed for a simpler problem in ?. The main idea consists of replacing (1.1) by
an approximating penalty-type formulation,

Vt + LV + c

n∑
i=1

max{0,LBi
V }+ c

n∑
i=1

max{0,LSi
V } = 0. (1.2)

This approach was recently used in ? for a similar problem. For the simpler problem
max{−4y+ f, |∇y| − g} = 0 it was shown in ? that the proposed penalty method
is in fact regularizing and that the solutions of the penalized problems converge in
appropriate function spaces to the solution of the original Hamilton-Jacobi-Bellman
equation. After discretization in space and time, (1.2) can be solved using a semi-
smooth Newton methods, see e.g. ?. The latter is naturally implemented in terms
of an active set strategy.

Compared to the results in ?, in this paper we go a step beyond. In the case of
one risky asset we compare the results obtained by applying a semi-smooth Newton
method to both, the regularized and unregularized formulations of (1.2) to investi-
gate the effect of the regularization parameter. In the two dimensional case, the use
of regularization appears to be numerically essential. However, it may slow down
the iteration procedure and give rise to highly convective contributions from the
first-order operators LBi

and LSi
. For this reason, in addition to using upwinding

techniques, we propose to combine the Newton approach with an augmented La-
grangian concept. Differently from ?, we use a primal-dual strategy as opposed to
a purely primal one for the determination of the active sets. A further distinctive
feature of the proposed algorithm is an adaptive time-stepping technique.

We mention that a different numerical approach for the stationary problem with
consumption as in ??? was proposed in ??. There the authors employ a monoton-
ically decreasing update of the no-trading region, which is motivated by a policy
improvement procedure. By contrast, for our time-dependent problem we propose
a Newton scheme to resolve the trading and no-trading regions in every time step.
We do not need a priori structural assumptions on the location of the NT region.

The contents of the paper are organized as follows. We summarize the necessary
background on portfolio optimization in Section 2. In Section 3 we discuss and
compare the regularized and unregularized approaches for the solution of (1.1) in
the case of one risky asset (n = 1). Section 4 is devoted to the numerical treatment
of the regularized problem for the case n = 2. Numerical examples demonstrating
the performance of the algorithms are provided for both cases.

2 Background on Portfolio Optimization

We consider a continuous-time market model consisting of one bond or bank ac-
count and n ≥ 1 stocks with prices (P0(t))t∈[0,T ] and (Pi(t))t∈[0,T ], i = 1, . . . , n,
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respectively. For given interest rate r ≥ 0, trend parameter µ ∈ Rn, and non-
singular volatility-matrix σ ∈ Rn×n, these evolve according to

dP0(t) = P0(t) r dt, P0(0) = 1,

dPi(t) = Pi(t)µi dt+ Pi(t)

n∑
j=1

σij dWj(t), Pi(0) = 1, i = 1, . . . , n.

Here W = (W (t))t∈[0,T ] is an n-dimensional standard Brownian motion on a prob-
ability space (Ω,A, P ). Let F = (Ft)t∈[0,T ] denote the augmented filtration gener-
ated by W .

2.1. Trading Without Transaction Costs. Without transaction costs, the trad-

ing of an investor may be described by initial capital X(0) > 0 and risky fraction
process (η(t))t∈[0,T ], η(t) = (η1(t), . . . , ηn(t))>, where ηi(t) is the fraction of the
portfolio value (wealth) which is held in stock i at time t. The corresponding
wealth process (X(t))t∈[0,T ] is defined self-financing by

dX(t) =
(
1− 1>η(t)

)
X(t) r dt+

n∑
i=1

ηi(t)X(t)
(
µi dt+

n∑
j=1

σij dWj(t)
)
,

where 1 = (1, . . . , 1)>. In this section we call (ηt)t≥0 admissible if it is adapted,

measurable, bounded, and X(T ) > 0 holds. The terminal wealth x = X(T ) > 0 is
evaluated by a power utility function

1
α x

α for any α < 1, α 6= 0. (2.1)

The parameter αmodels the preferences of an investor. The strategy for the limiting
case α→ 0 corresponds to logarithmic utility, i.e., to maximizing the expected rate
of return. The case α > 0 corresponds to less risk averse and α < 0 to more risk
averse utility functions. ? showed that for logarithmic (α = 0) and power utility
the optimal trading strategy is given by a constant optimal risky fraction

η(t) = η̂, t ∈ [0, T ], for η̂ =
1

1− α
A−1(µ− r 1), (2.2)

where A = σσ> denotes the covariance matrix of the stock returns.

2.2. Proportional Transaction Costs. Keeping the risky fraction constant like
in (2.2) involves continuous trading. This is no longer adequate in the presence of
transaction costs. We consider proportional costs γ ∈ (0, 1) which correspond to
the proportion of the traded volume which has to be paid as fees. These are paid
from the bank account (bond).

The trading policy can be described by increasing processes Li = (Li(t))t∈[0,T ] and
Mi = (Mi(t))t∈[0,T ] representing the cumulative purchases and sales of stock i,

i = 1, . . . , n. We require that L = (L1, . . . , Ln)>, M = (M1, . . . ,Mn)> are right-
continuous, F-adapted, with initial values L(0−) = M(0−) = 0. Since transaction
fees are paid from the bank account, the dynamics of the controlled wealth processes
(X0(t))t∈[0,T ] and (Xi(t))t∈[0,T ], corresponding to the amount of money in the bank
account and the amount invested in stock i, are

dX0(t) = rX0(t) dt− (1 + γ) d(1>L(t)) + (1− γ) d(1>M(t)), (2.3a)

dXi(t) = Xi(t)µi dt+Xi(t)

n∑
j=1

σij dWj(t) + dLi(t)− dMi(t). (2.3b)

We write the wealth in stocks as vector X(t) = (X1(t), . . . , Xn(t))>.
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The objective is the maximization of the expected utility at the terminal trading
time T , over all control processes L and M which satisfy the conditions above and
for which the wealth processes Xi, i = 0, . . . , n, stay in the solvency region

S0 := {(x0, x) : x0 ∈ R, x ∈ Rn, x0 + 1>x− γ ‖x‖1 > 0} (2.4)

which consists of all positions in bond and stocks for which a strictly positive
wealth remains after liquidating the stock holdings. Note that in (2.4), γ ‖x‖1 =∑n
i=1 γ |xi| are the liquidation costs. Thus we require

(X0(t), X(t)) ∈ S0, t ∈ [0, T ).

Suppose that (X0(0−), X1(0−), . . . , Xn(0−)) ∈ S0. Accordingly, we consider the
maximization of the expected utility of the terminal total wealth after liquidating
the position in the stocks, i.e., we consider the value function

Φ(t, x0, x)

= sup
(L,M)

E
[
1
α

(
X0(T ) + 1>X(T )− γ ‖X(T )‖1

)α |X0(t−) = x0, X(t−) = x
]
. (2.5)

Alternatively, we might look at maximizing the expected utility of the terminal
total wealth, cf. Remark 2.3 below.

