1307.1915v6 [cs.DS] 15 Oct 2015

arxXiv

Complexity of the FIFO Stack-Up Problem*

Frank Gurskif Jochen Rethmann? Egon Wanke?
September 12, 2018

Abstract

We study the combinatorial FIFO stack-up problem. In delivery industry, bins have to
be stacked-up from conveyor belts onto pallets with respect to customer orders. Given k
sequences qi, . . . , qx of labeled bins and a positive integer p, the aim is to stack-up the bins by
iteratively removing the first bin of one of the k sequences and put it onto an initially empty
pallet of unbounded capacity located at one of p stack-up places. Bins with different pallet
labels have to be placed on different pallets, bins with the same pallet label have to be placed
on the same pallet. After all bins for a pallet have been removed from the given sequences, the
corresponding stack-up place will be cleared and becomes available for a further pallet. The
FIFO stack-up problem is to find a stack-up sequence such that all pallets can be build-up
with the available p stack-up places.

In this paper, we introduce two digraph models for the FIFO stack-up problem, namely
the processing graph and the sequence graph. We show that there is a processing of some list
of sequences with at most p stack-up places if and only if the sequence graph of this list has
directed pathwidth at most p — 1. This connection implies that the FIFO stack-up problem is
NP-complete in general, even if there are at most 6 bins for every pallet and that the problem
can be solved in polynomial time, if the number p of stack-up places is assumed to be fixed.
Further the processing graph allows us to show that the problem can be solved in polynomial
time, if the number k of sequences is assumed to be fixed.

Keywords: computational complexity; combinatorial optimization; directed pathwidh; dis-
crete algorithms

1 Introduction

We consider the combinatorial problem of stacking up bins from conveyor belts onto pallets. This
problem originally appears in stack-up systems that play an important role in delivery industry
and warehouses. Stack-up systems are often the back end of order-picking systems. A detailed
description of the applied background of such systems is given in [3,[12]. Logistic experiences over
30 years lead to high flexible conveyor-based stack-up systems in delivery industry [16]. We do
not intend to modify the architecture of existing systems, but try to develop efficient algorithms
to control them.

The bins that have to be stacked-up onto pallets reach the stack-up system on a main conveyor
belt. At the end of the line they enter the palletizing system. Here the bins are picked-up by
stacker cranes or robotic arms and moved onto pallets, which are located at stack-up places. Often
vacuum grippers are used to pick-up the bins. This picking process can be performed in different

*A short version of this paper appeared in the Proceedings of the International Conference on Operations
Research (OR 2013) [5].

TUniversity of Diisseldorf, Institute of Computer Science, Algorithmics for Hard Problems Group, 40225
Diisseldorf, Germany, frank.gurski@hhu.de

fNiederrhein University of Applied Sciences, Faculty of Electrical Engineering and Computer Science, 47805
Krefeld, Germany, jochen.rethmann@hs-niederrhein.de

§Univorsity of Diisseldorf, Institute of Computer Science, Algorithms and Data Structures Group, 40225
Diisseldorf, Germany, e.wanke@hhu.de

http://arxiv.org/abs/1307.1915v6

ways depending on the architecture of the palletizing system (single-line or multi-line palletizers).
Full pallets are carried away by automated guided vehicles, or by another conveyor system, while
new empty pallets are placed at free stack-up places.

The developers and producers of robotic palletizers distinguish between single-line and multi-
line palletizing systems. Each of these systems has its advantages and disadvantages.

In single-line palletizing systems there is only one conveyor belt from which the bins are picked-
up. Several robotic arms or stacker cranes are placed around the end of the conveyor. We model
such systems by a random access storage which is automatically replenished with bins from the
main conveyor, see Figure[ll The area from which the bins can be picked-up is called the storage
area. It is determined by the coverage of stacker cranes or robotic arms.

storage conveyor belt

-

/N

stack—up places
= E. Jl

Figure 1: The single-line stack-up system using a random access storage of size 5. The colors
represent the pallet labels. Bins with different colors have to be placed on different pallets, bins
with the same color have to be placed on the same pallet.

In multi-line palletizing systems there are several buffer conveyors from which the bins are
picked-up. The robotic arms or stacker cranes are placed at the end of these conveyors. Here,
the bins from the main conveyor of the order-picking system first have to be distributed to the
multiple infeed lines to enable parallel processing. Such a distribution can be done by some cyclic
storage conveyor, see Figure 2l From the cyclic storage conveyor the bins are pushed out to the
buffer conveyors. A stack-up system using a cyclic storage conveyor is, for example, located at
Bertelsmann Distribution GmbH in Giitersloh, Germany. On certain days, several thousands of
bins are stacked-up using a cyclic storage conveyor with a capacity of approximately 60 bins and
24 stack-up places, while up to 32 bins are destined for a pallet. This palletizing system has
originally initiated our research.

storage conveyor
I \ L[]

o L JL L L
places

Figure 2: A multi-line stack-up system with a pre-placed cyclic storage conveyor.

buffer
conveyors

L]

If we ignore the task to distribute the bins from the main conveyor to the k£ buffer conveyors,
i.e., if the filled buffer conveyors are already given, and if each arm can only pick-up the first bin
of one of the buffer conveyors, then the system is called a FIFO palletizing system. Such systems
can be modeled by several simple queues, see Figure

From a theoretical point of view, an instance of the FIFO stack-up problem consists of &
sequences q1, - . . , gx of bins and a number of available stack-up places p. Each bin of each sequence

buffer conveyors

I ._ stack—up places

Figure 3: The FIFO stack-up system analyzed in this paper. The system is blocked (cf. page Bl for
the definition), because the pallet for the red bins cannot be opened and the pallets for the green,
yellow, and blue bins cannot be closed.

q; is destined for exactly one pallet. The FIFO stack-up problem is to decide whether one can
remove iteratively the bins from the sequences such that in each step only one of the first bins of
qi,---,qr is removed and after each step at most p pallets are open. A pallet ¢ is called open, if
at least one bin for pallet ¢ has already been removed from the sequences, and if at least one bin
for pallet ¢ is still contained in the remaining sequences. If a bin b is removed from a sequence
then all bins located behind b are moved-up one position to the front (cf. Section 2] for the formal
definition).

