Skip to main content
Log in

Multi-commodity rationing problems with maxmin payoffs

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We address a multi-dimensional extension of standard rationing problems in which several commodities have to be shared among a set of agents who exhibit maxmin preferences on the results they obtain. In this context we investigate efficiency and introduce a property of stability which is supported on a transferable utility game. We also propose a procedure to construct rules for obtaining stable allocations for the special case where all commodities have the same weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Throughout this paper we will refer to these references as claims.

  2. \(\sigma (l)\) denotes which agent in \(N\) is at position \(l\).

  3. For \(T\subseteq N\), and \(x\in \mathbb {R}^{m\times n},\; x_T\) denotes the projection of \(x\) on \(T\), that is, \(x_T = (x^i)_{i\in T}\).

References

  • Aumann R, Maschler M (1985) Game theoretic analysis of a bankruptcy problem from the Talmud. J Econ Theory 36:195–213

    Article  MATH  MathSciNet  Google Scholar 

  • Bergantiños G, Lorenzo L, Lorenzo-Freire S (2010) A characterization of the proportional rule in multi-issue allocation situations. Oper Res Lett 38:17–19

    Article  MATH  MathSciNet  Google Scholar 

  • Calleja P, Borm P, Hendrickx R (2005) Multi-issue allocation situations. Eur J Oper Res 164:730–747

    Article  MATH  MathSciNet  Google Scholar 

  • González-Alcón C, Borm P, Hendrickx R (2007) A composite run-to-the-bank rule for multi-issue allocation situations. Math Methods Oper Res 65(2):339–352

    Article  MATH  MathSciNet  Google Scholar 

  • Hinojosa MA, Mármol AM, Sánchez FJ (2012) A consistent talmudic rule for division problems with multiple references. TOP 20(3):661–678

    Article  MATH  MathSciNet  Google Scholar 

  • Hinojosa MA, Mármol AM, Sánchez FJ (2014) Leximin rules for bankruptcy problems under uncertainty. Int J Syst Sci 45(1):20–28

    Article  Google Scholar 

  • Hougaard JL, Moreno-Ternero JD, Osterdal LP (2013) Rationing in the presence of baselines. Soc Choice Welf 40:1047–1066

    Article  MathSciNet  Google Scholar 

  • Lorenzo-Freire S, Casas-Méndez B, Hendrickx R (2011) The two-stage constrained equal awards and losses for multi-issue allocation situations. TOP 18:465–480

    Article  Google Scholar 

  • Mármol AM, Ponsatí C (2008) Bargaining multiple issues with maximin and leximin preferences. Soc Choice Welf 30(4):597–618

    Google Scholar 

  • Nicolò A (2004) Efficiency and truthfulness with Leontief preferences. A note on two-agent, two-good economies. Rev Econ Design 8:373–382

    Article  MATH  Google Scholar 

  • O’Neill B (1982) A problem of rights arbitration from the Talmud. Math Soc Sci 2:345–371

    Article  MATH  MathSciNet  Google Scholar 

  • Thomson W (2003) Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey. Math Soc Sci 45:249–297

    Article  MATH  MathSciNet  Google Scholar 

  • Thomson W (2006) How to divide when there isn’t enough: from the Talmud to game theory. University of Rochester (manuscript)

Download references

Acknowledgments

This research has been partially financed by the Spanish Ministry of Science and Technology projects ECO2011-29801-C02-01, and ECO2011-29801-C02-02 and by the Junta de Andalucía, projects P09-SEJ-4903 and SEJ-7782. Amparo Mármol would like to thank Peter Borm and Ruud Hendrickx for valuable suggestions in the first stage of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amparo M. Mármol.

Appendix (Proofs)

Appendix (Proofs)

Proof of Theorem 3.2

First, if \(y \in T_{\alpha }(c,E)\) then, \(\sum _{i\in N} p^i_{\alpha }(y)= v_{\alpha }(N)\), and therefore, \(y\) is an optimal solution to \( P_{\alpha }(N)\).

$$\begin{aligned} \begin{array}{llll} &{} \displaystyle \max _x \sum _{i\in N} p^i_{\alpha }(x) \\ &{} s.t.\, \sum _{i\in N} x_j^i\le E_j,\quad j\in M&{} \quad \quad ( P_{\alpha }(N)) \\ &{} \quad \quad 0\le x_j^i\le c_j^i,\quad i\in N, j\in M\\ \end{array} \end{aligned}$$

