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Abstract Wasserstein barycenters correspond to optimal solutions of transportation problems for
several marginals, and as such have a wide range of applications ranging from economics to statistics
and computer science. When the marginal probability measures are absolutely continuous (or vanish
on small sets) the theory of Wasserstein barycenters is well-developed (see the seminal paper [1]).
However, exact continuous computation of Wasserstein barycenters in this setting is tractable in
only a small number of specialized cases. Moreover, in many applications data is given as a set of
probability measures with finite support. In this paper, we develop theoretical results for Wasserstein
barycenters in this discrete setting. Our results rely heavily on polyhedral theory which is possible
due to the discrete structure of the marginals.

Our results closely mirror those in the continuous case with a few exceptions. In this discrete
setting we establish that Wasserstein barycenters must also be discrete measures and there is always
a barycenter which is provably sparse. Moreover, for each Wasserstein barycenter there exists a non-
mass-splitting optimal transport to each of the discrete marginals. Such non-mass-splitting transports
do not generally exist between two discrete measures unless special mass balance conditions hold.
This makes Wasserstein barycenters in this discrete setting special in this regard.

We illustrate the results of our discrete barycenter theory with a proof-of-concept computation
for a hypothetical transportation problem with multiple marginals: distributing a fixed set of goods
when the demand can take on different distributional shapes characterized by the discrete marginal
distributions. A Wasserstein barycenter, in this case, represents an optimal distribution of inventory
facilities which minimize the squared distance/transportation cost totaled over all demands.

Keywords barycenter · optimal transport · multiple marginals · polyhedral theory · mathematical
programming
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1 Introduction

Optimal transportation problems with multiple marginals are becoming important in applications
ranging from economics and finance [2,7,9,12] to condensed matter physics and image processing
[6,10,13,22,24]. The so-called Wasserstein barycenter corresponds to optimal solutions for these
problems, and as such has seen a flurry of recent activity (see [1,4,5,8,11,16,17,18,20,19,21,25]).
Given probability measures P1, . . . , PN on Rd, a Wasserstein barycenter is any probability measure
P̄ on Rd which satisfies

N∑
i=1

W2(P̄ , Pi)
2 = inf

P∈P2(Rd)

N∑
i=1

W2(P, Pi)
2 (1)

where W2 denotes the quadratic Wasserstein distance and P2(Rd) denotes the set of all probability
measures on Rd with finite second moments. See the excellent monographs [26,27] for a review of the
Wasserstein metric and optimal transportation problems.
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Fig. 1: The above four images represent hypothetical monthly demands (as a percentage of total supply) for
distributing a fixed set of goods to nine California cities (denoted by red ‘x’ marks) in four different months (February,
March, June and July). Percent demand within each month is plotted proportional to disk area and is computed from
monthly average temperature and population within each city (see Section 4 for details). When percent demand
is treated as a discrete probability distribution, one for each month, the Wasserstein barycenter represents the
optimal distribution of inventory facilities which minimize total squared distance/transportation cost over multiple
monthly demand requirements. This example serves to illustrate the applicability of the main theoretical properties
derived in this paper. Theorem 2, for example, establishes that the optimal inventory distribution is a sparse
discrete probability distribution with tight bounds on the scarcity of the barycenter support. In particular, the
optimal inventory facilities are located at a small number of sites with relatively large storage capacity, rather than
a large number small-capacity facilities distributed over a diffuse set of locations. Theorem 1 shows that the optimal
transportation plan assigns each to barycenter inventory facility exactly one city to supply each month. Indeed, this
type of non-mass-splitting property of optimal mass transportation is known for absolutely continuous probability
distributions but does not usually hold for discrete probability distributions. The discrete Wasserstein barycenter is
unique in this regard: there always exists a non-mass-splitting optimal transportation plan to each of the individual
probability distributions (represented by monthly demand in this example). The Wasserstein barycenter for this
example is shown in Figure 2 and some of the optimal transportation plans are shown in Figure 3. Finally, the
computational details of this example are presented in Section 4.

Much of the recent activity surrounding Wasserstein barycenters stems, in part, from the seminal
paper [1]. In that paper, Agueh and Carlier establish existence, uniqueness and an optimal transport
characterization of P̄ when P1, . . . , PN have sufficient regularity (those which vanish on small sets
or which have a density with respect to Lebesgue measure). The transportation characterization
of P̄ , in particular, provides a theoretical connection with the solution of (1) and the estimation
of deformable templates used in medical imaging and computer vision (see [13,24] and references
therein). Heuristically, any measure P̄ is said to be a deformable template if there exists a set of
deformations ϕ1, . . . , ϕN which push-forward P̄ to P1, . . . , PN , respectively, and are all “as close as
possible” to the identity map. Using a quadratic norm on the distance of each map ϕ1(x), . . . , ϕN (x)
to x, a deformable template P̄ then satisfies

P̄ ∈ arg inf
P∈P2(Rd)

 inf
{(ϕ1, . . . , ϕN )

s.t. ϕi(P ) = Pi}

N∑
i=1

∫
Rd

|ϕi(x)− x|2dP (x)

 . (2)

The results of Agueh and Carlier establish that (1) and (2) share the same solution set when
P1, . . . , PN have densities with respect to Lebesgue measures (for example).

While absolutely continuous barycenters are mathematically interesting, in practice, data is often
given as a set of discrete probability measures P1, . . . , PN , i.e. those with finite support in Rd. For
example, in Figure 1 the discrete measures denote different demand distributions over 9 California
cities for different months (this example is analyzed in detail in Section 4). For the remainder of the
paper we refer to a discrete Wasserstein barycenter as any probability measure P̄ which satisfies (1)
and where all the P1, . . . , PN have discrete support.