Every processing should absolutely avoid blocking situations. A system is blocked, if all stack-
up places are occupied by pallets, and non of the bins that may be used in the next step are
destined for an open pallet. To unblock the system, bins have to be picked-up manually and
moved to pallets by human workers. Such a blocking situation is sketched in Figure

The single-line stack-up problem can be defined in the same way. An instance of the single-line
stack-up problem consists of one sequence g of bins, a storage capacity s, and a number of available
stack-up places p. In each step one of the first s bins of ¢ can be removed. Everything else is
defined analogously.

Many facts are known about single-line stack-up systems [12, 13, 14]. In [12] it is shown
that the single-line stack-up decision problem is NP-complete, but can be solved efficiently if the
storage capacity s or the number of available stack-up places p is fixed. The problem remains
NP-complete as shown in [I3], even if the sequence contains at most 9 bins per pallet. In [I3],
a polynomial-time off-line approximation algorithm for minimizing the storage capacity s is in-
troduced. This algorithm yields a solution that is optimal up to a factor bounded by log(p). In
[14] the performances of simple on-line stack-up algorithms are compared with optimal off-line
solutions by a competitive analysis [2] 4].

The FIFO stack-up problem has algorithmically not been studied by other authors up to now,
although stack-up systems play an important role in delivery industry and warehouses [16]. In
our studies, we neither limit the number of bins for a pallet nor restrict the number of stack-up
places to the number of buffer conveyors. That is, the number of stack-up places can be larger
than or less than the number of buffer conveyors.

In Section 3, we introduce two digraph models that help us to find algorithmic solutions for the
FIFO stack-up problem. The first digraph is the processing graph. It has a vertex for every possible
configuration of the system and an arc from configuration A to configuration B if configuration B
can be obtained from configuration A by a single processing step. If the number & of sequences is
assumed to be fixed, a specific search strategy on the processing graph allows us to find an optimal
solution for the FIFO stack-up problem in polynomial time. For this case, we additionally give a
non-deterministic algorithm that uses only logarithmic work-space.

The second digraph is called the sequence graph. It has a vertex for every pallet and an arc
from pallet a to pallet b, if and only if in any processing pallet b can only be closed if pallet a has

already been opened. We show in Section 4 how the sequence graph can be constructed and that
there is a processing of at most p stack-up places if and only if the sequence graph has directed
pathwidth at most p — 1 (cf. Section for the formal definition of directed pathwidth). This
implies that the FIFO stack-up problem can be solved in polynomial time, if the number p of
given stack-up places is assumed to be fixed. In Section 5, this relationship is used to show that
the FIFO stack-up problem is NP-complete in general, even if all sequences together contain at
most 6 bins destined for the same pallet.

2 Preliminaries

Unless otherwise stated, k and p are some positive integers throughout the paper. We consider
sequences ¢ = (b1, .., bny)s ooy @ = (bny_y+1, - - - b,) Of pairwise distinct bins. These sequences
represent the buffer queues (handled by the buffer conveyors) in real stack-up systems. Each bin b
is labeled with a pallet symbol plt(b) which is, without loss of generality, some positive integer. We
say bin b is destined for pallet plt(b). The labels of the pallets can be chosen arbitrarily, because
we only need to know whether two bins are destined for the same pallet or for different pallets. In
order to avoid confusion between indices (or positions) and pallet symbols, we use in our examples
characters for pallet symbols. The set of all pallets of the bins in some sequence ¢; is denoted by

plts(qi) = {plt(b) | b € qi}.
For a list of sequences @ = (¢1,...,qxr) we denote

plts(Q) = plts(q1) U - - - U plts(q).

For some sequence ¢ = (b1, ...,by), we say bin b; is on the left of bin b; in sequence ¢ if ¢ < j.
A sequence ¢’ = (b, bjy1,...,by), j > 1, is called a subsequence of sequence ¢ = (b1,...,b,). We
define ¢ — ¢’ = (b1,...,bj—1).

Let Q@ = (q1,---,q%) and Q" = (¢i,...,q)) be two lists of sequences of bins such that each
sequence ¢;, 1 < j < k, is a subsequence of sequence g;. Each such pair (Q,Q’) is called a
configuration. In every configuration (@, Q') the first entry @ is the initial list of sequences of bins
and the second entry @’ is the list of sequences that remain to be processed. A pallet ¢ is called
open in configuration (@, @'), if a bin of pallet ¢ is contained in some ¢; € Q' and if another bin of
pallet ¢ is contained in some g; — q} for ¢; € Q, qg- € @Q'. The set of open pallets in configuration
(Q, Q") is denoted by open(Q,Q"). A pallet t € plts(Q) is called closed in configuration (@, Q’), if
t & plts(Q'), i.e. no sequence of Q' contains a bin for pallet ¢. Initially all pallets are unprocessed.
After the first bin of a pallet ¢ has been removed from one of the sequences, pallet ¢ is either open
or closed.

In view of the practical background, we only consider lists of sequences that together contain
at least two bins for each pallet. If there is only one bin for some pallet, we can handle this bin
without waiting for any further bin. Thus, we can process instances with such special pallets with
at most one more stack-up place. Our definition of open pallets is useless for pallets with only one
bin. Throughout the paper @ always denotes a list of some sequences of bins.

The FIFO Stack-up Problem

Consider a configuration (Q,Q’). The removal of the first bin from one subsequence ¢’ € Q' is
called transformation step. A sequence of transformation steps that transforms the list @ of k
sequences into k empty subsequences is called a processing of Q.

Name: FIFO STACK-UP

Instance: A list Q@ = (¢1, ..., qx) of sequences of bins, for every bin b of @ its pallet symbol pl¢(d),
and a positive integer p.

Question: Is there a processing of @, such that in each configuration (Q, Q') during the processing
at most p pallets are open?

We use the following variables: k denotes the number of sequences, and p stands for the number
of stack-up places. Furthermore, m represents the number of pallets in plts(Q), and n denotes
the total number of bins in all sequences, i.e. n = ng. Finally, N = max{|q],...,|qk|} is the
maximum sequence length. In view of the practical background, it holds p < m, k < m, m < n,

and N < n.
It is often convenient to use pallet identifications instead of bin identifications to represent a

sequence ¢. For r not necessarily distinct pallets ¢1,...,¢,. let [t1,...,t,] denote some sequence
of r pairwise distinct bins (b1, ...,b,), such that pit(b;) =t; for i = 1,...,7. We use this notion
for lists of sequences as well. For the sequences g1 = [t1,...,tny)s - Q& = [Enp_14+1y---»tn,] Of
pallets we define g1 = (b1,...,bny)5+, @k = (bny_14+1,---,bn,) to be sequences of bins such that
plt(b;) =t; for i = 1,...,ng, and all bins are pairwise distinct.