Conversely, let \(y\) be an optimal solution to problem \(P_{\alpha }(N)\), and consider \(x\), such that \(x_j^i= \frac{\alpha _k^iy_k^i}{\alpha _j^i}\), where \(\alpha _k^iy_k^i= min_j\{\alpha _j^iy_j^i\}\). It is easy to see that \(x_j^i\le y_j^i\) for all \(i\in N\) and \(j\in M\). Therefore, the global allocation \(x\) is feasible for \( P_{\alpha }(N)\). Moreover, since \(p^i_{\alpha }(x)= p^i_{\alpha }(y)\) for all \(i\in N,\; x\) is also optimal. Note that for each \(i\in N,\; \alpha _j^ix_j^i= \alpha _k^i x_k^i\) for all \(j,k\in M\).

We will prove that \(x \in T_{\alpha }(c,E)\). Suppose on the contrary that there exists \(T\subset N\), such that \(\sum _{i\in T} p^i_{\alpha }(x)< v_{\alpha }(T)\).Footnote 3 It follows that there exists \(y_T\ne x_T\) that solves problem \( P_{\alpha }(T)\). Now, replace \(x_T\) with \(y_T\) in \(x\). We first prove that the new allocation, \(\bar{x}=(x_{N\setminus T}, y_T)\), is feasible in \(P_{\alpha }(N)\). For \(i\not \in T,\; x_j^i\le min\{c_j^i, E_j\}= d_j^i\). Let \(k\) be such that \(\alpha _k^i d_k^i= min_j\{\alpha _j^i d_j^i\}\). Hence, \(\alpha _j^i x_j^i = \alpha _k^i x_k^i\le \alpha _k^i d_k^i\), and it follows that \(x_j^i\le r_j^i\) for all \(i\in N, j\in M\).

Now, for each \(j\),

  1. (a)

    if \(w^{\alpha }_j(T)=0\), then \(y^i_j=0\) for all \(i\in T\). Therefore, \(\sum _{i\in T}y_j^i+\sum _{i\not \in T} x_j^i\le E_j\).

  2. (b)

    if \(w^{\alpha }_j(T)=E_j-\sum _{i\not \in T} r_j^i\), then \(\sum _{i\in T}y_j^i+\sum _{i\not \in T} x_j^i\le E_j-\sum _{i\not \in T} r_j^i+ \sum _{i\not \in T} r_j^i= E_j\).

However, \(\sum _{i\in N} p_{\alpha }^i(x)=\sum _{i\in T}p_{\alpha }^i(y)+\sum _{i\not \in T} p_{\alpha }^i(x)> v_{\alpha }(N)\) and this contradicts, \(x\) being an optimal solution to \(v_{\alpha }(N)\). Therefore, \(x \in T_{\alpha }(c,E)\), and since \(x_j^i\le y_j^i\) for all \(i\in N\) and \(j\in M\), we also have \(y \in T_{\alpha }(c,E)\). \(\square \)

Proof of Corollary 3.3

Consider an \(\alpha \)-maxmin stable global allocation \(x\) an suppose to the contrary that it is not \(\alpha \)-maxmin efficient. It follows that there exists another global allocation, \(y\), such that \(p_{\alpha }^i(y)\ge p_{\alpha }^i(x)\) for all \(i\in N\), with \(p_{\alpha }^r(y)> p_{\alpha }^r(x)\), for at least one \(r\in N\). Therefore \(\sum _{i\in N}p_{\alpha }^i(y)> \sum _{i\in N}p_{\alpha }^i(x)\), and this contradicts the fact that \(x\) solves \(P_{\alpha }(N)\). \(\square \)

In order to prove Proposition 4.1, we first prove the following lemma

Lemma 6.1

For all \(S\subseteq N\), the values \(v_{\alpha }(S)\) can be obtained by solving the following linear problem:

$$\begin{aligned} \begin{array}{llll} v_{\alpha }(S) =&{} \displaystyle \max _z \sum _{i\in S} z^i \\ &{} s.t. \sum _{i\in S}\frac{1}{\alpha _i^j} z^i\le w^{\alpha }_j(S),\quad \forall j\in M&{} \quad (R_{\alpha }(S))\\ &{} \quad \quad 0\le z^i\le k^i,\quad i\in S\\ \end{array} \end{aligned}$$

where \(k^i=min _{j\in M}\{\alpha _j^ic_j^i\}\).