Theorem 2.1. The value function Φ is continuous, concave in (x0, x), and satisfies
the homotheticity property

Φ(t, cx0, cx) = cαΦ(t, x0, x) for c > 0, t ∈ [0, T ), (x0, x) ∈ S0, (2.6)

as well as the boundary conditions

Φ(t, x0, x)→
{

0, if 0 < α < 1,
−∞, if α < 0.

for (x0, x)→ (x̄0, x̄) ∈ ∂S0. (2.7)

Further, Φ is a viscosity solution of

max{Φt +AΦ, max
1≤i≤n

ABiΦ, max
1≤i≤n

ASiΦ} = 0 on [0, T )× S0, (2.8)

Φ(T, x0, x) = 1
α (x0 + 1>x− γ ‖x‖1)α for (x0, x) ∈ S0, (2.9)

where the differential operators A (generator of (X0, X)) and ABi
, ASi

, i = 1, . . . , n,
are defined by

Ah(x0, x) = r x0 hx0
(x0, x) +

n∑
i=1

µi xihxi
(x0, x) + 1

2

n∑
i,j=1

Ai,j xi xj hxi,xj
(x0, x),

ABi
h(x0, x) = −(1 + γ)hx0

(x0, x) + hxi
(x0, x),

ASi
h(x0, x) = (1− γ)hx0

(x0, x)− hxi
(x0, x)

for all smooth functions h.

Proof. The proof can be carried out similarly as in ? or ?, even if we consider
a finite time horizon problem and consequently a time-dependent value function.
In particular the first part is standard, corresponding to [?, Propositions 3.1–3.3].
Continuity of Φ in t can be shown using the no-trading strategy and the optimal
strategy without costs to derive lower and upper bounds for the change of the value
function in time. The convergence in (2.7) follows from arguments as used in [?,
Corollaries 5.5, 5.8] and the fact that Φ is a viscosity solution follows along the lines
of [?, Sections 6], only that we need the continuity of Φ in t as well. �
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Depending on which of the three terms in the outer max operation in (2.8) is active
at a given (t, x0, x) ∈ [0, T ]×S0, i.e., equals 0, we say that (t, x0, x) belongs to the
no-trading region, or the buy or sell region, respectively. More precisely, at time t,
we define the buy regions, sell regions and the no-trading region as follows:

B0
i (t) = {(x0, x) ∈ S0 : ABi

Φ(t, x0, x) = 0},
S0
i (t) = {(x0, x) ∈ S0 : ASiΦ(t, x0, x1) = 0},

NT 0(t) = S0 \
⋃

1≤i≤n

(B0
i (t) ∪ S0

i (t)).

The boundaries between these sets determine the optimal trading policy.

Based on Theorem 2.1 we may further analyze the regularity of the value function
and the properties of the trading regions. Since the arguments differ from those
in ? due to the finite time horizon (dependency on time) and since we consider
n ≥ 1 stocks, we state the corrsponding results as an assumption. These claims are
supported by the results in ? and the numerical analysis in ???. The numerical
results in this paper may give rise to derive further properties of the trading regions
which allow for a more direct proof.

Assumption 2.2. The value function Φ = Φ(t, x0, x) is continuously differen-
tiable in t, continuously differentiable in x0 and twice continuously differentiable in
x = (x1, . . . , xn)> for (t, x0, x) ∈ (0, T )×

(
S0 \ {(x0, x1, . . . xn) |xi = 0 for some i}

)
.

Further, NT 0(t) 6= ∅ for all t ∈ [0, T ).

Remark 2.3. Instead of Φ we might also consider

Φ̃(t, x0, x) = sup
(L,M)

E
[
1
α

(
X0(T ) + 1>X(T )

)α |X0(t−) = x0, X(t−) = x
]

(2.10)

which corresponds to maximizing the expected utility of the terminal total wealth
(i.e., without liquidating the position in the stocks). In Theorem 2.1 this would

change only the terminal condition to Φ̃(T, x0, x1) = 1
α (x0 +1>x)α instead of (2.9).

Remark 2.4. If neither short selling nor borrowing are allowed, we would require
that the wealth processes Xi, i = 0, . . . , n, stay positive and the total wealth stays
strictly positive, i.e.,

(X0(t), X(t)) ∈ D0 := Rn+1
+ \ {0} for t ∈ [0, T ].

While the operators have the same form, not all actions (selling or buying stock
i) are admissible on the boundary of D0, which restricts the number of operators
in (2.8). In ? a result corresponding to Theorem 2.1 is derived. The numerical
treatment is possible with the methods developed in this paper.

2.3. Reduction of the Dimension. It is convenient to consider the risky fraction
process rather than the wealth process (2.3). For wealth xi in stock i and total
wealth ξ = x0 + 1>x, the risky fractions are given by yi = xi

ξ , i = 1, . . . , n.

From the homotheticity property (2.6) of Φ we deduce

Φ(t, x0, x) = ξαΦ(t, x0

ξ ,
x1

ξ , . . . ,
xn

ξ ). (2.11)

Thus it is enough to consider

V (t, y) = Φ(t, 1− 1>y, y), y ∈ S, (2.12)

where

S = {y ∈ Rn : γ ‖y‖1 < 1} (2.13)
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is the solvency region in terms of the risky fractions. For Φ(t, x0, x) = ξαV (t, x/ξ),
we obtain

Φt = ξαVt, Φx0
= ξα−1

(
αV − y>Vy

)
, Φxi

= ξα−1
(
αV + (ei − y)>Vy

)
,

Φxi,xj
= ξα−2

(
α(1− α)V + (α− 1)(ei + ej − 2y)>Vy + (ei − y)>Vyy(ej − y)

)
,

where Vy and Vyy denote the gradient and the Hessian of V , and e1, . . . , en are the
unit vectors in Rn. We get for y = x/ξ

Φt(t, x0, x) = ξαVt(t, y), AΦ(t, x0, x) = ξαLV (t, y),

ABi
Φ(t, x0, x) = ξα−1LBi

(t, y)V, ASi
Φ(t, x0, x) = ξα−1LSi

V (t, y).

For classical solutions for which the above derivatives exist and are continuous,
Theorem 2.1 carries over directly to Theorem 2.5 below. For a viscosity solution
Φ it can be shown that also V is a viscosity solution of (2.15), which then yields
Theorem 2.5, cf. [?, Proposition 8.1]:

Theorem 2.5. The value function V is continuous and concave in y with

V (t, y)→

{
0, if 0 < α < 1

−∞, if α < 0
for y → ȳ ∈ ∂S, t ∈ (0, T ) . (2.14)

Further, V is a viscosity solution of

max{Vt + LV, max
1≤i≤n

LBi
V, max

1≤i≤n
LSi

V } = 0 (2.15)

on [0, T )× S with terminal condition

V (T, y) = 1
α (1− γ ‖y‖1)α, y ∈ S. (2.16)

The operators in (2.15) are defined by

LV = α
(
r + (µ− r1)>y − 1

2 (1− α) y>Ay
)
V

+
[(

diag(µ− r1)− (µ− r1)>y I
)
y − 1

2 (1− α)

n∑
i,j=1

Aij yi yj(ei + ej − 2y)
]>
Vy

+ 1
2

n∑
i,j=1

Aij yi yj(ei − y)>Vyy(ej − y), (2.17a)

LBiV = −αγ V + (ei + γ y)>Vy, i = 1, . . . , n, (2.17b)

LSiV = −αγ V − (ei − γ y)>Vy, i = 1, . . . , n. (2.17c)

The trading regions are now given by

Bi(t) = {y ∈ S : LBi
V (t, y) = 0},

Si(t) = {y ∈ S : LSi
V (t, y) = 0},

NT (t) = S \
⋃

1≤i≤n

(Bi(t) ∪ Si(t)).