For some list of subsequences Q' we define front(Q') to be the pallets of the first bins of the
queues of Q' (cf. Example 2] and Table [I).

Example 2.1 Consider list Q = (q1,q2) of sequences
q1 = (bla"'7b4) = [a7a7b7b]

and

g2 = (bs,...,b12) = [c,d,e,c,a,d, b,e].
Table 1l shows a processing of Q with 3 stack-up places. The underlined bin is always the bin that
will be removed in the next transformation step. We denote Q; = (¢t ,qb), thus each row represents
a configuration (Q, Q;).

i|ld 4 front(Q;) | remove | open(Q, Q;)

0| [a,a,b,b [c,d,e,c,a,d,b,e] | {a,c} bs 0

1] a,a,b,b d,e,c,a,d,b,e] {a,d} be {c}

2 | [a,a,b,b e, c,a,d,b, el {a,e} b7 {c,d}

3| [a,a,bb c,a,d,b,e] {a,c} bs {c,d, e}

4| [a,a,b,b a,d,b, e {a} b1 {d, e}

51 [a,b,D] [a,d,b, €] {a} by {a,d, e}

6 | [b,0] la,d, b, €] {a,b} by {a,d, e}

7 [bv b] [le ba 8] {bv d} blO {dv 6}

8| [b,b] [, €] {o} bu_ | {e}

9 [Q, b] [8] {bv 6} bs {bv 8}
10 | [b] e {b,e} by {b, e}
11 [] e {e} biz | {e}

12 |] I [- 0

Table 1: A processing of @ = (¢1,¢2) from Example 2] with 3 stack-up places. There is no
processing of @) that needs less than 3 stack-up places.

Consider a processing of a list @ of sequences. Let B = (br(1),- - -, bx(n)) be the order in which
the bins are removed during the processing of @, and let T' = (¢1,...,%y) be the order in which
the pallets are opened during the processing of Q. Then B is called a bin solution of @, and T is
called a pallet solution of Q. The transformation in Table [defines the bin solution

B = (b57 b67 b7a bSa bla an bg, blOa b117 b37 b47 le)a

and the pallet solution T' = (¢, d, e, a, b).

During a processing of a list @ of sequences there are often configurations (Q, Q") for which
it is easy to find a bin b that can be removed from Q' such that a further processing with p
stack-up places is still possible. This is the case, if bin b is destined for an already open pallet, see

configuration (Q,Q3), (Q,Qs), (Q,Qs), (Q,Q7), (Q,Q9), (Q,Q10), or (Q,Q11) in Table[l In the

following we show:

e If one of the first bins of the sequences is destined for an already open pallet then this bin can
be removed without increasing the number of stack-up places necessary to further process
the sequences.

e If there is more than one bin at choice for already open pallets then the order, in which those
bins are removed is arbitrary.

Both rules are useful, i.e. within the following two simple algorithms for the FIFO stack-up
problem.

Algorithm 1 Generate all possible bin orders (bﬂ(l), .+, br(n)) and verify, whether this can be a
processing. This leads to a simple but very inefficient algorithm with running time O(n?-n!),
where O(n?) time is needed for each test.

Algorithm 2 Generate all possible pallet orders (tr(1),...,tx(m)) and test, whether this can be
a processing. This leads to a further simple but less inefficient algorithm with running time
O(n?-m)).

The running time of Algorithm 2 is much better than those of Algorithm 1 and Algorithm 2
is only possible because of the second rule. If bins for already open pallets must be removed in a
special order, Algorithm 2 would not be possible.

To show the rules, consider a processing of some list () of sequences with p stack-up places.
Let

(br(1)s -+ 5 ba(i=1)s bx(i)s - - - 5 Or(=1) O () Or(41)5 - - + 5 O(m))

be the order in which the bins are removed from the sequences during the processing, and let
(Q,Qj), 1 <j < n denote the configuration such that bin b.(;) is removed in the next transfor-
mation step. Suppose bin b.(; will be removed in some transformation step although bin b (),
¢ > i, for some already open pallet plt(br(s)) € open(Q,Q;) could be removed next. We define a
modified processing

(br(1)s -+ 5 br(i=1)s b (0)s O (i) - - -5 Om(e=1)5 Ore(t41)5 - - + 5 O(m))

by first removing bin by sy, and afterwards the bins by (;), .. ., br(¢—1) in the given order. Obviously,
in each configuration during the modified processing there are at most p pallets open. To remove
first some bin of an already open pallet is a kind of priority rule.

A configuration (Q,Q’) is called a decision configuration, if the first bin of each sequence
q € Q' is destined for a non-open pallet, see configurations (@, Qo), (Q,Q1), (Q,Q2), (Q,Q4),
and (@, Qg) in Table[] i.e. front(Q")Nopen(Q,Q’) = 0. We can restrict FIFO stack-up algorithms
to deal with such decision configurations, in all other configurations the algorithms automatically
remove a bin for some already open pallet.

If we have a pallet solution computed by some FIFO stack-up algorithm, we need to convert
the pallet solution into a sequence of transformation steps, i.e. a processing of). This is done
by algorithm TRANSFORM in Figure @l Given a list of sequences Q = (q1,...,q;) and a pallet
solution T' = (t1,...,tm) algorithm TRANSFORM gives us in time O(n - k) C O(n?) a bin solution
of @, i.e. a processing of Q.

Obviously, there is no other processing of @ that also defines pallet solution 7" but takes less
stack-up places.

3 Digraph Models

Next we introduce two digraph models for the FIFO stack-up problem. To solve an instance of
the FIFO stack-up problem we transform it into a digraph and by solving a graph problem we
obtain a solution for the FIFO stack-up problem.

Algorithm TRANSFORM

qll = Q1a---aQ;€ =gk
7:=1
T = [t}

repeat the following steps until ¢f = 0,...,q;, = 0:
1. if there is a sequence ¢, such that the first bin b of ¢ is destined for a pallet in T”, i.e.
plt(b) € T’, then remove bin b from sequence ¢, and output b
Comment: Bins for already open pallets are removed automatically.
2. otherwise set j := j+ 1 and T :=T" U {t;}

Comment: If the first bin of each subsequence ¢, is destined for a non-open pallet, the next
pallet of the pallet solution has to be opened.