In this paper we develop theoretical results for discrete Wasserstein barycenters. Our results
closely mirror those in the continuous case with a few exceptions. In the discrete case, the uniqueness
and absolute continuity of the barycenter is lost. More importantly, however, is the fact that P̄ is
provably discrete when the marginals are discrete (see Proposition 1). This guarantees that finite-
dimensional linear programming will yield all possible optimal P̄ , and this in turn is utilized in this
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Fig. 2: The leftmost image shows a Wasserstein barycenter computed from 8 discrete probability distributions, each
representing a different monthly demand (4 of the months are shown in Figure 1). Notice that barycenter support is
extremely sparse—supported on 63 discrete locations—as compared to the 12870 possible barycenter support points
(shown in the rightmost image) guaranteed by Proposition 1. Notice that Theorem 2 gives an upper bound of 65
support points for the optimal Wasserstein barycenter shown here. The role of Proposition 1, on the other hand, is
to give a finite set inclusion bound on the possible barycenter support points (shown at right in this example). This
result yields the finite dimensional linear program characterization of optimal Wasserstein barycenters which is key
to the analysis presented in this paper.

paper to study the properties of these barycenters from the point of view of polyhedral theory. In doing
so, we find remarkable differences and similarities between continuous and discrete barycenters. In
particular, unlike the continuous case, there is always a discrete barycenter with provably sparse finite
support; however, analogously to the continuous case, there still exists non-mass-splitting optimal
transports from the discrete barycenter to each discrete marginal. Such non-mass-splitting transports
generally do not exist between two discrete measures unless special mass balance conditions hold.
This makes discrete barycenters special in this regard.

In Section 2, we introduce the necessary formal notation and state our main results. The corre-
sponding proofs are found in Section 3. To illustrate our theoretical results we provide a computational
example, dicussed in Section 4 and Figures 1-3, for a hypothetical transportation problem with multi-
ple marginals: distributing a fixed set of goods when the demand can take on different distributional
shapes characterized by P1, . . . , PN . A Wasserstein barycenter, in this case, represents an optimal
distribution of inventory facilities which minimize the squared distance/transportation cost totaled
over all demands P1, . . . , PN .

2 Results

For the remainder of this paper P1, . . . , PN will denote discrete probability measures on Rd with finite
second moments. Let P2(Rd) denote the space of all probability measures with finite second moments
on Rd. Recall, a Wasserstein barycenter P̄ is an optimizer to the problem

inf
P∈P2(Rd)

N∑
i=1

W2(P, Pi)
2. (3)

The first important observation is that all optimizers of (3) must be supported in the finite set S ⊂ Rd
where

S =
{
x1 + . . .+ xN

N

∣∣ xi ∈ supp(Pi)
}

(4)

is the set of all possible centroids coming from a combination of support points, one from each measure
Pi. In particular, letting P2

S (Rd) = {P ∈ P2(Rd)| supp(P ) ⊆ S} the infinite dimensional problem (3)
can be solved by replacing the requirement P ∈ P2(Rd) with P ∈ P2

S (Rd) to yield a finite dimensional
minimization problem. This result follows from Proposition 1 below.
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Fig. 3: These two plots illustrate the special property of discrete Wasserstein barycenters proved in Theorem 1:
there is no mass-splitting when optimally transporting the inventory at each barycenter support to the corresponding
demand for each month. The image at left shows all the transported mass flowing from the optimal barycenter into
San Francisco, Sacramento, Los Angeles and San Bernardino for month of March (the corresponding March demand
is shown middle-left in Figure 1). The image at right shows the corresponding optimal transport for the month of
July. Notice that these figures only show the barycenter support points which transport into the four cities shown
here. The other barycenter supports transport goods to the other five cities not shown. We remark that Theorem
1 also establishes that transportation is balanced so that the transportation displacements sum to zero at each
barycenter support point.

Proposition 1 Suppose P1, . . . , PN are discrete probability measures on Rd. Let Π(P1, . . . , PN ) denote

the set of all coupled random vectors (X1, . . . , XN ) with marginals Xi ∼ Pi and let X denote the coordinate

average X1+...+XN
N . Let S be defined as in (4).

i) There exists (Xo
1 , . . . , X

o
N ) ∈ Π(P1, . . . , PN ) such that

E
∣∣Xo

∣∣2 = sup
(X1, . . . , XN )

∈ Π(P1, . . . , PN )

E
∣∣X∣∣2. (5)

ii) Any (Xo
1 , . . . , X

o
N ) ∈ Π(P1, . . . , PN ) which satisfies (5) has supp(LXo) ⊆ S and

N∑
i=1

W2

(
LXo, Pi

)2
= inf
P∈P2(Rd)

N∑
i=1

W2(P, Pi)
2 = inf

P∈P 2
S (Rd)

N∑
i=1

W2(P, Pi)
2. (6)

where LXo denotes the distribution (or law) of Xo.

iii) Any P̄ ∈ arg min
P∈P2(Rd)

N∑
i=1

W2(P, Pi)
2 satisfies supp(P̄ ) ⊆ S.

Notice that the existence of (Xo
1 , . . . , X

o
N ), in part i) of the above proposition, follows immediately

from the general results found in Kellerer [14] and Rachev [23]. Parts ii) and iii) are proved in Section
3. We also remark that during the preparation of this manuscript the authors became aware that
Proposition 1 was independently noted in [8], with a sketch of a proof. For completeness we will
include a detailed proof of this statement which will also provide additional groundwork for Theorem
1 and Theorem 2 below.

Proposition 1 guarantees that any barycenter P̄ computed with discrete marginals has the form

P̄ =
∑
x∈S

zxδx, zx ∈ R≥0. (7)

Here δx is the Dirac-δ-function at x ∈ Rd and zx corresponds to the mass (or probability) at x.
This implies that any coupling of P̄ with Pi, which realizes the Wasserstein distance, is in fact
characterized by a finite matrix. Treating the coordinates of these matrices and the values zx as
variables, the set of all solutions to (1) are obtained through a finite-dimensional linear program (see
(23) below). In [8] a similar linear program was used to find approximate barycenters for sets of
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absolutely continuous measures by finitely approximating the support of P̄ (which is sub-optimal for
the continuous problem). Our use of the finite linear program characterization of P̄ is different from
continuous approximation. We use a version of the linear program to analyze properties of discrete
barycenters themselves. Indeed, since the set of all discrete barycenters is on a face of the underlying
polyhedron, one can study their properties by means of polyhedral theory.

Our first theorem illustrates a similarity between barycenters defined from absolutely continuous
P1, . . . , PN and barycenters defined in the discrete setting. The results of [1] establish, in the absolutely
continuous case, that there exist optimal transports from the barycenter to each Pi which are optimal
in the sense of Wasserstein distance and are gradients of convex functions. Theorem 1 shows that
such transports not only exist for discrete barycenters but also share similar properties.