They correspond to buying stock i, selling stock i and not trading at all. On⋂
1≤i≤n

Ri, Ri ∈ {Bi, Si},

we thus get from LRi
V = 0, i = 1, . . . , n, that

V (t, y) = CR1,...,Rn
(t)
(

1 +

n∑
i=1

γi yi

)α
, (2.18)

where γi = γ if Ri = Bi and γi = −γ if Ri = Si.
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Remark 2.6. (1) Assumption 2.2 implies that V (t, ·) is twice continuously
differentiable on S \ ∂D where D is the simplex in Rn. Due to the homoth-
eticity property (2.6) the trading regions for the original problem are cones.
Therefore, NT 0(t) 6= ∅ implies also NT (t) 6= ∅ for all t ∈ [0, T ).

(2) The homotheticity property (2.11) holds also for the value function Φ̃ in
(2.10) without terminal liquidation, see Remark 2.3. Hence we can consider

Ṽ (t, y) = Φ̃(t, 1 − 1>y, y) for which we have to solve (2.15) with terminal

condition Ṽ (T, y) = 1/α.
(3) In the case that borrowing (1>y > 1) and short selling (yi < 0) are not

allowed, after reducing the dimension we have to solve on [0, T ) × D a
Hamilton-Jacobi-Bellman (HJB) equation based on the same operators as
in Theorem 2.5 and using the same terminal condition (2.16). Here D
denotes the simplex in Rn. On the boundary ∂D we have to take care
which actions are not admissible and may have to exclude the corresponding
inequalities, cf. ?. For this problem with no borrowing and no short selling,
some of Bi(t) or Si(t) may be empty. If that happens we need boundary
conditions different from those given by LBi

V = 0, LSi
V = 0 on the

boundary of NT (t). In this case these boundary conditions follow from
requiring Vt + LV = 0 on the boundary.

(4) While all examples in this paper use symmetric proportional trading costs
γ, our approach can be easily extended to cover the case of different costs
for buying and selling, which may be different for each asset. Analogous
results can be obtained for logarithmic utility.

2.4. Numerical Treatment of Portfolio Optimization as a Non-Varia-
tional Complementarity Problem. It should be recognized that, even in the
stationary case with Vt not appearing in (2.15), this problem is not of variational
type. It is thus distinct from the obstacle problem, not only since the constraints
involve spatial derivatives of the state, rather than the state itself, but also since it
cannot be interpreted in a straightforward way as the necessary optimality condi-
tion of a minimization problem in function space. In a function space setting such
problems have received very little attention. In ? we investigated

max{−4u− f, |∇u| − g} = 0 a.e. in Ω,

u = 0 on Γ = ∂Ω,
(2.19)

where Ω ⊂ Rd is a bounded domain with smooth boundary Γ, as a prerequisite to
the present work. There we mainly investigated two approaches, namely of (3.6) as
a complementarity problem, which involves the introduction of a new variable λ for
the term |∇u| − g, and alternatively a regularization procedure, which realizes the
constraint on |∇u| − g by means of a penalty formulation. The complementarity
approach was already treated in ? for the one dimensional case of (2.15). The
introduction of the regularization term allows to interpret the approach as a semi-
smooth Newton method in function spaces, whereas without the regularization the
interpretation as semi-smooth Newton method is only possible after discretization.
This is described in more detail in section below.

The regularization approach presented from the point of view of penalization was
recently also used in ?. In this paper we go a step beyond. In the one dimensional
case we compare the results between the regularization and the complementarity
formulation to investigate the effect of the regularization parameter. In the two
dimensional case, the use of regularization appears to be numerically essential, on
the other hand it may slow down the iteration procedure and influence the con-
dition number of the system matrix. For this reason we propose to combine the
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Newton approach that is used to solve the regularized problems with an augmented
Lagrangian concept. This involves the interpretation of λ as a Lagrange multiplier
and updating it according to a multiplier scheme well known from numerical re-
alization of inequality constraints, ??. Differently from ?, we use a primal-dual
strategy as opposed to a purely primal one for the determination of the active sets.
A further distinctive feature of the proposed algorithm is an adaptive time-stepping
technique.

3 The Case of One Risky Asset

In the case of only one risky asset (stock) n = 1, equation (2.15) reduces to

max{Vt + LV, LBV, LSV } = 0 on (0, T )× S (3.1)

on S = (−1/γ, 1/γ) with boundary conditions

V (t,−1/γ) = V (t, 1/γ) =

{
0, if 0 < α < 1

−∞, if α < 0
for all t ∈ (0, T ) (3.2)

and terminal conditions on S
V (T, y) = 1

α without liquidation costs (3.3a)

V (T, y) = 1
α (1− γ ‖y‖1)α with liquidation costs. (3.3b)

By (2.17), the linear differential operators in (3.1) become

LV =
[
α(r + (µ− r) y) + 1

2α(α− 1)σ2y2
]
V

+
[
(µ− r) y (1− y) + (α− 1)σ2y2(1− y)

]
Vy + 1

2σ
2y2(1− y)2 Vyy (3.4a)

LBV = (1 + γ y)Vy − αγV (3.4b)

LSV = −(1− γ y)Vy − αγ V. (3.4c)

3.1. Regularization. Instead of treating (3.1)–(3.3) directly, we consider the reg-
ularized formulation

Vt + LV + c max{0,LBV }+ c max{0,LSV } = 0 (3.5)

with regularization parameter c > 0 and subject to the boundary and terminal
conditions (3.2)–(3.3). The motivation for introducing this formulation for the
numerical realization of (3.1) resides in the fact that we shall utilize a Newton type
method. Clearly this is impeded by the max-operation appearing in (3.1). The
regularized form (3.5), however, lends itself to a semi-smooth Newton treatment.
Let us explain this point in some detail for a significantly simpler problem which,
however, still contains the essential feature of (3.5). For this purpose we consider

max{−4u− f, u′ − g, h− u′} = 0 a.e. in Ω,

u = 0 on ∂Ω,
(3.6)

where Ω is an interval in R, and f , g and h, with g ≥ h are given. Just as the full
problem (3.1) our model problem involves the max operation over a second-order
diffusion process and inequality constraints on first order terms of the unknown
function u.