Figure 4: Algorithm for transforming a pallet solution into a bin solution.

3.1 The processing graph

In this section we give an algorithm which computes a processing of the given sequences of bins
with a minimum number of stack-up places. Such an optimal processing can always be found by
computing the processing graph and doing some calculation on it. Before we define the processing
graph let us consider some general graph problem, that will be useful to find a processing of the
given sequences of bins with a minimum number of stack-up places and thus to solve the FIFO
stack-up problem.

Let G = (V, E, f) be a directed acyclic vertex-labeled graph. Function f : V — Z assigns to
every vertex v € V a value f(v). Let s € V and ¢t € V be two vertices, where s stands for source,
and ¢ stands for target. For some vertex v € V and some path P = (vy,...,v¢) with vy = s, vp =v
and (v;,vi+1) € E we define

I[(P) :=

val(P) := max(f(u))
to be the maximum value of f on that path. Let Ps(v) denote the set of all paths from vertex s
to vertex v. Then we define

val(v) := min (val(P)).

(v) = ,min_(val(P))
If v is not reachable from s, we define val(v) = oo. The problem is to compute the value val(t). A
solution of this problem can be found by dynamic programming and solves also the FIFO stack-up
problem. The reason for this is given shortly. For some vertex v € V let

N=(v) ={ueV|(u,v) € E}

be the set of predecessors of v in digraph G. The acronym N~ stands for in-neighborhood. Then
it holds
val(v) = max{f(v), min (val(u))},
u€N~(v)

because each path P € Ps(v) must go through some vertex v € N~ (v). That means, the value of
val(v) can be processed recursively. But, if we would do that, subproblems often would be solved
several times. So, we use dynamic programming to solve each subproblem only once, and put
these solutions together to a solution of the original problem. This is possible, since the graph is
directed and acyclic.

Let topol : V- — N be an ordering of the vertices of digraph G such that topol(u) < topol(v)
holds for each (u,v) € E. That means, topol is a topological ordering of the vertices.

The value val(t) can be computed in polynomial time by Algorithm OPT given in Figure[ll A
topological ordering of the vertices of digraph G can be found by a depth first search algorithm in

Algorithm OpT

val[s] := f(s)
for every vertex v # s in order of topol do
val[v] := oo

for every u € N~ (v) do > Compute ming,e n- () (val(u)) =: val(v)
if (valu] < vallv])
val[v] := val[u]
pred[v] :==u
if (val[v] < f(v)) > Compute max{ f(v),val(v)}
val[v] := f(v)

Figure 5: Finding an optimal processing by dynamic programming, where topol is a topological
ordering of the vertices.

time O(|V| + |E|). The remaining work of algorithm OPT can also be done in time O(|V| + |E|).
Thus, it works in time O(|V| + |E|), i.e. linear in the input size.

Remark 3.1 An alternative algorithm to compute the values val(v) for v € V in G = (V, E, f)
was suggested by an anonymous reviewer. For every v € V the value val(v) can be computed as
follows. Start with r = max,ecy f(u). While the graph contains at least one path from s to v,
we remove all vertices u with f(u) > r and decrease r by one. Finally return val(v) = r + 1.
The running time is not better but it shows immediately that it can be done in polynomial time.
Independently we introduced a breadth first search solution for the FIFO stack-up problem in [G].

We need some additional terms, before we show how algorithm OPT can solve the FIFO stack-
up problem. For a sequence ¢ = (b1, ...,b,) let

left(q,i) = (b1,...,b;)

denote the sequence of the first ¢ bins of sequence ¢, and let

TZght(Qa 7’) = (b’i+1a AR bn)

denote the remaining bins of sequence ¢ after removing the first ¢ bins. Consider again Example
2T and Table[d It can be seen that a configuration is well-defined by the number of bins that are
removed from each sequence. Configuration (@, Qs) can be described equivalently by the tuple
(2,4), since in configuration (@, Qs) two bins of sequence g; have been removed, and four bins of
sequence g2 have been removed.

The position of the first bin in some sequence ¢; destined for some pallet ¢ is denoted by
first(q;,t), similarly the position of the last bin for pallet ¢ in sequence ¢; is denoted by last(g;,t).
For technical reasons, if there is no bin for pallet ¢ contained in sequence g;, then we define
first(qi,t) = |gi| + 1, and last(g;, t) = 0.

Example 3.2 Consider list Q = (q1,q2) of the sequences
q1 = [a’7 ba ¢, a, b7 C]
and
q2 = [daeafadaeafaavbac]'

Then we get left(q1,2) = [a,b], right(q1,2) = [c,a,b,], left(q2,3) = [d,e, f], and right(q2,3) =
[d,e, f,a,b,c].

If we denote q := right(q1,2), and g5 := right(q2,3), then there are 5 pallets open in configu-
ration (Q, Q") with Q" = (¢}, d5), namely the pallets a, b, d, e, and f.

We generalize this for a list @ = (q1, ..., qx) of sequences and we define the cut

cutg(it, ..., k) = {t € plts(Q) |
35,7, b € left(q;,i),b € right(qj, i) : plt(b) = plt(b') =t}

at some configuration (i1,...,4;) to be the set of pallets ¢ such that one bin for pallet ¢ has already
been removed and another bin for pallet ¢ is still contained in some sequence. Let #cutq (i1, ..., i)
be the number of elements in cutg (i1, ..., %)

The intention of a processing graph G = (V, E, f) is the following. Suppose each vertex v € V
of digraph G represents a configuration (i1, ..., %) during the processing of some set of sequences
Q. Suppose further, an arc (u,v) € E represents a transformation step during this processing,
such that a bin b is removed from some sequence in configuration u resulting in configuration v.
Suppose also that each vertex v is assigned the number of open pallets in configuration v, i.e.
number #cutq (i1, .. .,i,). If vertex s represents the initial configuration (0,0, ..., 0), while vertex
t represents the final configuration (|¢1],|qz|, - -, |qx|), then we are searching a path P from s to ¢
such that the maximal number on path P is minimal. Thus, an optimal processing of () can be
found by Algorithm OPT given in Figure

The processing graph has a vertex for each possible configuration. Each vertex v of the pro-
cessing graph is labeled by the vector h(v) = (vi,...,vx), where v; denotes the position of the
bin that has been removed last from sequence ¢;. Further each vertex v of the processing graph
is labeled by the value f(v) = #cutg(v1,...,vx) = #cutg(h(v)). There is an arc from vertex u
labeled by (u1,...,ux) to vertex v labeled by (v1,...,v) if and only if u; = v; — 1 for exactly one
element of the vector and for all other elements of the vector u; = v;. The arc is labeled with the
pallet symbol of that bin, that will be removed in the corresponding transformation step. That
means, the processing graph represents all the possible branchings through the decision process.
For the sequences of Example 3.2l we get the processing graph of Figure[dl The processing graph is
directed and acyclic, and we use this digraph to compute the values of #cutq(i1, .. ., i) iteratively
in the following way.