Proof of Lemma 6.1

For \(S\subseteq N\), consider problem \(P_{\alpha }(S)\)

$$\begin{aligned} \begin{array}{llll} v_{\alpha }(S) =&{} \displaystyle \max _x \sum _{i\in S} p_{\alpha }^i(x) \\ s.t. &{}\sum _{i\in S} x_j^i\le w^{\alpha }_j(S),\quad j\in M&{} \quad \quad (P_{\alpha }(S)) \\ &{} \quad \quad 0\le x_j^i\le c_j^i,\quad i\in S, j\in M\\ \end{array} \end{aligned}$$

By first doing \(y_j^i=\alpha _j^ix_j^i\) for \(i\in N, j\in M\), we obtain

$$\begin{aligned} \begin{array}{llll} v_{\alpha }(S) =&{} \displaystyle \max _y \sum _{i\in S} min_j\{y_j^i\} \\ &{} s.t. \sum _{i\in S}\frac{1}{\alpha _i^j} y_j^i\le w^{\alpha }_j(S),\quad \forall j\in M\\ &{} \quad \quad 0\le y_j^i\le \alpha _j^ic_j^i,\quad i\in S, j\in M\\ \end{array} \end{aligned}$$

Now, by considering \(z^i= min_j\{y_j^i\}\), and as a consequence of the comprehensiveness of the sets \(A_j=\{y_j\in \mathbb {R}^n|\, \sum _{i\in S} \frac{1}{\alpha _i^j}y_j^i\le w_j^{\alpha }(S), j\in M,0\le y_j^i\le \alpha _j^ic_j^i, i\in S, j\in M\}\), the optimal value can be found in the intersection, \(\bigcap _{j\in M}A_j=\{z\in \mathbb {R}^n|\, \sum _{i\in S} \frac{1}{\alpha _i^j}z^i\le w^{\alpha }_j(S), j\in M,\, 0\le z^i\le \alpha _j^ic_j^i, i\in S, j\in M\}\), and the result follows. \(\square \)

Proof of Proposition 4.1

Let \(x^*\) be global allocation for \((c,E)\), and \(z_i^*=p^i(x^*)\). It follows from Lemma 6.1 that \(x^*\) is a maxmin stable global allocation if and only if the corresponding \(z^*\) is an optimal solution to problem \(R_{\alpha }(N)\) for \(\alpha =1,\; R(N)\):

$$\begin{aligned} \begin{array}{llll} &{} \displaystyle \max _z \sum _{i\in N} z^i \\ &{} s.t. \,\,\sum _{i\in N} z^i\le E_1\\ &{} \quad \quad 0\le z^i\le k^i,\quad i\in N,\\ \end{array} \end{aligned}$$

where \(k^i=min _{j\in M}\{c_j^i\}\).

  1. (a)

    If \(\sum _{i\in N} k^i\le E_1\), then the optimal value of \(R(N)\) is \(\sum k_i\) and is attained at \(z=k\). Hence \(x^*\) is maxmin stable if and only if \(z^*=k\). Let \(x^*\) be maxmin efficient and suppose to the contrary that \(x^*\) is not maxmin stable. In this case \(\sum z_i^*< \sum k_i\le E_1\). Since \(z_i^*\le k_i\) for all \(i\in N\), then for some \(r\in N,\; z_r^*<k_r\). Take \(\bar{z}_r= k_r\;\bar{z}_i=z_i\) for \(i\ne r,\; \bar{z}\) is feasible for \(R(N)\). Consider \(\bar{x}\) such that \(\bar{x}_r^j= k_r\) for all \(j\in M\), \(\bar{x}_i= x_i\) for \(i\ne r\). It follows that \(p^i(\bar{x})\ge p^i(x^*)\) with an strict inequality. This contradicts \(x^*\) being maxmin efficient.

  2. (b)

    If \(\sum _{i\in N} k^i> E_1\), then the optimal value of \(R(N)\) is \(E_1\). Hence \(x^*\) is maxmin stable if and only if \(\sum _{i\in N} p^i(x)=E_1\). Let \(x^*\) be maxmin efficient and suppose to the contrary that \(x^*\) is not maxmin stable. Let \(z_i^*=p^i(x^*)\). In this case \(\sum z_i^*< E_1< \sum k_i\). Since \(z_i^*\le k_i\) for all \(i\in N\), then for some \(r\in N\), \(z_r^*<k_r\). Take \(\bar{z}_r= z_r^*+\varepsilon \) such that \(\bar{z}_r\le k_r\) and \(\sum \bar{z}_i \le E_1\), \(\bar{z}_i=z_i\) for \(i\ne r,\; \bar{z}\) is feasible for \(R(N)\). Consider the global allocation \(\bar{x}\) such that \(\bar{x}_r^j= \bar{z}_r\) for all \(j\in M\), \(\bar{x}_i= x_i\) for \(i\ne r\). It follows that \(p^i(\bar{x})\ge p^i(x^*)\) with an strict inequality. This contradicts \(x^*\) being maxmin efficient.