Instead of (3.6), we consider a sequence of regularized problems for an increasing
sequence of parameters c > 0:

−4u+ c max{0, u′ − g}+ c max{0, h− u′} = f in Ω, u = 0 on ∂Ω. (3.7)

On the inactive set {h > u′}∩{u′ < g} we have −4u = f , just as in (3.6), whereas
diffusion is added on the active set {h ≤ u′} ∪ {u′ ≥ g}. This justifies calling (3.7)
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a regularization of (3.6). In (3.7) only lower order terms appear under the max
operation. It is therefore quite straightforward to argue that

F (λ) = λ−c max{0,
(
(−4)−1(f−λ)

)′−g}−c max{0, h−
(
(−4)−1(f−λ)

)′} (3.8)

is Newton differentiable, from L2(Ω) to itsself, and consequently the semi-smooth
Newton algorithm applied to F (λ) = 0 converges locally q-superlinearly to the
solution uc of (3.7), see ??, for example. Above 4−1 denotes the solution operator
for the Laplacian in Ω with homogenous Dirichlet boundary conditions. To describe
the asymptotic behavior, we set

λ+c := c max{0, u′c − g}, λ−c := c max{0, h− u′c}, λc := λ+c + λ−c . (3.9)

Then, as c→∞ the pair (uc, λc) converges to the solution of

−4u+ λ+ + λ− = f a.e. in Ω

λ+ ≥ 0, u′ − g ≤ 0, λ+(u′ − g) = 0 a.e. in Ω

λ− ≥ 0, −u′ + h ≤ 0, λ−(−u′ + h) = 0 a.e. in Ω,

(3.10)

which is the complementarity formulation of (3.6).

The second and third equations in (3.10) can equivalently be expressed as

λ+ = max(0, λ+ + % (u′ − g)), λ− = max(0, λ− + % (h− u′)), (3.11)

for any fixed % > 0, i.e. % is not a regularization parameter. Exploiting the fact
that the upper and lower bounds cannot be active simultaneously if g > h, system
(3.6) can equivalently be expressed as

F̃ (λ) = λ−max
{

0, λ+ %
(
(−4)−1(f − λ)

)′ − g}
−max

{
0, λ+ %

(
h− (−4)−1(f − λ)

)′}
, (3.12)

where the relation to λ± is given by λ = λ+ on the set {u′ = g}, λ = λ− on
{u′ = h}, and λ = λ± = 0 on the inactive set. The max-operations appearing
in (3.8) and (3.12) are distinctly different. In the former, the unknown quantity
λ appears with a smoothing operation 4−1, whereas in the latter it stands by
itself. As a consequence F is Newton differentiable whereas F̃ is not. We refer to ?
for the precise definition of Newton differentiability. Here it suffices to recall that
max{0, ·} : Lr(Ω) → L2(Ω) is Newton differentiable (with generalized derivative
given by an indicator function) if and only if r > 2. This can be used to argue
Newton differentiability of F , for any c > 0. This also gives another justification
to refer to (3.7) as a regularization of (3.6). Analogous results as discussed here
for the one-dimensional case also hold in higher dimensions ?. There it was also
shown that the solutions to the regularized problem are W 2,p(Ω) regular, for any
p ∈ [1,∞), whereas the solution to the multi-dimensional analog of (3.6) are in
H2(Ω).

Clearly, the choice of the regularization parameter c must be addressed. In practice
this will frequently be done heuristically, but for the related class of optimal control
problems with pointwise constraints, path-following algorithms were developed in
? which allow self-tuning of the regularization parameter c.

3.2. Discretization in Time. For the numerical realization a semi-discretization
of (3.5) backwards in time by the one-step θ method with θ ∈ (0, 1] is used. Let V n

denote the unknown at time level n. Then V n is computed from V n+1 according
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to

V n+1 − V n

τ
+ L(θ V n + (1− θ)V n+1) + c max{0,LB(θ V n + (1− θ)V n+1)}

+ c max{0,LS(θ V n + (1− θ)V n+1)} = 0 (3.13)

subject to the boundary conditions (3.2). The time step size is denoted by τ . For
the specific choices θ = 1 and θ = 1/2 the scheme becomes the implicit (backward)
Euler and the Crank-Nicolson methods, respectively.

3.3. Semi-Smooth Newton Method. At any given time level n, (3.13) repre-
sents a second-order elliptic partial differential equation for the variable V n with
a non-smooth first-order term. The nonsmoothness arises from the presence of the
max{0, ·} operation. However, this operation enjoys the Newton differentiability
property, which allows for the formulation of a generalized Newton’s method. A
Newton derivative of max{0,LBV } is given by the indicator function of {LBV > 0}.
The structure of the indicator function entails that the Newton step takes the form
of an active set method. This has been rigorously proved in ? for a similar problem
setting.

Apart from the max{0, ·} terms, (3.13) is a linear equation. Hence the Newton
step, written in terms of the new iterate V = V nk+1 is given by

V n+1 − V
τ

+ L(θ V + (1− θ)V n+1) + c χAB
k
LB(θ V + (1− θ)V n+1)

+ c χAS
k
LS(θ V + (1− θ)V n+1) = 0,

(3.14)

subject to the boundary conditions (3.2), where

ABk = {y ∈ (−1/γ, 1/γ) : LB(θ V nk + (1− θ)V n+1) > 0}
ASk = {y ∈ (−1/γ, 1/γ) : LS(θ V nk + (1− θ)V n+1) > 0}.

(3.15)

The complete semi-smooth Newton (SSN) algorithm is given as Algorithm 3.1. An
initial guess for V n0 on the current time level is obtained from linear extrapolation
of V n+1 and V n+2, i.e.,

V n0 = 2V n+1 − V n+2, (3.16)

or V N−10 = V N in case of the first time step.

3.4. Discretization in Space and Treatment of Boundary Conditions. The
spatial operators in (3.14)–(3.15) are discretized by finite differences. The trading
bounds supB(t) and inf S(t) lie to the left and right of the Merton fraction, see
(2.2),

η̂ =
1

1− α
µ− r
σ2

.

In order to resolve the trading bounds accurately, a refined grid in [η̂ − 1, η̂ + 1]
around the Merton fraction and a coarse grid away from it on [−1/γ, η̂ − 1] and
[η̂ + 1, 1/γ] was used. For η̂ ∈ (0, 1) this choice guarantees that the NT -region is
covered by the refined grid. For η̂ far away from 0 it might happen that it does
not lie in the NT -region, see e.g., ??, and the choice for the grid would have to be
adapted.

The second derivative Vyy was discretized by the standard stencil [1 − 2 1]/h2.
The convective terms involving LB and LS in (3.14) need to be stabilized. For this
purpose upwind differences for Vy were utilized. That is, Vy in LBV was discretized
by first-order backward differences, while Vy in LSV was approximated by forward
differences. The same discretization was used to determine the active sets in (3.15).



PRIMAL-DUAL METHODS FOR COMPUTATION OF TRADING REGIONS 11

The boundary conditions (3.2) for the Newton step (3.14) read

V n(−1/γ) = V n(1/γ) =

{
0, if 0 < α < 1

−∞, if α < 0

and thus they require special care if α < 0. Regardless of the sign of α we shall
exploit the fact that the buy and sell trading regions extend to the boundaries
−1/γ and 1/γ, respectively. This follows from the boundary conditions (2.14) with
arguments as used to derive the corresponding Corollaries 8.7/8.8 in ?. That is,
the solution of the continuous problem satisfies LBV (t, y) = 0 for y near −1/γ at
all times t ∈ [0, T ), i.e.,

V (t, y) = cB(t)(1 + γ y)α

holds with an unknown integration constant cB(t) 6= 0.