(o] (0]
e
v Ny Y N

(60) (en] (a2] (03)

o N YNy NN

((40)) ((3,1)) (e2] (@3] (0]

VA

o

o

Figure 6: The processing graph of Example For every vertex v the vector h(v) in the vertex
represents the configuration of v and every arc is labeled with the pallet symbol of that bin, that
is removed in the corresponding transformation step.

First, since none of the bins has been removed from some sequence, we have #cutg(0,...,0) =
0. Since the processing graph is directed and acyclic, there exists a topological ordering topol of
the vertices. The vertices are processed according to the order topol. In each transformation step
we remove exactly one bin for some pallet ¢ from some sequence g;, thus

#CUtQ(il,...,ij_l,ij+1,ij+1,...,ik)
= #Cth(il,...,ij_l,ij,ij+1,...,ik) + Cj

where ¢; = 1 if pallet ¢ has been opened in the transformation step, and ¢; = —1 if pallet ¢ has
been closed in the transformation step. Otherwise, c; is zero. If we put this into a formula we get

1, if first(qj,t) =4; + 1 and first(qe,t) > ¢ VL F# j
c¢; =1 —1, iflast(g;,t) =1; +1 and last(qe,t) <ig VL F#j
0, otherwise.

Please remember our technical definition of first(q,t) and last(q,t) from page [§ for the case
that ¢ & plts(q).

That means, the calculation of value #cutq(i1,...,i) for the vertex labeled (i1, ...,i) de-
pends only on already calculated values. Figure [7] shows such a processing for the sequences of
Example

Figure 7: The processing graph of Example[3.2l For every vertex v the set in the vertex v shows the
open pallets, the vector h(v) in the vertex represents the configuration of v, and the number f(v)
on the left of the vertex represents the number of open pallets in the corresponding configuration
h(v).

To efficiently perform the processing of c¢;, we have to store for each pallet the first and last
bin in each sequence. Table 2] shows these values for the sequences of Example We compute
all the values first(q;,t) and last(q;,t) for ¢; € @ and ¢ € plts(Q) in some preprocessing phase.
Such a preprocessing can be done in time O(k- N + k-m), which can be bounded due to m < k- N
by O(k - (N + 1)¥). Then the calculation of value #cutg(h(v)) for the vertex v representing
configuration h(v) can be done in time O(k).

| pallet ¢ || a | b | c | d | e | f |
first(gu,t) | 1 | 2 | 3 | 7 | 7|7
first(ge,t) || 7 | 8 | 9 | 1 2 3
last(qi,t) || 4 | 5] 6 | O | 0| O
last(ge,t) || 7 | 8 | 9 | 4 | 5 6

Table 2: The values first(g;,t) and last(g;,t) for ¢; € Q and ¢ € plts(Q) of Example

The computation of all at most (N + 1)* values #cutq(i1,...,ix) can be performed in time
O(k-(N+1)%). After that we can use Algorithm OPT to compute the minimal number of stack-up
places necessary to process the given FIFO stack-up problem in time O(|V|+|E|) C O(k-(N+1)),
since [V| < (N+1)¥ and |E| < k- |V|. If the size of the processing graph is polynomially bounded
in the size of the input, the FIFO stack-up problem can be solved in polynomial time. In general
the processing graph can be too large to efficiently solve the problem.

10

3.2 The Sequence Graph

Next we show a correlation between the used number of stack-up places for a processing of an
instance () and the directed pathwidth of a digraph G¢ defined by). The notion of directed
pathwidth was introduced by Reed, Seymour, and Thomas in the 1990s and leads a restriction of
directed treewidth which is defined by Johnson, Robertson, Seymour, and Thomas in [7].
This correlation implies that 1.) the FIFO stack-up problem is NP-complete and 2.) a pallet
solution can be computed in polynomial time if there are only a fixed number of stack-up places.
A directed path-decomposition of a digraph G = (V, E) is a sequence

(Xq1,...,X,)
of subsets of V', called bags, that satisfy the following three properties.
(dpw-1) X;U...UX, =V
(dpw-2) for each arc (u,v) € E there are indices 4, j with ¢ < j such that v € X; and v € X

(dpw-3) if u € X; and u € X, for some node u and two indices 4, j with ¢ < j, then u € X, for
all indices £ with i < /¢ < j

The width of a directed path-decomposition X = (X3,...,X,) is

max | X;| — 1.

1<i<r
The directed pathwidth of G, d-pw(G) for short, is the smallest integer w such that there is a
directed path-decomposition for G of width w. For symmetric digraphs, the directed pathwidth is
equivalent to the undirected pathwidth of the corresponding undirected graph [9], which implies
that determining whether the pathwidth of some given digraph is at most some given value w is
NP-complete. For each fixed integer w, it is decidable in polynomial time whether a given digraph
has directed pathwidth at most w, see Tamaki [15].

The sequence graph Gg = (V, E) for an instance @ = (g1, . . . , g&) of the FIFO stack-up problem
is defined by vertex set V' = plts(Q) and the following set of arcs. There is an arc (u,v) € E if and
only if there is some sequence where a bin destinated for w is on the left of some bin destinated
for v.

More formally, there is an arc (u,v) € F if and only if there is a sequence ¢; = (bn;_,+1,---,bn;)
with two bins b;,, b;, such that (1) ji < j2, (2) plt(bj,) = u, (3) plt(b;,) = v, and (4) u # v.

Example 3.3 Figure [shows the sequence graph Gg for Q = (q1,qz,q3) with sequences ¢1 =
[a7 a, da €, d]7 q2 = [ba b7 d]) and q3 = [Ca C, d7 €, d] .

