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Abstract In this article we consider combinatorial markets with valuations only for
singletons and pairs of buy/sell-orders for swapping two items in equal quantity. We
provide an algorithm that permits polynomial time market-clearing and -pricing. The
results are presented in the context of our main application: the futures opening auc-
tion problem. Futures contracts are an important tool to mitigate market risk and
counterparty credit risk. In futures markets these contracts can be traded with vary-
ing expiration dates and underlyings. A common hedging strategy is to roll positions
forward into the next expiration date, however this strategy comes with significant
operational risk. To address this risk, exchanges started to offer so-called futures con-
tract combinations, which allow the traders for swapping two futures contracts with
different expiration dates or for swapping two futures contracts with different under-
lyings. In theory, the price is in both cases the difference of the two involved futures
contracts. However, in particular in the opening auctions price inefficiencies often
occur due to suboptimal clearing, leading to potential arbitrage opportunities. We
present a minimum cost flow formulation of the futures opening auction problem that
guarantees consistent prices. The core ideas are to model orders as arcs in a network,
to enforce the equilibrium conditions with the help of two hierarchical objectives,
and to combine these objectives into a single weighted objective while preserving the
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price information of dual optimal solutions. The resulting optimization problem can
be solved in polynomial time and computational tests establish an empirical perfor-
mance suitable for production environments.

Keywords Equilibrium problems · Hierarchical objectives · Linear programming ·
Network flows · Combinatorial auctions · Futures exchanges

Mathematics Subject Classification 90C33 · 90C29 · 90C05 · 90C35 · 91B26

1 Introduction

Futures contracts are some of the most liquid derivatives and, among other purposes,
are an integral component of many hedging and risk mitigation strategies. For exam-
ple, airlines regularly use futures to hedge against volatile crude prices and lock-in
the current price level. These hedging strategies usually involve a rollover of the con-
tracts from one expiration date (also called maturity) into the next when approaching
the expiration date of the first. However, rolling the contracts forwards is not with-
out risk, the so-called rollover risk. This risk consists of basically two components.
The first component is the time spread risk (also called calendar spread risk), which
is affected by whether the price difference between the maturing contract and the
replacement contract with the extended expiration date matches the theoretical fair
value. The other component, the slippage, is of an operational risk type. It is the risk
of loss arising from selling off the old contracts and buying the new contracts being
not perfectly simultaneous allowing for adversarial intermediate price moves or in an
opening auction only one of the two orders being executed; we refer the interested
reader e.g., to (Hull 2006; Cooper 2015) for a discussion. While the time spread risk
is market inherent and hence exchange unspecific, slippage can be mitigated by the
exchange by offering futures swap products, so-called combinations and various fu-
tures exchanges, such as e.g., EUREX (European Exchange AG) offer such products.
However, offering such products improves market transparency and liquidity only if
those products are consistently priced and while this is ensured by arbitrageurs intra-
day, this is not necessarily the case for the opening auction when the market opens.
In fact, it has been observed that in the opening auctions in some cases prices across
products are inconsistent, creating potential arbitrage opportunities.

We present an efficient optimization model that guarantees consistent prices at the
end of the opening auction while maximizing economic surplus. We further demon-
strate that the model can be solved extremely fast in practice for large amounts of
orders and contract types making it a prime candidate for production environments.
The presented model is motivated by the product offering of EUREX, however it
applies readily to various other futures exchanges.

1.1 Related work

The futures opening auction is a combinatorial auction and there exists a large body
of work studying this type of auctions; we refer the interested reader to the very

http://www.eurexchange.com
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nice surveys of de Vries and Vohra (2003) and Blumrosen and Nisan (2007) for an
introduction. It is well-known that various combinatorial auctions can be solved in
polynomial time provided, e.g., if the constraint matrix is totally unimodular and the
right-hand side of the clearing program is integral. As we will see later, our setup
admits such an efficient formulation via a network flow formulation.

Closely related to our work is the work of Winter et al (2011), which is based on
the master’s thesis of M. Rudel. The authors developed a pure linear integer program
to solve the problem for at most three futures contract types. The approach heavily
relies on preprocessing techniques to reduce the problem size for the three contracts
case and while the underlying formulation is based on a network flow problem with
orders modeled as arcs this structure is not exploited. In fact, the employed model is
heavily driven by price conditions that involve binary variables. These binary vari-
ables render the underlying structure inaccessible and the properties of equilibrium
conditions cannot be exploited. Our approach is highly superior as we naturally ob-
serve market equilibria conditions from the dual linear program as well as ensure
volume maximization by appropriate objective function regularization. We provide a
comparison of both approaches in Section 5.2.

There is also a significant amount of literature on so-called linear prices, which
are also referred to as uniform prices. In the absence of integer variables the dual
variables of the clearing conditions provide us with linear prices if we maximize the
economic surplus. In previous work (Martin, Müller, and Pokutta 2014) we used this
property to ensure the existence of linear prices in European day-ahead electricity
auctions. In this work, however, we exploit this property in order to get a computa-
tionally advantageous model formulation.