Suppose that a ∈ (−1/γ, supB(t)) is a given number in the buy region. From
LBV (t, a) = 0 we infer

(1 + γ a)Vy(t, a)− αγ V (t, a) = 0. (3.17a)

Similarly, we obtain for b ∈ (inf S(t), 1/γ) the condition

− (1 + γ b)Vy(t, b)− αγ V (t, b) = 0. (3.17b)

Thus using the Robin boundary conditions (3.17) allows us to solve the Newton
step (3.14) on the subdomain (a, b) ⊂ (−1/γ, 1/γ) only. We refer to this as the
reduced domain technique and it leads to a significant reduction of the size of the
computational domain. The unknown constants cB(t) and similarly cS(t) can be
computed a posteriori from

cB(t) = V (t, a)(1 + γ a)−α, cS(t) = V (t, b)(1− γ b)−α. (3.18)

The solution V (t, ·) can thus be recovered outside (a, b). Note that this procedure
can be used regardless of the sign of α.

For convenience, we summarize the semi-smooth Newton time-stepping method as
Algorithm 3.1.

3.5. Unregularized Active Set Method. For comparison, we also implemented
an unregularized version of the semi-smooth Newton iteration. It is based on the
following reformulation of (3.1) as a complementarity problem:

Vt + LV + λB + λS = 0

λB ≥ 0, LBV ≤ 0, λB LBV = 0

λS ≥ 0, LSV ≤ 0, λS LSV = 0

(3.19)

with boundary and terminal conditions (3.2)–(3.3), compare (3.10) in the discussion
of the beginning of Section 3.1. Using the max{0, ·} complementarity function,
(3.19) can be equivalently expressed as

Vt + LV + λB + λS = 0

λB = max{0, λB + %LBV }, λS = max{0, λS + %LSV }
(3.20)

for any % > 0, as was explained for the introductory example in (3.11). This leads
to the following semidiscrete formulation of (3.1)

V n+1 − V n

τ
+ L(θ V n + (1− θ)V n+1) + λB + λS = 0

λB = max{0, λB + %LBV n}, λS = max{0, λS + %LSV n}
(3.21)
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Algorithm 3.1 Semi-smooth Newton time-stepping method in the one-dimensional
case

1: Initialize V N according to (3.3)
2: for n = N − 1, . . . , 1 do
3: Initialize V n0 := 2V n+1 − V n+2 (or V N−10 = V N ) and set k := 0
4: while not converged (SSN) do
5: Set

ABk := {y ∈ (−1/γ, 1/γ) : LB(θ V nk + (1− θ)V n+1) > 0}
ASk := {y ∈ (−1/γ, 1/γ) : LS(θ V nk + (1− θ)V n+1) > 0}

6: Solve for V nk+1

V n+1 − V
τ

+ L(θ V + (1− θ)V n+1) + c χAB
k
LB(θ V + (1− θ)V n+1)

+ c χAS
k
LS(θ V + (1− θ)V n+1) = 0.

either on the full domain (−1/γ, 1/γ) with boundary conditions (3.2), or
on the reduced domain (a, b) with boundary conditions (3.17)

7: if reduced domain case then
8: Compute cB and cS from (3.18)

9: Set V nk+1 :=

{
cB(1 + γ y)α on (−1/γ, a)

cS(1− γ y)α on (b, 1/γ)

10: end if
11: Increase k
12: end while (SSN)
13: Set V n := V nk
14: end for

on (0, T )× (−1/γ, 1/γ). We suppose again that the active sets

AB = {y ∈ (−1/γ, 1/γ) : λB + %LBV n > 0}
AS = {y ∈ (−1/γ, 1/γ) : λS + %LSV n > 0}

are intervals of the form (−1/γ, a) and (b, 1/γ). As in (3.17), we impose Robin
boundary conditions at y = a and y = b and solve

V n+1 − V n

τ
+ L(θ V n + (1− θ)V n+1) = 0 on (a, b).

The equations in (3.21) are coupled through the active sets. Their iterative solution
by Newton’s method leads to Algorithm 3.2. Note that the interval structure of
the active sets is enforced in step 8. The initialization of λN−1B,0 and λN−1S,0 in step 5
is motivated by the update formula for λB and λS as applied in step 12, under the
best available guess V N−1 = V N .

3.6. Numerical Results. For all computations, a uniform time grid with 200
points with implicit Euler time-stepping (θ = 1) was used. In order to resolve the
trading bounds accurately, a refined grid with 4000 grid points in [η̂ − 1, η̂ + 1]
around the Merton fraction and a coarse grid with 100 points each away from it on
[−1/γ, η̂− 1] and [η̂+ 1, 1/γ] was used. For all examples, the Robin-type boundary
conditions (3.17) were employed on the reduced domain (a, b) = (− 1

10γ ,
1

10γ ).

The iteration for a given time level n (see steps 4–12 in Algorithm 3.1) was termi-
nated as soon as one of the following criteria was satisfied:

(1) the active sets coincided: ABk+1 = ABk and ASk+1 = ASk
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Algorithm 3.2 Unregularized semi-smooth Newton time-stepping method in the
one-dimensional case

1: Initialize V N according to (3.3)
2: Set

a := min
{
y ∈ (−1/γ, 1/γ) : LV N ≥ 0

}
b := max

{
y ∈ (−1/γ, 1/γ) : LV N ≥ 0

}
3: for n = N − 1, . . . , 1 do
4: Initialize V n0 := 2V n+1 − V n+2 (or V N−10 = V N ) and set k := 0
5: Initialize λnB,0 := 2λn+1

B − λn+2
B and λnS,0 := 2λn+1

S − λn+2
S or

λN−1B,0 := −LV N on (−1/γ, a)

λN−1S,0 := −LV N on (b, 1/γ)

λN−1B,0 := λN−1S,0 := 0 elsewhere

6: while not converged (SSN) do
7: Set

ABk := {y ∈ (−1/γ, 1/γ) : λnB,k + %LBV nk > 0}
ASk := {y ∈ (−1/γ, 1/γ) : λnS,k + %LSV nk > 0}

8: Set
a := maxABk and b := minASk

9: Solve for V nk+1

V n+1 − V
τ

+ L(θ V + (1− θ)V n+1) = 0

on (a, b) with boundary conditions (3.17)
10: Compute cB and cS from (3.18)

11: Set V nk+1 :=

{
cB(1 + γ y)α on (−1/γ, a)

cS(1− γ y)α on (b, 1/γ)

12: Set

λnB,k+1 := −
V n+1 − V nk+1

τ
− L(θ V nk+1 + (1− θ)V n+1) on (−1/γ, a)

λnS,k+1 := −
V n+1 − V nk+1

τ
− L(θ V nk+1 − (1− θ)V n+1) on (b, 1/γ)

and λnB,k+1 = λnS,k+1 = 0 elsewhere
13: Increase k
14: end while (SSN)
15: Set V n := V nk , λnB := λnB,k and λnS := λnS,k
16: end for

(2) the time step residual∥∥max
{V n+1−V n

k+1

τ − L(θ V nk+1 + (1− θ)V n+1), LBV nk+1, LSV nk+1

}∥∥
L∞(S) (3.22)

after step 10 was below 10−7,
(3) the terms determining the change of active sets

jB := LB(θ V nk+1 + (1− θ)V n+1)

jS := LS(θ V nk+1 + (1− θ)V n+1)
(3.23)
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after step 10 satisfied

|jB | < 10−6 on ABk \ABk+1 and on ABk+1 \ (ABk ∪ASk )

|jS | < 10−6 on ASk \ASk+1 and on ASk+1 \ (ABk ∪ASk ).