On the other hand, maxmin stable global allocations are maxmin efficient as stated in Corollary 3.3, and the result follows. \(\square \)

Proof of Proposition 4.3

For the case \(\alpha _j^i=1,\; d_j^i= min \{c_j^i, E_j\},\; d_k^i = min_j\{d_j^i\}= min\{E_1, k^i\},\; r^i_j=r^i=min\{E_1, k^i\}\) does not depend on \(j\), and therefore, \( w_j(S)= max \{0, E_j-\sum _{i\not \in S} r^i\}\)

The problem \( R(S)\) is then

$$\begin{aligned} \begin{array}{llll} v(S) =&{} \max \sum _{i\in S} z^i \\ &{} s.t. \sum _{i\in S} z^i\le min_j \{ w_j(S)\}\\ &{} \quad \quad 0\le z^i\le k^i,\quad i\in S\\ \end{array} \end{aligned}$$

Now, \(min_j \{ w_j(S)\}= Max \{0, E_1- \sum _{i\not \in S} r^i\}\), and therefore, for each \(S\subseteq N\),

  1. (a)

    If \( E_1-\sum _{i\in N\setminus S}r^i\le 0\), then \(min_j \{ w_j(S)\}=0\), and \( v(S)=0\).

  2. (b)

    If \(E_1-\sum _{i\in N\setminus S}r^i\ge 0\), then

    $$\begin{aligned} \begin{array}{llll} v(S) =&{} \max \sum _{i\in S} z^i \\ &{} s.t. \sum _{i\in S} z^i\le E_1-\sum _{i\in N\setminus S}r^i\\ &{} \quad \quad 0\le z^i\le k^i,\quad i\in S\\ \end{array} \end{aligned}$$

    and the solutions to this linear problem are

    1. (b1)

      If \(\sum _{i\in S}k^i \ge E_1-\sum _{i\in N\setminus S}r^i\), then \( v(S)= E_1-\sum _{i\in N\setminus S}r^i\).

    2. (b2)

      If \(\sum _{i\in S}k^i \le E_1-\sum _{i\in N\setminus S}r^i\), then \( v(S)= \sum _{i\in S}k^i\).

It follows that

$$\begin{aligned} v_{\alpha }(S)= max\left\{ 0, min\left\{ \,E_1-\sum _{i\not \in S} r^i, \, \sum _{i \in S} k^i\right\} \right\} . \end{aligned}$$

From this expression, if \(E_1\ge \sum _{i\in N}k^i\), then for any coalition \(S\subseteq N,\; E_1\ge \sum _{i\in N\setminus S}k^i+\sum _{i\in S}k^i\ge \sum _{i\in N\setminus S}r^i+ \sum _{i\in S}k^i\), hence \(E_1 - \sum _{i\in N\setminus S}r^i\ge \sum _{i\in S}k^i\), and \( v(S)= \sum _{i\in S}k^i\).

On the other hand, when \(E_1\le \sum _{i\in N}k^i\), we will prove that \(E_1 - \sum _{i\in N\setminus S}r^i\le \sum _{i\in S}k^i\), for any \(S\subset N\).

  1. (a)

    If \(\exists i\in S,\; k^i>E_1\), then \(k^i>r^i=E_1\) and \(\sum _{i\in S}k^i> E_1\).

  2. (b)

    If \(\exists i\in N\setminus S,\; k^i>E_1\), then \(k^i>r^i=E_1\) and \(\sum _{i\in N\setminus S}r^i\ge E_1\).

  3. (c)

    If \(k^i\le E_1\) for all \(i\in N\), then \(E_1\le \sum _{i\in N}k^i= \sum _{i\in N\setminus S}r^i+ \sum _{i\in S}k^i\).

The result follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinojosa, M.A., Mármol, A.M. Multi-commodity rationing problems with maxmin payoffs. Math Meth Oper Res 79, 353–370 (2014). https://doi.org/10.1007/s00186-014-0466-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-014-0466-9

Keywords

Navigation