Figure 8: Sequence graph G¢ of Example 3.3

If Go = (V, E) has an arc (u,v) € E then v # v and for every processing of), pallet u is opened
before pallet v is closed. Digraph Gg = (V, E) can be computed in time O(n+k-|E|) C O(n+k-m?)
by the algorithm CREATE SEQUENCE GRAPH shown in Figure

A value is added to a list only if it is not already contained. To check this efficiently in time
O(1) we have to use a boolean array. In our algorithm V and L are realized by boolean arrays.

11

Algorithm CREATE SEQUENCE GRAPH

for each sequence ¢ € Q do
b := first bin of sequence ¢
add plt(b) to vertex set V, if it is not already contained
L := (plt(b)) > L contains pallets of bins up to bin b
for i := 2 to |¢q| do
b := i-th bin of sequence ¢
add plt(b) to vertex set V, if it is not already contained
if (i == last(q, plt(b)))
for each pallet t € L do
if t # plt(b) add arc (¢, plt(b)) to arc set A, if it is not already contained
if (5 == first(q, plt (b))
append(plt(b), L)

Figure 9: Create the sequence graph G = (V, A) for some given list of sequences Q.

Therefore we need some preprocessing phase where we run through each sequence and seek for
the pallets. This can be done in time O(n + k- m) C O(n + m?).

The following two Theorems show the correlation between the used number of stack-up places
for a processing of an instance () and the directed pathwidth of the sequence graph Gg,.

First we want to emphasize that not every directed path-decomposition of a sequence graph G
immediately leads to a pallet solution. In our ExampleB3lthe sequence ({e, a}, {e, b}, {e, c}, {e,d})
is a directed path-decomposition of optimal width 1 for the sequence graph Gg. But opening the
pallets one after another leads to (e, a,b,c,d), which is no pallet solution since pallet e cannot
be opened at first and must be put on hold. Within the proof of Theorem we show how to
transform a directed path-decomposition of Gg into a pallet solution for). Example and
Table Bl illustrate this process.

Theorem 3.4 A p’l"OC@SSi?’lg (QuQO)u (Q7Q1)7 SRR (QaQn) Of Q with QO = Q; Qn = (@7 e -70);

and p stack-up places defines a directed path-decomposition

X = (Open(Q7 Q0)7 R Open(Q7 Q"))
for Gg of width p — 1.

Proof We show that
X = (Open(Qv Q0)7 R 0])67?,(@, Qn))

satisfies all properties of a directed path-decomposition.

(dpw-1) open(Q, Qo) U---U open(Q, Q) = plts(Q), because every pallet is opened at least once
during a processing.

(dpw-2) If (u,v) € E then there are indices 4,7 with ¢ < j such that v € open(Q,Q;) and
v € open(Q, Q;), because v can not be closed before u is opened.

(dpw-3) If u € open(Q, Q;) and u € open(Q, Q;) for some pallet u and two indices 4, j with ¢ < j,
then u € open(Q, Q¢) for all indices £ with ¢ < ¢ < j, because every pallet is opened at most
once.

Since @ is processed with p stack-up places, we have |open(Q, Q;)| < p for 0 < i < n, and therefore
X has width at most p — 1. (I

Theorem 3.5 If there is a path-decomposition X = (X1,...,X,) for Gg of width p—1 then there
is a processing of Q@ with p stack-up places.

12

Proof For a pallet ¢ let a(X,t) be the smallest ¢ such that ¢t € X; and S(X,t) be the largest @
such that ¢ € X;, see Example B8l Then ¢ € X, if and only if a(X,t) < i < S(X,t). If (t1,t2)
is an arc of Gg, then a(X,t1) < B(X,t2). This follows by (dpw-2) of the definition of a directed
path-decomposition.

Instance @ can be processed as follows. If it is necessary to open in a configuration (Q,Q’) a
new pallet, then we open a pallet ¢ of front(Q') for which «(X,t) is minimal.

We next show that for every configuration (@, Q') of the processing above there is a bag X;
in the directed path-decomposition X = (Xy,..., X,), such that open(Q,Q’) C X;. This implies
that the processing uses at most p stack-up places.

First, let (Q,Q’) be a decision configuration, let ¢ € front(Q’) such that a(X,t) is minimal,
and let ¢’ € open(Q, Q") be an already open pallet. We show that the intervals [a(X,t), (X,)]
and [a(X,t), B(X,1")] overlap, because a(X,t) < B(X,t') and a(X,t') < B(X,t).

(1) To show a(X,t) < B(X,t') we observe the following:

Since t' ¢ front(Q’), there has to be a pallet t” € front(Q’) such that (¢”,t') is an arc of
G¢. This implies that a(X,¢") < B(X,¢'). Since t is a pallet of front(Q') for which «(X,t) is
minimal, we have a(X,t) < a(X,t"”) and thus a(X,t) < B(X,t).

(2) To show a(X,t') < B(X,t) we observe the following:
Let (Q,Q") be the configuration in which ¢’ has been opened.

(a) t € front(Q"). Since t’ is a pallet of front(Q"”) for which a(X,t’) is minimal, we have
a(X,t) < a(X,t) and thus a(X,t) < B(X,1).

(b) t & front(Q"). Then there is a palled ¢ € front(Q") such that (t”,t) is an arc of Gg.
This implies that a(X,t”) < B(X,t). Since t is a pallet of front(Q") for which a(X,t')
is minimal, we have a(X,t') < a(X,t") < B(X,).

Finally, let (@, Q) be an arbitrary configuration during the processing of (). By the discussion
above, we can conclude that for every pair ¢;,t; € open(Q,Q) the intervals [a(X,t;), B(X, ;)]
and [a(X,t;), B(X, ;)] overlap, because t; is opened before t; or vice versa. Since the cut of all
intervals [a(X,¢;), B(X,t;)], t; € open(Q, Q) mutually overlap, there is a bag X; in the directed
path-decomposition X such that open(Q,Q) C X;. O

Example 3.6 We consider digraph Gq for Q = (q1,q2,q3) with sequences ¢1 = [a,a,d,e,d],
g2 = [b,b,d], and q3 = [¢,c,d, e, d] from Ezxample[Z3 Sequence ({a,e}, {b,e}, {c,e}, {d,e}) is a
directed path-decomposition of width 1, which implies the following values for o and 3 used in the
proof of Theorem [T.3.

| pallet t | a | b | c | d | e |
aX,)| 1T] 2341
BxX,t)| 1 121|131 4|4

Table [3 shows a processing of Q with 2 stack-up places and pallet solution S = (a,b,c,d,e). The
underlined bin is always the bin that will be removed in the next transformation step. We denote
Qi = (¢4, ¢4, q%), thus each row represents a configuration (Q, Q;).