Theorem 1 Suppose P1, . . . , PN are discrete probability measures. Let P̄ denote a Wasserstein barycenter

solution to (1) and let X be a random variable with distribution P̄ . Then there exist finite convex functions

ψi : Rd → Rd, for each i = 1, . . . , N , such that

i) ∇ψi(P̄ ) = Pi, ∀i.
ii) E|X −∇ψi(X)|2 = W2(P̄ , Pi)

2, ∀i.

iii)
1

N

N∑
i=1

∇ψi(xj) = xj , ∀xj ∈ supp(P̄ ).

iv)
1

N

N∑
i=1

ψi(xj) =
|xj |2

2
, ∀xj ∈ supp(P̄ ).

Intuitively, one would expect the support of a barycenter to be large to accommodate such a con-
dition. This is particularly plausible since such these transports must realize the Wasserstein distance
between each measure and the barycenter. However, it has been noted that the barycenters of dis-
crete measures are often sparse in practice; see for example [11]. Our second main result resolves this
tension and establishes that there always is a Wasserstein barycenter whose solution is theoretically
guaranteed to be sparse.

Theorem 2 Suppose P1, . . . , PN are discrete probability measures, and let Si = |supp(Pi)|. Then there

exists a barycenter P̄ of these measures such that

|supp(P̄ )| ≤
N∑
i=1

Si −N + 1. (8)

We would like to stress how low this guaranteed upper bound on the size of the support of the
barycenter actually is. For example, let every Pi have a support of the same cardinality T . Then
|S| ≤ TN and if the support points are in general position one has |S| = TN . In contrast, the support
of the barycenter has cardinality at most NT .

Additionally, the bound in Theorem 2 is the best possible in the sense that, for any natural
numbers N and W , it is easy to come up with a set of N measures for which |supp(P̄ )| =

∑N
i=1 Si −

N + 1 = W : Choose P1 to have W support points and uniformly distributed mass 1
W on each of

these points. Choose the other Pi to have a single support point of mass 1. Then |S| = W and the
barycenter uses all of these possible support points with mass 1

W .
A particularly frequent setting in applications is that all the Pi are supported on the same discrete

grid, uniform in all directions, in Rd. See for example [11,22] for applications in computer vision with
d = 2. In this situation, the set S of possible centroids is a finer uniform grid in Rd, which allows us
to strengthen the results in Proposition 1 and Theorem 2.

Corollary 1 Let P1, . . . , PN be discrete probability measures supported on an L1× . . .×Ld-grid, uniform

in all directions, in Rd. Then there exists a barycenter P̄ supported on a refined (N(L1 − 1) + 1)× . . .×

(N(Ld − 1) + 1)-grid, uniform in all directions, with |supp(P̄ )| ≤ N(
d∏
i=1

Li − 1) + 1. In particular, the

density of the support of the barycenter on this finer grid is less than

1

Nd−1

d∏
i=1

Li
(Li − 1)

.

3 Proofs

In this section we prove the results outlined in Section 2. We begin with a proof of Proposition 1.
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3.1 Existence of Discrete Barycenters

Recall that a discrete barycenter P̄ is an optimizer of (3) when P1, . . . , PN are discrete probability
measures. We will show that P̄ must have the form of a coordinatewise average of optimally coupled
random vectors with marginals given by the Pi. In particular, we will establish the existence of N
random vectors Xo

1 , . . . , X
o
N with marginal distributions Xo

i ∼ Pi that are as highly correlated as

possible so that the variability in the average Xo =
Xo

1+···+X
o
N

N is maximized. Once these coupled
random vectors Xo

1 , . . . , X
o
N are obtained, the distribution of the average Xo (denoted LXo) will serve

as P̄ .

Proof (of Proposition 1) As remarked earlier, part i) of Proposition 1 follows from the general re-
sults of Kellerer [14] and Rachev [23]. Therefore there exists an optimally coupled random vector
(Xo

1 , . . . , X
o
N ) ∈ Π(P1, . . . , PN ) which satisfies (5). We will show that

N∑
i=1

W2

(
LXo, Pi

)2
= inf
P∈P2(Rd)

N∑
i=1

W2(P, Pi)
2. (9)

Notice the definition of S automatically implies supp(LXo) ⊆ S so that (9) will imply

N∑
i=1

W2

(
LXo, Pi

)2
= inf
P2
S (Rd)

N∑
i=1

W2(P, Pi)
2 = inf

P∈P2(Rd)

N∑
i=1

W2(P, Pi)
2 (10)

and complete the proof of part ii).
So suppose P ∈ P2(Rd). Then for all i = 1, . . . , N there exists an optimally coupled random

vector (Y ∗i , X
∗
i ) ∈ Π(P, Pi) such that W2(P, Pi)

2 = E|Y ∗i − X
∗
i |

2. (This is a well known property of
the Wasserstein distance W2, see for example Proposition 2.1 in [26].) Since the random variables
Y ∗1 , . . . , Y

∗
N all have distribution P it is easy to see that there exists a generalized Gluing lemma for

the existence of a random vector (Y,X1, . . . , XN ) ∈ Π(P, P1, . . . , PN ) such that (Y,Xi) has the same
distribution as (Y ∗, X∗i ) for each i. This can be seeing by first sampling a single Y ∼ P then sample
X1, . . . , XN independently conditional on Y where the conditional distribution Pr(Xi = x|Y = y) is
set to Pr(X∗i = x|Y ∗ = y) (the finite support of P1, . . . , PN is sufficient to guarantee existence of
these conditional distributions). This yields

1

N

N∑
i=1

W2(P, Pi)
2 =

1

N

N∑
i=1

E|Y ∗i −X
∗
i |

2 =
1

N

N∑
i=1

E|Y −Xi|2. (11)

Now note that Xi ∼ Pi and Xo
i ∼ Pi. Thus

N∑
i=1

E
∣∣Xo −Xo

i

∣∣2 =
N∑
i=1

E
∣∣Xo

∣∣2 − 2E
N∑
i=1

〈Xo, Xo
i 〉+

N∑
i=1

E
∣∣Xo

i

∣∣2= −NE
∣∣Xo

∣∣2 +
N∑
i=1

E
∣∣Xo

i

∣∣2
= −NE

∣∣Xo
∣∣2 +

N∑
i=1

E
∣∣Xi∣∣2= inf

(X1, . . . , XN )

∈ Π(P1, . . . , PN )

−NE
∣∣X∣∣2 +

N∑
i=1

E
∣∣Xi∣∣2

= inf
(X1, . . . , XN )