In all examples, criteria (1) or (3) were always satisfied first.

Example 3.1. In this example we consider the following problem data

α = 0.1 utility exponent γ = 1.0% trading costs

µ = 9.6% stock trend σ = 0.4 stock volatility

r = 0.0% interest rate

on the time interval (0, 1). The Merton fraction for this example is η̂ = 2/3, and
we consider the case with liquidation costs.

We report on the performance of Algorithm 3.1 in a Matlab implementation with
various choices of the regularization parameter c, see Table 3.1. The plot of the
trading region boundaries is shown in Figure 3.1. The run-time was never more
than 7 seconds on a contemporary PC.

The area between the black and the red curve is the no-trading region NT . If at
time t a fraction y ∈ NT (t) of our wealth is invested in the stocks, we would not
trade. Below from the black curve we have the buy region B, above from the red
curve the sell region S. Starting with a risky fraction in NT we actually only touch
the boundary of B or S as described in the introduction. But starting at t ∈ [0, T )
with a risky fraction in the interior of B(t) or S(t), it would be optimal to buy or
sell, respectively, in such a way that after trading the new risky fraction lies on the
boundary of NT (t) and afterwards to continue as above.

The financial interpretation of the shape of the regions in Figure 3.1 is as follows:
The Merton fraction η̂ = 2/3 > 0 indicates that it is optimal to invest in the stocks.
It is desirable to stay close to η̂. From Figure 3.1 we learn that for positions above
η̂ (dashed line) it becomes more and more attractive to sell stocks (red curve) to get
closer to η̂, since we have to sell all stocks at terminal time anyway. On the other
hand, it is always better to be 100 % invested in the bond (y = 0), than to have a
short position in the stocks (y < 0). Due to the liquidation costs at terminal time
we would liquidate a short position in the stocks immediately (positive black curve).
If the expected gains from the stock investment are higher than the costs, we buy
stocks, as is the case for t < 0.78 (black curve strictly positive). The influence of
these small realistic costs of γ = 1% can be seen very well from the solid blue curve
which shows that it would be better to start at t = 0.9 with a position zero in the
stocks than at the Merton fraction η̂, which is optimal without costs. In the short
remaining time the liquidation costs are higher than the expected proceeds from
the stock investment.

In Figure 3.2, the three terms in

max
{
V n+1−V n

τ − L(θ V n + (1− θ)V n+1), LBV n, LSV n
}

= 0 (3.24)

are depicted in the vicinity of the trading bounds. Note that the angle of intersection
between these curves is small. Hence the sensitivity of the boundaries of the trading
regions with respect to the penalty parameter c must be checked. To this end, the
values4b and4s are included in Table 3.1. As can be seen, the boundaries converge
as c increases. Moreover, the table gives a clear indication that the residual error
is linked to regularization.

For the sake of comparison, we also applied the unregularized Algorithm 3.2 for
this and the following example. The reduced computational domain was chosen to
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c iter 4b 4s residual

1.00E0 319 — — 4.00E-1

1.00E1 459 0.0040 0.0040 1.97E-1

1.00E2 524 0.0005 0.0005 4.15E-2

1.00E3 539 0.0005 0.0005 6.61E-3

1.00E4 543 0.0000 0.0005 8.15E-4

1.00E5 550 0.0005 0.0005 8.76E-5

Table 3.1. Performance of Algorithm 3.1 for Example 3.1 with
implicit Euler time-stepping (θ = 1) for various values of the reg-
ularization parameter c. ’iter’ refers to the total number of itera-
tions, accumulated over all 200 time steps, and ’residual’ denotes
the expression in (3.22) at time t = 0. Moreover, ’4b’ denotes the
shift of the computed buy trading boundary at time t = 0, com-
pared to the previous value of c. It is a multiple of the local mesh
size 0.0005. ’4s’ is the same for the sell trading boundary.
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Figure 3.1. Boundaries of the trading regions in Example 3.1
(red and black). The figure also shows the Merton fraction (dash-
dotted) and the risky fraction where V assumes its maximum at
any given time (solid line).

be (a, b) = (− 1
3γ ,

1
3γ ) in these cases. With the same stopping criteria in place and

% = 101, the residual error at t = 0 was found to be 3.47 · 10−5 and 4.60 · 10−6,
respectively. It is thus comparable than the residuals obtained by the regularized
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Figure 3.2. Plot of the three terms in (3.24) at t = 0.5 near the
trading boundaries b(t) ≈ 0.38 and s(t) ≈ 0.71.

algorithm (Algorithm 3.1) for appropriate values of c, compare Tables 3.1 and 3.2.
A total number of 645 and 526 iterations were needed for all 200 time steps.

We also remark that the use of appropriate initialization of the Lagrange multipliers
given in Step 5 of the Algorithm 3.2 as well as Step 8, which enforces the interval
structure of the no-trading region, are essential.

Example 3.2. Here the previous problem is modified by choosing the more risk-
averse parameter

α = −1.0 utility exponent.

The Merton fraction is now η̂ = 0.3. In Figure 3.3 we see that we have a similar
interpretation as in Figure 3.1 w.r.t. to the Merton fraction which is now smaller
due to the more risk averse utility function.

We report again on the performance of Algorithm 3.1 for various choices of the
regularization parameter c, see Table 3.2. As discussed before, in view of α < 0
boundary conditions (3.17) are employed. As the reduced domain of computation,
we used again (a, b) = (− 1

10γ ,
1

10γ ).

Example 3.3. In a third example, we modified Example 3.1 by choosing

µ = −10.0% stock trend.

The Merton fraction is η̂ = −0.6944 in this example.

In Figure 3.4 we see that we have qualitatively a mirrored plot compared to Fig-
ure 3.1 of Example 3.1. This is due to the fact that we now have a negative trend
µ for which it can be shown that holding stocks (y > 0) can never be optimal. It is
preferable to be short in the stocks (y < 0) which allows us to profit from decreas-
ing stock prices. Liquidation now means that we have to buy stocks at terminal
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c iter cB cS residual

1.00E2 457 -2.4561 -1.8063 3.21E-1

1.00E3 459 -1.0835 -1.0474 1.82E-2

1.00E4 460 -1.0086 -0.9955 2.02E-3

1.00E5 462 -1.0013 -0.9905 2.18E-4

1.00E6 460 -1.0006 -0.9899 9.02E-5

Table 3.2. Performance of Algorithm 3.1 for Example 3.2. See
Table 3.1 for a legend. In addition, cB and cS denote the values of
these constants, see (3.18), at time t = 0.
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Figure 3.3. Boundaries of the trading regions in Example 3.2
(red and black). See Figure 3.1 for a legend.

time to close the short position in the stocks, and the same arguments as for the
interpretation of Figure 3.1 apply.