4 Hardness Result

Next we will show the hardness of the FIFO stack-up problem. In contrast to Section [3] we will
transform an instance of a graph problem into an instance of the FIFO stack-up problem.

Let G = (V, E) be a digraph. We will assume that G = (V, E') does not contain any vertex with
only outgoing arcs and not contain any vertex with only incoming arcs. This is only for technical
reasons and the removal of such vertices will not change the directed pathwidth of G, because a

13

i q 43 a3 front(Q') | open(Q, Qi)

01 [a,a,d,e,d) [b, b, d] [e,e,d,e,d] | {a,b,c} |0

1|]a,d,e,d] [b, b, d] [c,e,d e d] | {a,b,c} {a}

3| [d.e, d] 0.0.d [ceded]| bhed |0

3| [d,e,d] [b, d] [e,e,d e d] | {b,c,d} {b}

4| (d,e,d d ¢ c dyed | {cd} [

5| [d,e,d d ¢, d, e, d] {c,d} {c}

6| [d,e,d] d d,e,d {d} [

7| [e,d] d d,e,d {d, e} {d}

8| le,d d,e,d] {d, e} {d}

91 [e,d e, d] {e} {d}
10 | [d] e, d {d, e} {d, e}
11| [] e,d {e} {d, e}
12 d| {d} {d}
13 | [} [

Table 3: A processing of () with respect to a given directed path-decomposition for G¢ of Example
3.6

vertex u with only outgoing arcs can be placed in a singleton X; = {u} at the beginning of the
directed path-decomposition and a vertex w with only incoming arcs can be placed in a singleton
X; = {u} at the end of the directed path-decomposition, without to change its width.

Let G = (V, E) be some digraph and F = {eq,...,es} its arc set. The queue system Qg =
q1,-.-,qe) for G is defined as follows.

(
(1) There are 2¢ bins by, .. ., bay.

(2) Queue g; = (ba;j—1,be;) for 1 <i < L.
(

3) The pallet symbol of bin bg;_; is the first vertex of arc e; and the pallet symbol of by; is the
second vertex of arc e; for 1 < ¢ < £. Thus plts(Qg) = V.

The definition of queue system Q¢ and sequence graph Gg, defined in Section [3.2] now imply
the following proposition.

Proposition 4.1 For every digraph G,

G = Goo

Example 4.2 Consider the digraph G of Figure[I0. The corresponding queue system is Qg =
(q1, 42, a3, 94, G5, 46, 47), where

Q= [avb]v q2 = [b,C], q = [Cad]v q4 = [dve]v
e = lea, g = lefl, ar [f,a].

The sequence graph of Qg is G.

Lemma 4.3 There is a directed path-decomposition for G of width p — 1 if and only if there is a
processing of Qg with at most p stack-up places.

Proof By Proposition LIl we know that G = Gg,. If there is a directed path-decomposition for
G = Gg, of width p —1 then by Theorem there is a processing of Q¢ with at most p stack-up
places. If there is a processing of Q¢ with at most p stack-up places then by Theorem [B.4] there
is directed path-decomposition for G of width p — 1. O

14

Figure 10: Digraph G of Example

Theorem 4.4 Given a list Q = (qu,...,qr) of k sequences of bins and some positive integer
p. The problem to decide whether there is a processing of Q with at most p stack-up places is
NP-complete.

Proof The given problem is obviously in NP. Determining whether the pathwidth of some given
(undirected) graph is at most some given value w is NP-complete [8] and for symmetric digraphs
a special case of the problem on directed graphs (cf. Introduction of [9]). Thus the NP-hardness
follows from Lemma (4.3 because Q¢ can be constructed from G in linear time. O

By the results of [I] it is shown in [I0] that determining whether the pathwidth of some given
(undirected) graph G is at most some given value w remains NP-complete even for planar graphs
with maximum vertex degree 3. Thus the problem to decide, whether the directed pathwidth of
some given symmetric digraph G is at most some given value w remains NP-complete even for
planar digraphs with maximum vertex in-degree 3 and maximum vertex out-degree 3. Thus, by
our transformation of graph G into Qg we get sequences that contain together at most 6 bins per
pallet. Hence, the FIFO stack-up problem is NP-complete even if the number of bins per pallet is
bounded. Therefore we have proved the following statement.

Corollary 4.5 Given a list Q@ = (qu,...,qk) of k sequences of bins and some positive integer
p. The problem to decide whether there is a processing of Q with at most p stack-up places is
NP-complete, even if the sequences of Q contain together at most 6 bins per pallet.

5 Bounded FIFO stack-up systems

In this section we show that the FIFO stack-up problem can be solved in polynomial time, if the
number k of sequences or the number p of stack-up places is assumed to be fixed.

5.1 Fixed number of sequences

In this section we assume that the number k of sequences is fixed.

In Section B we have shown that the FIFO stack-up problem can be solved by dynamic
programming using the processing graph in time O(k - (N + 1)*). Thus, we have already shown
the following result.

Theorem 5.1 Given a list Q = (q1,-..,qx) of sequences of bins for some fized k and a number
of stack-up places p. The question whether the sequences can be processed with at most p stack-up
places can be solved in polynomial time.

Next we improve this result.

Theorem 5.2 Given a list Q = (q1,-..,qx) of sequences of bins for some fized k and a number
of stack-up places p. The question whether the sequences can be processed with at most p stack-up
places is non-deterministically decidable using logarithmic work-space.

15

Proof We need k + 1 variables, namely posi, ..., posg and open. Each variable pos; is used to
store the position of the bin which has been removed last from sequence g;. Variable open is used
to store the number of open pallets. These variables take (k + 1) - [log(n)] bits. The simulation
starts with pos; := 0, ..., pos; := 0 and open := 0.

(i) Choose non-deterministically any index ¢ and increment variable pos;. Let b be the bin on
position pos; in sequence g;, and let ¢ := plt(b) be the pallet symbol of bin b.
Comment: The next bin b from some sequence g; will be removed.