∈ Π(P1, . . . , PN )

N∑
i=1

E
∣∣X∣∣2 − 2E

N∑
i=1

〈X,Xi〉+
N∑
i=1

E
∣∣Xi∣∣2

= inf
(X1, . . . , XN )

∈ Π(P1, . . . , PN )

N∑
i=1

E
∣∣X −Xi∣∣2. (12)

Also, note that

E|Xo −Xo
i |

2 ≥ inf
(Y,X)∈Π(LXo,Pi)

E|Y −X|2 = W2(LXo, Pi)
2. (13)

Combining (12) and (13), we get

1

N

N∑
i=1

E|X −Xi|2 ≥
1

N

N∑
i=1

E|Xo −Xo
i |

2 ≥ 1

N

N∑
i=1

W2(LXo, Pi)
2. (14)
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Further we have a minorant for the right hand side of (11) as follows

1

N

N∑
i=1

E|Y −Xi|2 =
1

N

N∑
i=1

E|Y −X +X −Xi|2

=
1

N

N∑
i=1

E|Y −X|2 +
2

N
E

N∑
i=1

〈Y −X,X −Xi〉+
1

N

N∑
i=1

E|X −Xi|2

= E|Y −X|2 +
2

N
E〈Y −X,

N∑
i=1

(X −Xi)〉+
1

N

N∑
i=1

E|X −Xi|2

= E|Y −X|2 +
1

N

N∑
i=1

E|X −Xi|2 ≥
1

N

N∑
i=1

E|X −Xi|2. (15)

Putting (11), (14), and (15) together we obtain

1

N

N∑
i=1

W2(P, Pi)
2 =

1

N

N∑
i=1

E|Y −Xi|2 ≥
1

N

N∑
i=1

E|X −Xi|2 ≥
1

N

N∑
i=1

W2(LXo, Pi)
2. (16)

This shows that LXo is a minimizer of our problem and hence a barycenter, proving part i).
Finally, to prove part iii), note that if P ∈ P2(Rd) and supp(P ) * S, then any coupling

(Y,X1, . . . , XN ) ∈ Π(P, P1, . . . , PN ) must satisfy E|Y −X|2 > 0 (since supp(X) ⊆ S and supp(P ) * S).
This implies, by the last line of (15), that

1

N

N∑
i=1

E|Y −Xi|2 >
1

N

N∑
i=1

E|X −Xi|2, (17)

and hence that

1

N

N∑
i=1

W2(P, Pi)
2 =

1

N

N∑
i=1

E|Y −Xi|2 >
1

N

N∑
i=1

E|X −Xi|2 ≥
1

N

N∑
i=1

W2(LXo, Pi)
2, (18)

so that P is not a barycenter. Therefore for any barycenter P̄ , we must have supp(P̄ ) ⊆ S, which
proves part iii). ut

3.2 Linear Programming and Optimal Transport

Let us now develop a linear programming model (LP) for the exact computation of a discrete barycen-
ter. Suppose we have a set of discrete measures Pi, i = 1, . . . , N , and additionally another discrete
measure P . Let S0 = |supp(P )| and Si = |supp(Pi)| for each i as before. Let xj , j = 1, . . . , S0 be the
points in the support of P , each with mass dj , and let xik, k = 1, . . . , Si be the points in the support
of Pi, each with mass dik. For the sake of a simple notation in the following, when summing over
these values, the indices take the full range unless stated otherwise.

If (X,Yi) ∈ Π(P, Pi), then this coupling can be viewed as a finite matrix, since both probability
measures are discrete. We define yijk ≥ 0 to be the value of the entry corresponding to the margins
xj and xik in this finite matrix.

Note in this coupling that
∑
k yijk = dj for all j and that

∑
j yijk = dik for all k and further that

E|X − Y |2 =
∑
j,k

|xj − xik|2 · yijk =
∑
j,k

cijk · yijk, (19)

where cijk := |xj − xik|2 just by definition.
Given a non-negative vector y = (yijk) ≥ 0 that satisfies

∑
k yijk = dj for all i and j and∑

j yijk = dik for all i and k, we call y an N-star transport between P and the Pi. We define the cost

of this transport to be c(y) :=
∑
i,j,k cijk · yijk.

Further there exist vectors (X∗, Y ∗i ) ∈ Π(P, Pi) for all i, and a corresponding N-star transport
y∗, such that ∑

i

W2(P, Pi)
2 =

∑
i

E|X∗ − Y ∗|2 = c(y∗). (20)
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For any (X,Yi) ∈ Π(P, Pi) we also have E|X∗ − Y ∗i |
2 ≤ E|X − Yi|2, and hence it is easily seen that

y∗ is an optimizer to the following linear program

min
y

c(y)∑
k

yijk = dj , ∀i = 1, . . . , N, ∀j = 1, . . . , S0,∑
j

yijk = dik, ∀i = 1, . . . , N, ∀k = 1, . . . , Si, (21)

yijk ≥ 0, ∀i = 1, . . . , N, ∀j = 1, . . . , S0, ∀k = 1, . . . , Si.

Now suppose we wish to find a barycenter using a linear program. Then using Proposition 1 we
know that this amounts to finding a solution to

min
P∈P2

S (Rd)

N∑
i=1

W2(P, Pi)
2, P =

∑
x∈S

zxδx, zx ∈ R≥0. (22)

Using this we can expand the possible support of P in the previous LP to S, and let the mass at
each xj ∈ S be represented by a variable zj ≥ 0. This is a probability distribution if and only if
the constraint

∑
j zj = 1 is satisfied. Then every exact barycenter, up to measure-zero sets, must be

represented by some assignment of these variables and hence is an optimizer of the LP

min
y,z

c(y)∑
k

yijk = zj , ∀i = 1, . . . , N, ∀j = 1, . . . , S0,∑
j

yijk = dik, ∀i = 1, . . . , N, ∀k = 1, . . . , Si,

yijk ≥ 0, ∀i = 1, . . . , N, ∀j = 1, . . . , S0, ∀k = 1, . . . , Si,

zj ≥ 0, ∀j = 1, . . . , S0. (23)

Since each Pi is a probability distribution it is easy to see that
∑
j zj = 1 is just a consequence of

satisfaction of the other constraints. Any optimizer (y∗, z∗) to this LP is a barycenter P̄ in that

min
P∈P2

S (Rd)