We report once again on the performance of Algorithm 3.1 for various choices of
the regularization parameter c, see Table 3.3.

4 The Case of Two Risky Assets

In the case of two risky assets n = 2, the solution of equation (2.15) becomes
significantly more involved. We recall that the solvency region

S = {y ∈ R2 : ‖y‖1 < 1/γ} (4.1)
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c iter residual

1.00E0 259 5.69E-1

1.00E1 367 2.59E-1

1.00E2 436 4.86E-2

1.00E3 444 6.83E-3

1.00E4 445 8.07E-4

1.00E5 446 8.46E-5

Table 3.3. Performance of Algorithm 3.1 for Example 3.3. See
Table 3.1 for a legend.
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Figure 3.4. Boundaries of the trading regions in Example 3.3
(red and black). See Figure 3.1 for a legend.

is a diamond-shaped subset of R2. Parallel to the regularized formulation in the
1D case, see (3.5), we consider

Vt + LV + c

2∑
j=1

max{0,LBj
V }+ c

2∑
j=1

max{0,LSj
V } = 0 (4.2)

on [0, T ) × S with regularization parameter c > 0 and subject to the boundary
conditions (2.14). The terminal conditions for V on S are given by

V (T, y) = 1
α without liquidation costs (4.3a)

V (T, y) = 1
α (1− γ ‖y‖1)α with liquidation costs. (4.3b)
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Similar to the 1D case (3.13) we discretize (4.2) in time to obtain

V n+1 − V n

τ
+ L(θ V n + (1− θ)V n+1) + c

2∑
j=1

max{0,LBj
(θ V n + (1− θ)V n+1)}

+ c

2∑
j=1

max{0,LSj
(θ V n + (1− θ)V n+1)} = 0. (4.4)

We then solve (4.4) by a semi-smooth Newton iteration as in (3.14)–(3.15).

As will be described in the next subsection, the practical realization of the semi-
smooth Newton iteration has to take into account the significant influence of con-
vection induced by the buy and sell operators on the respective active sets. Sta-
bilization is necessary even for small values of the regularization parameter c. In
order to balance the influence of regularization error (which is small for large c) and
of the magnitude of convection (which is small for small c), we found it favorable to
work with moderate values for c. To reduce the influence of the incurred remaining
regularization error, we embed the semi-smooth Newton iteration for each time step
into an Augmented Lagrangian (ALM) loop. That is, (4.4) is replaced by

V n+1 − V n

τ
+L(θ V n+(1−θ)V n+1)+

2∑
j=1

max{0, λBj
+cLBj

(θ V n+(1−θ)V n+1)}

+

2∑
j=1

max{0, λSj
+ cLSj

(θ V n + (1− θ)V n+1)} = 0. (4.5)

During one semi-smooth Newton loop for (4.5), the Lagrange multiplier estimates
λBj and λSj remain unchanged. Once the Newton iteration for V n terminates, λBj

and λSj are updated according to

λBj
:= max{0, λBj

+ cLBj
(θ V n + (1− θ)V n+1)}

λSj
:= max{0, λSj

+ cLSj
(θ V n + (1− θ)V n+1)}

for j = 1, 2. At the beginning of each time step, all λBj and λSj are initialized by
constant extrapolation from the previous time step. Upon termination of the Aug-
mented Lagrangian loop in any given time step, complementarity systems similar
to (3.21) for the 1D case are satisfied.

The complete Augmented Lagrangian semi-smooth Newton algorithm is given as
Algorithm 4.1.

4.1. Discretization in Space and Computational Domain. The spatial dis-
cretization of the value function V is based upon linear continuous finite elements.
This choice offers more flexibility, e.g., with respect to local grid refinement, than
does the finite difference approach. In order to assemble the weak form of L, see
(2.17a), we convert the second-order contributions in L into divergence form using

C0 ~ Vyy = div(C0∇V )−
n∑
i=1

∂C0

∂yj

∂

∂yj
V, (4.6)

where ~ denotes the Hadamard product of matrices, i.e., (A ~ B)i,j = Ai,j Bi,j .
The coefficient matrix is given by

(C0)k,l =
1

2

n∑
i,j=1

Aij yi yj(δik − yk)(δjl − yl),
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where δik denotes the Kronecker delta symbol. This conversion into divergence
form incurs an additional convection term, the last term in (4.6), which needs to
be added to the connection terms already present in (2.17a).

In order to accomodate potentially highly convective contributions in (4.5), the
discretization of the first-order terms is based upon an upwind triangle stabilization,
as described for instance in [?, Chapter III, Section 3]. This applies to the convective
terms in L as well as to those in the buy and sell operators LBj and LSj , see (2.17).

It is well known that for the range of problem parameters of interest, the no-trading
region is small and well inside the solvency region (4.1). This was also already
observed in the one-dimensional case treated in Section 3. Together with the fact
that our main interest lies in the no-trading region and the optimal trading structure
in its neighborhood, this suggests once again a restriction of the computational
domain. We choose our computational domain as the diamond-shaped region

Sred = {y ∈ R2 : ‖y − η̂‖1 < R}

centered around the Merton fraction, where R > 0 is chosen problem dependent.
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Figure 4.1. Example of a computational grid on the reduced do-
main Sred centered at the Merton fraction. The regions outside
the inner square pertain to the assisted active set strategy (4.7).

The choice of boundary conditions on ∂Sred is based on the current configuration of
the active sets. Since the boundary conditions are not of variational type, we adjoin
them as equality constraints to the linear system (4.5) by introducing additional
Lagrange multipliers. This converts (4.5) to a saddle point problem of the form[

A B>

B 0

](
V
p

)
=

(
b
0

)
.

The rows of B have, for instance, entries of the form∫
∂Sred

LB1
ϕj ϕi ds, j = 1, . . . , nnodes,
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where node i ∈ AB1
∩NT2. At parts of the boundary which belong to two active

sets, we use the sum of the two contributions from each of them.

It is known that the no-trading region is enclosed to the left and the right by buy
and sell regions for the first asset, and analogously on top and below by the second
asset. This knowledge is used to assist the choice of active sets in Algorithm 4.1,
step 9. Indeed, in practice we use

Ã
Bj

k := A
Bj

k ∪ {y ∈ R2 : yj − η̂j ≤ −R/2}, j = 1, 2,

Ã
Sj

k := A
Sj

k ∪ {y ∈ R2 : yj − η̂j ≥ R/2}, j = 1, 2.
(4.7)

The assist strategy can be interpreted as applying boundary conditions in a pe-
nalized form in a square of side length R centered at the Merton fraction which is
inscribed into Sred, see Figure 4.1.