(ii) If first(q;,t) > pos; or t & plts(q;) for each j # i, 1 < j < k, and first(¢;,t) = pos;, then
increment variable open.
Comment: If the removed bin b was the first bin of pallet ¢ that ever has been removed from
any sequence, then pallet ¢ has just been opened.

(ili) If last(gj,t) < pos;j or t & plts(q;) for each j, 1 < j <k, then decrement variable open.
Comment: If bin b was the last one of pallet ¢, then pallet ¢ has just been closed.

If open is set to a value greater than p in Step (ii) of the algorithm then the execution is stopped
in a non-accepting state. To execute Steps (ii) and (iii) we need a fixed number of additional
variables. Thus, all steps can be executed non-deterministically using logarithmic work-space. [J

Theorem 5.2 implies that the FIFO stack-up problem with a fixed number of given sequences
can be solved in polynomial time since NL is a subset of P. The class NL is the set of problems
decidable non-deterministically on logarithmic work-space. For example, reachability of nodes in
a given graph is NL-complete, see [I1]. Even more, it can be solved in parallel in polylogarithmic
time with polynomial amount of total work, since NL is a subset of NCy. The class NCs is the
set of problems decidable in time O(log?(n)) on a parallel computer with a polynomial number of
processors, see [11].

5.2 Fixed number of stack-up places

In [I5] it is shown that the problem of determining the bounded directed pathwidth of a digraph
is solvable in polynomial time. By Theorem [3.4land Theorem 3.5l the FIFO stack-up problem with
fixed number p of stack-up places is also solvable in polynomial time.

Theorem 5.3 Given a list Q = (q1,...,qx) of k sequences of bins and a fized number of stack-up
places p. The question whether the sequences can be processed with at most p stack-up places can
be solved in polynomial time.

6 Conclusions and Outlook

In this paper, we have shown that the FIFO stack-up problem is NP-complete in general, even if
in all sequences together there are at most 6 bins destined for the same pallet. The problem can
be solved in polynomial time, if the number £ of sequences or if the number p of stack-up places
is assumed to be fixed.

In our future work, we want to find an answers to the following questions. Our hardness result
motivates to analyze the time complexity of the FIFO stack-up problem if in all sequences together
there are at most ¢, 1 < ¢ < 6, bins destined for the same pallet.

Further we are interested in online algorithms for instances where we only know the first ¢ bins
of every sequence instead of the complete sequences. Especially, we are interested in the answer
to the following question: Is there a d-competitive online algorithm? Such an algorithm must
compute a processing of some Q) with at most p - d stack-up places, if Q can be processed with at
most p stack-up places.

In real life the bins arrive at the stack-up system on the main conveyor of a pick-to-belt
orderpicking system. That means, the distribution of bins to the sequences has to be computed.

16

Up to now we consider the distribution as given. We intend to consider how to compute an optimal
distribution of the bins from the main conveyor onto the sequences such that a minimum number
of stack-up places is necessary to stack-up all bins from the sequences.

Acknowledgements

We thank Prof. Dr. Christian Ewering who shaped our interest into controlling stack-up systems.
Furthermore, we are very grateful to Bertelsmann Distribution GmbH in Giitersloh, Germany, for
providing the possibility to get an insight into the real problematic nature and for providing real
data instances.

References

[1]
2]

3]

H.L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1-23, 1993.

A. Borodin. On-line Computation and Competitive Analysis. Cambridge University Press,
1998.

R. de Koster. Performance approximation of pick-to-belt orderpicking systems. FEuropean
Journal of Operational Research, 92:558-573, 1994.

A. Fiat and G.J. Woeginger. Online Algorithms: The state of the art, volume 1442 of LNCS.
Springer-Verlag, 1998.

F. Gurski, J. Rethmann, and E. Wanke. Moving bins from conveyor belts onto pallets using
FIFO queues. In Proceedings of the International Conference on Operations Research (OR
2013), Selected Papers, pages 185—191. Springer-Verlag, 2014.

F. Gurski, J. Rethmann, and E. Wanke. A practical approach for the FIFO stack-up prob-
lem. In Modelling, Computation and Optimization in Information Systems and Management
Sciences, volume 360 of Advances in Intelligent Systems and Computing, pages 141-152.
Springer, 2015.

T. Johnson, N. Robertson, P.D. Seymour, and R. Thomas. Directed tree-width. Journal of
Combinatorial Theory, Series B, 82:138-155, 2001.

T. Kashiwabara and T. Fujisawa. NP-completeness of the problem of finding a minimum-
clique-number interval graph containing a given graph as a subgraph. In Proceedings of the
International Symposium on Circuits and Systems, pages 657660, 1979.

K. Kitsunai, Y. Kobayashi, K. Komuro, H. Tamaki, and T. Tano. Computing directed
pathwidth in O(1.89™) time. In Proceedings of International Workshop on Parameterized and
Ezact Computation, volume 7535 of LNCS, pages 182—-193. Springer-Verlag, 2012.

B. Monien and I.H. Sudborough. Min cut is NP-complete for edge weighted trees. Theoretical
Computer Science, 58:209-229, 1988.

C.H. Papadimitriou. Computational Complezity. Addison-Wesley Publishing Company, New
York, 1994.

J. Rethmann and E. Wanke. Storage controlled pile-up systems, theoretical foundations.
European Journal of Operational Research, 103(3):515-530, 1997.

J. Rethmann and E. Wanke. On approximation algorithms for the stack-up problem. Math-
ematical Methods of Operations Research, 51:203-233, 2000.

17

[14] J. Rethmann and E. Wanke. Stack-up algorithms for palletizing at delivery industry. Furopean
Journal of Operational Research, 128(1):74-97, 2001.

[15] H. Tamaki. A Polynomial Time Algorithm for Bounded Directed Pathwidth. In Proceedings
of Graph-Theoretical Concepts in Computer Science, volume 6986 of LNCS, pages 331-342.
Springer-Verlag, 2011.

[16] K.L. Yam, editor. The Wiley Encyclopedia of Packaging Technology. John Wiley & Sons,
New York, 2009.

18

	1 Introduction
	2 Preliminaries
	3 Digraph Models
	3.1 The processing graph
	3.2 The Sequence Graph

	4 Hardness Result
	5 Bounded FIFO stack-up systems
	5.1 Fixed number of sequences
	5.2 Fixed number of stack-up places

	6 Conclusions and Outlook