N∑
i=1

W2(P, Pi)
2 =

N∑
i=1

W2(P̄ , Pi)
2 = c(y∗) and P̄ =

∑
j

z∗j δxj . (24)

It is notable that the LP in (23) corresponds to N transportation problems, linked together with
variables zj , representing a common marginal for each transportation problem. In fact it is not hard
to show that in the case N = 2 this LP can be replaced with a network flow LP on a directed
graph. It is easily seen that this LP is both bounded (it is a minimization of a positive linear sum of
non-negative variables) and feasible (assign an arbitary zj = 1 and the remainder of them 0 and this
reduces to solving N transportation LPs). Thus it becomes useful to write down the dual LP, which
also bares similarity to a dual transportation problem

max
τ,θ

∑
i,k

dik · τik

θij + τik ≤ cijk, ∀i = 1, . . . , N, ∀j = 1, . . . , S0, ∀k = 1, . . . , Si,∑
j

θij ≥ 0, ∀i = 1, . . . , N, ∀j = 1, . . . , S0, (25)

where there is a variable τik for each defining measure i and each xik ∈ supp(Pi) and a variable θij
for each defining measure i and each xj ∈ S.

These LPs not only will be used for computations in Section 4, but also can be used to develop
the necessary theory for Theorem 1.

Lemma 1 Let P1, . . . , PN be discrete probability measures with a barycenter P̄ given by a solution (y∗, z∗)
to (23). Then

i) For any xj ∈ supp(P̄ ) (i.e. z∗j > 0) combined with any choice of xiki ∈ supp(Pi) for i = 1, . . . , N

such that y∗ijki > 0 for each i, one then has xj = 1
N

∑
i xiki .
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ii) For any xj ∈ supp(P̄ ) and i = 1, . . . , N , one has
∣∣ {y∗ijk > 0| xik ∈ supp(Pi)}

∣∣ = 1.

Proof i) Suppose the statement in i) is false. Then there exists an xj0 ∈ supp(P̄ ) and there are points
xiki ∈ supp(Pi) for i = 1, . . . , N such that y∗ij0ki > 0 for each i and xj0 6=

1
N

∑
i xiki .

Let α = mini y
∗
ij0ki

> 0 and let xj∗ = 1
N

∑
i xiki . Then define (ŷ, ẑ) such that ŷij0ki = y∗ij0ki − α

for each i, ŷij∗ki = y∗ij∗ki + α for each i, ẑj0 = z∗j0 − α, ẑj∗ = z∗j∗ + α, and ẑj = z∗j and ŷijk = y∗ijk for
all other variables.

It is easily checked that (ŷ, ẑ) is also a feasible solution to (23). Further

c(ŷ) = c(y∗) + α

(∑
i

cij∗ki −
∑
i

cij0ki

)
< c(y∗), (26)

where the strict inequality follows since xj0 6=
1
N

∑
i xiki = xj∗ and therefore∑

i

cij0ki =
∑
i

|xj0 − xiki |
2 >

∑
i

|xj∗ − xiki |
2 =

∑
i

cij∗ki , (27)

which is a contradiction with P̄ being a barycenter.
ii) If xj ∈ supp(P̄ ), then z∗j > 0 and therefore

∣∣ {y∗ijk > 0| xik ∈ supp(Pi)}
∣∣ ≥ 1 for all i is an

immediate consequence of the contraints in (23). Suppose rhe statement is false, then there is some
xj ∈ supp(P̄ ) such that, without loss of generality,

∣∣{y∗1jk > 0| x1k ∈ supp(P1)}
∣∣ ≥ 2. Then we can

choose x1k′ 6= x1k′′ such that y∗1jk′ , y
∗
1jk′′ > 0 and further can choose xiki for i = 2, . . . , N such that

yijki > 0 for each i. Then this implies, by part (i), that

1

N

(
x1k′ +

N∑
i=2

xiki
)

= xj =
1

N

(
x1k′′ +

N∑
i=2

xiki
)
, (28)

which in turn immediately would imply x1k′ = x1k′′ ; a contradiction with our choice of x1k′ 6= x1k′′ .
Hence

∣∣ {y∗1jk > 0| xik ∈ supp(P1)}
∣∣ = 1. ut

Lemma 1 already implies that there exists a transport from any barycenter P̄ to each Pi. However,
to prove Theorem 1 we need the concept of strict complimentary slackness. If you have a primal LP
{min cTx| Ax = b, x ≥ 0} which is bounded and feasible and its dual LP {max bTy| ATy ≤ c}, then
complimentary slackness states that the tuple (x∗,y∗) gives optimizers for both of these problems
if and only if x∗i (ci − ai

Ty∗) = 0 for all i, where ai is the i-th column of A. This statement can be
strengthened in form of the strict complimentary slackness condition [29]:

Proposition 2 Given a primal LP {min cTx| Ax = b, x ≥ 0} and the corresponding dual LP

{max bTy| ATy ≤ c}, both bounded and feasible, there exists a tuple of optimal solutions (x∗,y∗), to the

primal and dual respectively, such that for all i

x∗i (ci − ai
Ty∗) = 0, x∗i + (ci − ai

Ty∗) > 0. (29)

With these tools, we are now ready to prove Theorem 1.

Proof (Proof of Theorem 1) Let (y∗, z∗, τ∗, θ∗) be a solution to (23) and (25), as guaranteed by Propo-
sition 2. Let P̄ be a barycenter corresponding to the solution (ŷ, ẑ). For each xj ∈ supp(P̄ ) let
xikj ∈ supp(Pi) be the unique location such that ŷijkj > 0 as guaranteed by Lemma 1 part ii). Now
for each i define

ψi(x) = max
xik∈supp(Pi)

〈x, xik〉 −
1

2
|xik|2 +

1

2
τ∗ik. (30)

Using Lemma 1 part i), it is easy to see that for proving part i)-iii) of Theorem 1 it suffices to show
that for each ψi we have that ∇ψi(xj) = xikj for each xj ∈ supp(P̄ ).