The graphical representation of the trading regions in the examples below is based
on an inexpensive postprocessing step in which the active sets on every time level
n are determined according to the unstabilized buy and sell operators, i.e.,

ABj = {y ∈ Sred : Lunstab
Bj

V n > 0}

ASj = {y ∈ Sred : Lunstab
Sj

V n > 0}.
(4.8)

4.2. Adaptive Time Stepping. Algorithm 4.1 is stated for a predetermined
number N of time steps of fixed length τ . Computational experience shows that
the changes in the trading regions can be highly varying in time, especially near
the final time T . This suggests the use of an adaptive time stepping procedure. We
gave preference to a simple heuristic procedure over classical ones. Our target is to
choose the time step size τn such that

drel :=
‖∇(V n+1 − V n)‖L2(Sred)

‖∇V n‖L2(Sred)
≈ C. (4.9)

The new time step is chosen as min{max{τn/drel, τmin}, τmax} where τmin = 10−4

and τmax = 5 · 10−2. A time step is accepted if drel/C < 1.2 or if τn = 10−4, and
otherwise rejected. Typically, rejection only occured at the first time step when the
initial τ was chosen too large.

As in the 1D case, we used the implicit Euler time-stepping scheme (θ = 1) for all
computations.

4.3. Numerical Results. The iteration for any given time level n of the SSN
loop was terminated as soon as one the following criteria were met:

(1) the active sets coincided,
(2) jump terms analogously defined as in (3.23) were below 10−9,
(3) the relative change between iterations in the value function

‖V nk+1 − V nk ‖L∞(Sred))

‖V nk+1‖L∞(Sred))

was below 10−12.

Typically, criteria (1) or (3) were satisfied first with only very few occurences of
criterion (2). This clarifies the stopping in step 8 of Algorithm 4.1.

The outer ALM loop was essential in converging the trading regions especially in
the first few time steps (where time t is near T ). We found three ALM steps to be
sufficient in each case.
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Algorithm 4.1 Semi-smooth Newton Augmented Lagrangian time-stepping
method in the two-dimensional case

1: Initialize V N according to (2.16)
2: for n = N − 1, . . . , 1 do
3: Initialize V n0 := 2V n+1 − V n+2 (or V N−10 = V N )

4: Initialize λnBj ,0
:= λn+1

Bj
(or λN−1Bj ,0

= 0) for j = 1, 2, and similarly for λSj

5: Set ` := 0
6: while not converged (ALM) do
7: Set k := 0
8: while not converged (SSN) do
9: Set

A
Bj

k := {y ∈ S : λnBj ,k + cLstab
Bj

(θ V nk + (1− θ)V n+1) > 0}, j = 1, 2

A
Sj

k := {y ∈ S : λnSj ,k + cLstab
Sj

(θ V nk + (1− θ)V n+1) > 0}, j = 1, 2

and apply the assist strategy
10: Solve for V nk+1

V n+1 − V
τ

+ Lstab(θ V + (1− θ)V n+1)

+

2∑
j=1

χ
A

Bj
k

(
λnBj ,k + cLstab

Bj
(θ V + (1− θ)V n+1)

+

2∑
j=1

χ
A

Sj
k

(
λnSj ,k + cLstab

Sj
(θ V + (1− θ)V n+1) = 0.

on the reduced domain, with boundary conditions as described in Sec-
tion 4.1

11: Increase k
12: end while (SSN)
13: Update the Lagrange multipliers

λnBj,`
:= max

{
0, λnBj,k

+ cLstab
Bj

(θ V + (1− θ)V n+1)
}
, j = 1, 2

and analogously for λnSj,`+1

14: Increase `
15: end while (ALM)
16: Set V n := V nk , λnBj

:= λBj ,` and λnSj
:= λSj ,`, j = 1, 2

17: end for

Example 4.1. In our first example, we used the following problem data:

α = −0.5 utility exponent γ = 0.5% trading costs

µ =

(
−1.0%
−1.5%

)
stock trends σ =

(
0.30 0.05
0.05 0.40

)
stock volatilities

r = 0.0% interest rate

on the time interval (0, 1). The Merton fraction is η̂ = (−0.0531,−0.0501)>, and
we consider the case with liquidation costs.

We ran Algorithm 4.1 with regularization parameter c = 105 on a reduced domain
of radius R = 0.3. With a target relative change of ∇V in between time steps
of C = 5 · 10−3, see (4.9), the algorithm used 104 time steps. The evolution of
time step sizes is shown in Figure 4.3. The nearly constant time steps reflect the
relatively gentle motion of the trading regions (see Figure 4.2), which is due to
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the utility exponent α = −0.5, representing a high level of relative risk aversion
1 − α = 1.5. Approximately 8 semi-smooth Newton steps were used on average
per time step. To show that our method is not restricted to the simplex we chose

Figure 4.2. Color-coded trading regions in Example 4.1 at times
near t ∈ {0, 1/3, 2/3, 1}. The figure shows the major part of the re-
duced computational domain Sred centered at the Merton fraction
(black dot).

this example with negative trend parameters which yields a Merton fraction η̂ with
negative positions in the stocks (short selling of stocks). This corresponds to the
one-dimensional Example 3.3. Like in that example we observe in Figure 4.2 that
— when approaching terminal time — the boundary of the NT-region gets closer
to the Merton fraction and extends to the axes (corresponding to the red and black
boundaries in Figure 3.4). This is to be expected since at terminal time we have to
liquidate anyway and hence can try to get closer to the Merton fraction when we
are far away while this would be too expensive if our position lies ’between’ Merton
fraction and 0. Note that one year (t = 0) before terminal time we would still trade
(sell stocks) when we have no position in the stocks, while at t = 0.6677 this is no
longer optimal. This is different in the following example.

Example 4.2. In our second example, we used the following problem data:

α = 0.3 utility exponent γ = 0.5% trading costs

µ =

(
15.0%
2.0%

)
stock trends σ =

(
0.42 0.10
0.10 0.38

)
stock volatilities

r = 7.0% interest rate

on the time interval (0, 1). The Merton fraction is η̂ = (1.0438,−1.0034)> in this
example, and we consider again the case with liquidation costs.
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We ran Algorithm 4.1 with the same algorithmic parameters as in Example 4.1,
but on a reduced domain of radius R = 4.0. The algorithm used a total of 264
time steps. The evolution of time step sizes is shown in Figure 4.3. The increased
number of time steps corresponds to the more pronounced movements of the trading
regions, which relate to a lower level of risk aversion (1− α = 0.7). Approximately
14 semi-smooth Newton steps were used on average per time step. In this example

Figure 4.3. Evolution of time step sizes for Example 4.1 (left)
and 4.2 (right).

Figure 4.4. Color-coded trading regions in Example 4.2. The
figure shows the major part of the reduced computational domain.
It also shows the Merton fraction (black circle).

the first component of the Merton fraction η̂ is greater than 1 (a long position
for which we have to borrow money or sell the other stock short) and the second
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slightly negative (short position). The shapes of the NT-regions depending on time
are similar to those in the preceding Example 4.1. The interpretation close to
terminal time is the same as before. But in this example it is longer optimal to
trade in the stocks when we have a position 0 in the stocks. Oppposed to Example
4.1 this is true even at t = 0.6700 as we can see clearly from Figure 4.4. This, as
well as the fact that the NT-regions are smaller at the beginning when compared to
Example 4.1, is due to the lower risk aversion. Moreover the NT-region is further
away from 0 as a consequence of the more extreme trend parameter of the first
stock yielding a more extreme η̂.
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