By definition, each ψi is convex (as the maximum over a set of linear functions) and ψi(x) is finite
for all x ∈ Rd. Further

|x|2 − 2ψi(x) = |x|2 − 2 max
xik∈supp(Pi)

〈x, xik〉 −
1

2
|xik|2 +

1

2
τ∗ik

= min
xik∈supp(Pi)

|x|2 − 2〈x, xik〉+ |xik|2 − τ∗ik

= min
xik∈supp(Pi)

|x− xik|2 − τ∗ik, (31)
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and hence
|xj |2 − 2ψi(xj) = min

xik∈supp(Pi)
|xj − xik|2 − τ∗ik = min

xik∈supp(Pi)
cijk − τ∗ik. (32)

By complimentary slackness, we have that since ŷijkj 6= 0, that cijkj − τ
∗
ikj
− θ∗ij = 0. Therefore by

strict complimentary slackness we get y∗ijkj 6= 0 and hence by Lemma 1 part ii) we get y∗ijk = 0 for all

k 6= kj . This implies by strict complimentary slackness that for all k 6= kj we obtain cijk−τ∗ik−θ
∗
ij 6= 0

and therefore, by feasibility, that cijk−τ∗ik < θ∗ij . Factoring in that cijkj −τ
∗
ikj

= θ∗ij by complimentary

slackness we have that |xj |2−2ψi(xj) = θ∗ij . Further, since the function corresponding to kj is the only
continuous function in the minimization that achieves this minimum at xj (by the above argument),
we obtain that for x in some neighborhood of xj

|x|2 − 2ψi(x) = |x− xikj |
2 − τ∗ikj ,

⇒ ψi(x) = 〈x, xikj 〉 −
1

2
|xikj |

2 +
1

2
τ∗ikj ,

⇒ ∇ψi(x) = xikj , (33)

(34)

so that ∇ψi(xj) = xikj . Further, note that complimentary slackness implies
∑
i θ
∗
ij = 0 for each

xj ∈ supp(P̄ ) and hence

0 =
∑
i

θ∗ij =
∑
i

|xj |2 − 2ψi(xj) (35)

⇒ 1

N

∑
i

ψi(xj) =
|xj |2

2
. (36)

This shows part iv) of Theorem 1 and thus completes the proof. ut

3.3 Sparsity and Transportation Schemes

As before, let P1, . . . , PN be discrete probability measures, with point masses dik for xik ∈ supp(Pi)
defined as in the previous subsection. Then for any set S ⊆ S × supp(P1) × . . . × supp(PN ) we fix
an arbitary order on S, i.e. S = {s1, s2, . . . , sm} where each sh = (qh0, qh1, . . . , qhN ), and define a
location-fixed transportation scheme as the set

T (S) := {w ∈ R|S|≥0|
m∑
h=1,

qhi=xik

wh = dik, ∀i = 1, . . . , N, ∀k = 1, . . . , Si}. (37)

Informally, the coefficients of w ∈ T (S) correspond to an amount of transported mass from a given
location in S to combinations of support points in the Pi, where each of these support points receives
the correct total amount. Given a w, we define its corresponding discrete probability measure

P (w,S) :=
m∑
h=1

whδqh0 , (38)

and the cost of this pair (w,S)

c(w,S) :=
m∑
h=1

chwh, ch =
N∑
i=1

|qh0 − qhi|2. (39)

In the following, let supp(w) denote the set of strictly positive entries of w. Informally, we now give a
translation between N-star transports, the feasible region of (21), and location-fixed transportation
schemes.

Lemma 2 Given S ⊆ S × supp(P1)× . . .× supp(PN ) such that T (S) 6= ∅:

i) For each w ∈ T (S), P (w,S) is a probability measure with |supp(P (w,S))| ≤ |supp(w)|.
ii) For each w ∈ T (S), there exists an N-star transport y between P (w,S) and P1, . . . , PN such that

c(w,S) = c(y).

iii) For every discrete probability measure P supported on S and N-star transport y between P and

P1, . . . , PN there exists a pair (w,S′) such that: w ∈ T (S′), P = P (w,S′), and c(w,S′) = c(y).
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Proof i) |supp(P (w,S))| ≤ |supp(w)| is clear by definition (note that strictness of this inequality
can occur if there exist non-zero wh, wh′ for which qh0 = qh′0). To see that P (w,S) is a probability
measure it suffices to show that

∑m
h=1 wh = 1. This holds since for any i = 1, . . . , N we have

m∑
h=1

wh =

Si∑
k=1

∑
h,

qhi=xik

wh =

Si∑
k=1

dik = 1, (40)

since the Pi are probability measures.

ii) For each i = 1, . . . , N , j = 1, . . . , |S|, k = 1, . . . , Si define

yijk =
m∑
h=1

qh0=xj
qhi=xik

wh. (41)

Clearly yijk ≥ 0 and it is easily checked that
∑
j yijk = dik for any i and k and that

∑
k yijk is the

mass at location xj ∈ S in the measure P (w,S).

Hence y is an N-star transport between P (w,S) and P1, . . . , PN . Further we have

c(y) =
∑
i,j,k

|xj − xik|2 · yijk =
∑
i,j,k

|xj − xik|2 ·
m∑
h=1

qh0=xj
qhi=xik

wh =
N∑
i=1

∑
j,k

m∑
h=1

qh0=xj
qhi=xik

|qh0 − qhi|2 · wh

=
N∑
i=1

m∑
h=1

|qh0 − qhi|2 · wh =
m∑
h=1

chwh = c(w,S). (42)

iii) We note first that all of our arguments up to now not only hold for Pi and P being proba-
bility measures, but for any measures with total mass 0 ≤ r ≤ 1 that is the same for all Pi and P .
Using this fact we prove this part of the lemma for these types of measures by induction on |supp(y)|.

For |supp(y)| = 0, we clearly have that any S paired with w = 0 satifies the given conditions.
So suppose |supp(y)| > 0, then let µ = minyijk>0 yijk and let (i∗, j∗, k∗) be a triplet such that
yi∗j∗k∗ = arg minyijk>0 yijk. This implies that dj∗ ≥ µ and so for each i = 1, . . . , N there exists a
ki such that yij∗ki ≥ µ. In particular one can choose ki∗ = k∗ here. We then have a vector y′ with
y′ij∗ki = yij∗ki − µ and y′ijk = yijk otherwise. Then y′ is an N-star transport for P ′ to P ′1, . . . , P

′
N

where P ′ is obtained from P by decreasing the mass on xj∗ by µ and each P ′i is obtained from Pi by
decreasing the mass on xiki by µ. Then |supp(y′)| < |supp(y)| since y′i∗j∗k∗ = 0.

Therefore, by induction hypothesis, there exists a pair (w,S′) such that w ∈ T (S′), P ′ = P (w,S′),
and c(w,S′) = c(y′) for P ′1, . . . , P

′
N . Let now |S′| = m and let sm+1 = (xj∗ , x1k1 , . . . , xiki , . . . , xNkN )

and define S = S′ ∪ {sm+1}. Then (wT , µ) ∈ T (S) and P = P ((wT , µ),S) for P1, . . . , PN . Further we
have that

c(y) = c(y′) +
N∑
i=1

cij∗kiµ = c(y′) +
N∑
i=1

|xj∗ − xiki |
2µ

= c(wT ,S′) + cm+1µ = c((w, µ),S), (43)

which completes the proof by induction. ut

We now show the existence of a transportation scheme w∗ for which |supp(w∗)| is provably small.

Lemma 3 Given a location-fixed transportation scheme T (S) 6= ∅ for discrete probability measures

P1, . . . , PN , there exists w∗ ∈ arg minw∈T (S) c(w,S), such that

|supp(w∗)| ≤
N∑
i=1

Si −N + 1. (44)
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Proof We have that minw∈T (S) c(w,S) is equivalent to the following LP by definition:

min
w

c(w,S)∑
h,

qhi=xik

wh = dik, ∀i = 1, . . . , N, ∀k = 1, . . . , Si,

wh ≥ 0, ∀h = 1, . . . ,m. (45)

Thus there is a basic solution to this problem w∗ ∈ T (S) such that |supp(w∗)| is bounded above by
the rank of the matrix of the equality constraints in the first line.

Since there are
∑
i Si =

∑
i |supp(Pi)| of these equality constraints by definition, it suffices to

show that at least N − 1 of these constraints are redundant. Let aik denote the row corresponding
to the equation for some i and 1 ≤ k ≤ Si. Note that for a fixed i,

∑
k aik yields a vector of all ones,

as wh appears in exactly one equation for each fixed i. Hence it is immediate that the row aiSi
is

redundant for all i = 2, . . . , N since

aiSi
= 1−

Si−1∑
k=1

aik =

S1∑
k=1

a1k −
Si−1∑
k=1

aik, (46)

where 1 is the row vector of all-ones. Hence we get N − 1 redundant rows. ut

We are now ready to prove Theorem 2.

Proof (of Theorem 2) Since all barycenters are a solution to (23), there exists an N-star transport y′

from some barycenter P̄ ′ to P1, . . . , PN and c(y′) =
∑N
i=1W2(P̄ ′, Pi)

2. By Lemma 2 part iii), there
is some location-fixed transportation scheme T (S) for P1, . . . , PN and some w′ ∈ T (S) such that
P̄ ′ = P (w′,S) and c(y′) = c(w′,S). By Lemma 3 there is some w∗ ∈ arg minw∈T (S) c(w,S) such that

|supp(w∗)| ≤
∑N
i=1 Si −N + 1. Now let P̄ = P (w∗,S), then by Lemma 2

|supp(P̄ )| ≤ |supp(w∗)| ≤
N∑
i=1

Si −N + 1. (47)

Further, by Lemma 2 part ii), there is an N-star transport y between P̄ and P1, . . . , PN such that

N∑
i=1

W2(P̄ , Pi)
2 ≤ c(y) = c(w∗,S) ≤ c(w′,S) = c(y′) =

N∑
i=1

W2(P̄ ′, Pi)
2 ≤

N∑
i=1

W2(P̄ , Pi)
2, (48)

where the last inequality follows since P̄ ′ is already a barycenter. Hence this chain of inequalities
collapses into a chain of equalities and we see that P̄ is the desired barycenter. ut

Finally, let us exhibit how to refine our results for discrete probability measures arising that are
supported on an L1× . . .×Ld-grid in Rd that is uniform in all directions.

Proof (of Corollary 1)

An L1× . . .×Ld-grid in Rd for e0 ∈ Rd and linearly independent vectors e1, . . . , ed ∈ Rd is the set

{v ∈ Rd : v = e0 +
d∑
s=1

ls
Ls−1es : 0 ≤ ls ≤ Ls−1, ls ∈ Z}. Since by Proposition 1 we have supp(P̄ ) ⊆ S,

for each xj ∈ supp(P̄ ) there exist xi = e0 +
d∑
s=1

αsi
Ls−1es with 0 ≤ αsi ≤ Ls − 1 for all i ≤ N such that

xj =
1

N

N∑
i=1

xi =
1

N

N∑
i=1

e0 +
1

N

N∑
i=1

d∑
s=1

αsi
Ls − 1

es = e0 +
N∑
i=1

d∑
s=1

αsi
N · (Ls − 1)

es. (49)

This tells us that supp(P̄ ) lies on the (N(L1−1)+1)× . . .×(N(Ld−1)+1)-grid for e0 and e1, . . . , ed.
Since supp(Pi) lies on an L1× . . .×Ld-grid, the absolute bound on |supp(P̄ )| follows immediately

from Theorem 2. Since P̄ is supported on a (N(L1 − 1) + 1)× . . .× (N(Ld − 1) + 1)-grid, we observe
a relative density of less than

N(
d∏
i=1

Li − 1) + 1

d∏
i=1

(N(Li − 1) + 1)

≤
N

d∏
i=1

Li

Nd
d∏
i=1

(Li − 1)

=
1

Nd−1

d∏
i=1

Li
(Li − 1)

, (50)

in this grid, which proves the claim. ut
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4 Computations

In this section we apply the computational and theoretical results developed in this paper to a
hypothetical transportation problem for distributing a fixed set of goods, each month, to 9 Cali-
fornia cities where the demand distribution changes month to month. A Wasserstein barycenter,
in this case, represents an optimal distribution of inventory facilities which minimize squared dis-
tance/transportation costs totaled over multiple months. Although this data is artificially generated
for purposes of exposition, the data is based on observed average high temperatures per month
[28]. All the source code used in this section is publicly available through the on-line repository
https://github.com/EthanAnderes/WassersteinBarycenterCode

The probability measures used in this example are defined on R2 and are denoted Pdec, Pjan, Pfeb,
Pmar, Pjun, Pjul, Paug and Psep to correspond with 8 months of the year (scaling up to 12 months, while
not intractable, imposes unnecessary computation burdens for computational reproducibility). The
support of each distribution is given by the longitude-latitude coordinates of the following 9 California
cities: Bakersfield, Eureka, Fresno, Los Angeles, Sacramento, San Bernardino, San Francisco, San Jose
and South Lake Tahoe. The mass distribution assigned to each Pdec, . . . , Psep is computed in two steps.
The first step calculates

(population in city C)× (average high temp for month M - 72o)2

for each city C and each month M . The second step simply normalizes these values within each
month to obtain 8 probability distributions defined over the same 9 California cities. Figure 1 shows
Pfeb, Pmar, Pjun and Pjul.

Let P̄ denote an optimal Wasserstein barycenter as defined by Equation (1). Proposition 1 and
Theorem 2 both give bounds on the support of P̄ uniformly over rearrangement of the mass assigned
to each support point in Pdec, . . . , Psep. Proposition 1 gives an upper bound for supp(P̄ ) in the form of
a finite covering set which guarantees that finite dimensional linear programing can yield all possible
optimal P̄ (see (23)). Conversely, Theorem 2 gives an upper bound for the magnitude |supp(P̄ )| which
is additionally uniform over rearrangement of the locations of the support points in Pdec, . . . , Psep.

In the implementation presented here we use the modeling package JuMP [15] which supports
the open-source COIN-OR solver Clp for linear programming within the language Julia [3]. The set
S, defined in (4), covers the support of P̄ and is shown in the rightmost image of Figure 2. A typical
stars and bars combinatorial calculation yields |S| = (9+8−1

9−1 ) = (168 ) = 12870. The corresponding LP
problem for P̄ therefore has 939510 variables with 103032 linear constraints. On a 2.3 GHz Intel
Core i7 MacBook Pro a solution was reached after 505 seconds (without using any pre-optimization
step). The solution is shown in the leftmost image of Figure 2. Notice that Theorem 2 establishes
an upper bound of 65 = 9 · 8 − 8 + 1 for |supp(P̄ )|. The LP solution yields |supp(P̄ )| = 63. Not
only does this give good agreement with the sparsity bound from Theorem 2 but also illustrates that
Wasserstein barycenters are very sparse with only 0.5% of the possible support points in S getting
assigned non-zero mass.

In Figure 3 we illustrate Theorem 1 which guarantees the existence of pairwise optimal trans-
port maps from P̄ to each Pdec, . . . , Psep which do not split mass. The existence of these discrete
non-mass-splitting optimal transports is a special property of P̄ . Indeed, unless special mass balance
conditions hold, there will not exist any transport map (optimal or not) between two discrete prob-
ability measures. The implication for this example is that all the inventory stored at a barycenter
support point will be optimally shipped to exactly one city each month. Moreover, since the trans-
portation displacements must satisfy Theorem 1 iii) each city is at the exact center of its 8 monthly
transportation plans.
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2. M. Beiglböck, P. Henry-Labordere, and F. Penkner. Model-independent bounds for option prices – a mass

transport approach. Finance and Stochastics, 17 (3):477–501, 2013.
3. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing.

CoRR, abs/1411.1607, 2014.
4. J. Bigot and T. Klein. Consistent estimation of a population barycenter in the Wasserstein space. eprint

arXiv:1212.2562, 2012.
5. E. Boissard, T. Le Gouic, and J.-M. Loubes. Distribution’s template estimate with Wasserstein metrics.

Bernoulli, 21 (2):740–759, 2015.
6. G. Buttazzo, L. De Pascale, and P. Gori-Giorgi. Optimal-transport formulation of electronic density-functional

theory. Phys. Rev. A, 85:062502, 2012.
7. G. Carlier and I. Ekeland. Matching for teams. Econom. Theory, 42 (2):397–418, 2010.
8. G. Carlier, A. Oberman, and E. Oudet. Numerical methods for matching for teams and Wasserstein barycenters.

eprint arXiv:1411.3602, 2014.
9. P-A. Chiaporri, R. McCann, and L. Nesheim. Hedonic price equilibiria, stable matching and optimal transport;

equivalence, topology and uniqueness. Econom. Theory, 42 (2):317–354, 2010.
10. C. Cotar, G. Friesecke, and C. Klüppelberg. Density functional theory and optimal transportation with coulomb

cost. Communications on Pure and Applied Mathematics, 66 (4):548–599, 2013.
11. M. Cuturi and A. Doucet. Fast Computation of Wasserstein Barycenters. In Tony Jebara and Eric P. Xing,

editors, Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 685–693.
JMLR Workshop and Conference Proceedings, 2014.

12. A. Galichon, P. Henry-Labordere, and N. Touzi. A stochastic control approach to non-arbitrage bounds given
marginals, with an application to lookback options. Ann. Appl. Probab., 24 (1):312–336, 2014.

13. A. Jain, Y. Zhong, and M.-P. Dubuisson-Jolly. Deformable template models: A review. Signal Processing, 71
(2):109–129, 1998.

14. H. Kellerer. Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete, 67:399–432, 1984.
15. M. Lubin and I. Dunning. Computing in operations research using julia. INFORMS Journal on Computing,

27(2):238–248, 2015.
16. Y. Mileyko, S. Mukherjee, and J. Harer. Probability measures on the space of persistence diagrams. Inverse

Problems, 27(12), 2011.
17. E. Munch, K. Turner, P. Bendich, S. Mukherjee, J. Mattingly, and J. Harer. Probabilistic frechet means for

time varying persistence diagrams. Electronic Journal of Statistics, 9:1173–1204, 2015.
18. B. Pass. On the local structure of optimal measures in the multi-marginal optimal transportation problem.

Calculus of Variations and Partial Differential Equations, 43 (3-4):529–536, 2011.
19. B. Pass. Uniqueness and Monge Solutions in the Multimarginal Optimal Transportation Problem. SIAM J.

Math. Anal., 43 (6):2758–2775, 2011.
20. B. Pass. Optimal transportation with infinitely many marginals. Journal of Functional Analysis, 264 (4):947–

963, 2013.
21. B. Pass. Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of

solutions. Discrete and Continuous Dynamical Systems A, 34 (4):1623–1639, 2014.
22. J. Rabin, G. Peyre, J. Delon, and M. Bernot. Wasserstein Barycenter and its Application to Texture Mixing.

Scale Space and Variatonal Methods in Computer Vision. Lecture Notes in Computer Science, 6667:435–446,
2012.

23. S. Rachev. The Monge-Kantorovich mass transference problem and its stochastic applications. Theory of Prob.
Appl., 29:647–676, 1984.
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