1.2 Contribution

We provide a natural formulation for the real-world problem of clearing, pricing, and
maximizing the execution volume of a certain combinatorial exchange. We show that
one can compute a solution to that problem by solving a single min cost flow prob-
lem. More precisely, we decompose the problem into a primal min cost flow problem
with a weighted objective and a dual pricing problem that is closely related to the pri-
mal one. An optimal extreme point of the weighted problem is a welfare maximizing
and volume maximizing clearing solution. Moreover we show that we can scale and
round a dual optimal extreme point of the weighted problem to obtain the correspond-
ing competitive equilibrium prices. In other words, the weighted problem is chosen
in such a way that a primal optimal extreme point maximizes the executed volume
while the desired equilibrium conditions are satisfied automatically: completely sat-
isfied participants, positive bid-ask spreads, uncrossed order books, and the absence
of combinatorial matching cycles.

This new formulation has three major advantages. First, the model is solvable
in polynomial time with a standard solver and the numerical results indicate that the
computing times are sufficiently fast for the use in production environments. In partic-
ular, the algorithm is significantly faster (two orders of magnitude) than the approach
presented in Winter et al (2011). Second, the model is very flexible: in contrast to
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previous models it is not restricted to a limited number of different underlyings (e.g.,
one) or expiration dates (e.g., three). It is capable to handle all kinds of singleton and
swap orders simultaneously, regardless of their underlyings or expirations dates. In
particular, it can handle so-called time spread combinations and inter-product spread
combinations in one single auction (see Def. 3). Third, the obtained prices are of high
quality, that is, the prices for contracts are consistent with the prices for combinations.

Another important advantage of our integrated model is that the total economic
surplus of all participants is maximized, i.e., it is not possible to find a solution with
a higher economic surplus. In particular, our algorithm is superior to the current al-
gorithm at EUREX which does not guarantee maximum economic surplus. In fact,
the currently employed algorithm first determines prices for each contract separately,
without taking combination orders into account. At that time the prices can therefore
be inconsistent with respect to the crossed order books of combination orders. Never-
theless, the combination orders get triggered according to the prices of the underlying
contracts and thus the market is not necessarily in a maximized surplus situation.

2 Electronic futures exchanges

Futures contracts are standardized financial products that are traded at futures ex-
changes. These exchanges provide electronic interfaces such that any trader around
the world can advise his or her broker to route a buy or sell order directly to a fu-
tures exchange. The exchange collects those orders and stores them in order books
[see Gould et al (2013) for a survey on limit order books]. There is one order book for
each financial product. During the trading-hours (intraday), the exchange will execute
all incoming orders that can be matched and immediately determine and publish the
market clearing price at which these orders where executed. However, at the begin-
ning of the trading day, the order books are not empty. On the one hand, there are the
non-executed orders of the previous day, on the other hand, some participants already
submit their orders before the trading day has started. For that reason, the exchange
performs a so-called opening auction immediately before the trading day begins. In
practice, the exchange determines a separate market clearing price for each finan-
cial product and only matches orders within an order book; dependencies between
books are ignored. Our new approach performs a single computation that takes all
order books into account and correctly models the relationships between all financial
products.

The available financial products are futures contracts as well as futures contract
combinations. We briefly recall the formal definition of these financial products. More
detailed information on futures can be found in Chapter 2 in Hull (2006).

Definition 1 A futures contract is an agreement between two parties to

1. Buy or sell an asset (the underlying)
2. At an agreed-upon time in the future (the expiration date)
3. For an agreed-upon price (the current market clearing price of the futures con-

tract, also called futures price).
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Each (underlying, expiration date)-tuple is a financial product of the futures con-
tract type, in particular it is an exchange tradable good with its own order book. In the
following, for brevity we will also refer to futures contracts simply as contracts.

Example 1 On January 4 a trader in Frankfurt wants to buy 100 troy ounces gold with
delivery in June of the same year. A single gold futures contract at EUREX has the
value of 100 troy ounces. The trading day starts at 8:00 in the morning. At 7:30, he
submits a buy order via his online broker to the futures exchange. The order contains
the information that he wants to buy one gold futures contract, with delivery in June
and that he is willing to pay at most 1069.40 USD. On the same day, another trader
in Darmstadt wants to sell a gold futures contract with delivery in June of the same
year. At 7:45 she submits her sell order via her online broker to the exchange. The
lowest price she is willing to accept amounts to 1069.20 USD. At the opening auction
at 8:00 the order book only contains these two orders. The exchange executes both
orders at the market clearing price of 1069.30 USD and publishes that price.

The previous example illustrates that during an auction two contracts are equal
if the underlying and the expiration date coincide. As long as the auction is not ter-
minated the contracts are not yet binding and the final price is not yet agreed-upon.
In the moment when the auction terminates the contracts of the executed orders be-
come binding and the agreed-upon price for the underlying at the expiration date is
the market clearing price that was determined by the exchange.

Beside plain futures contracts, the participants can also trade contract combina-
tions:

Definition 2 A futures contract combination (short: combination) allows for swap-
ping one futures contract for another futures contract.

There are two different kinds of futures contract combinations:

Definition 3 A time spread combination allows for swapping two futures contracts
with the same underlying but with different expiration dates. An inter-product spread
combination allows for swapping two futures contracts with different underlyings but
not necessarily different expiration dates.

Each 2-element set of (underlying, expiration date)-tuples is a financial product
of the contract combination type, in particular it is an exchange tradable good with
its own order book. It is a question of definition, which contract will be bought and
which one will be sold if someone buys (or sells) a combination.

Our opening auction model follows the one that is currently employed by EUREX
and many other exchanges follow a similar setup, so that our setup can be readily
applied. In the opening auction there are two different order types: limit orders and
market orders. If a participant submits a limit order, then the exchange receives the
following information: the ID of the financial product, whether it should be bought or
sold, the maximum quantity to be bought or sold, and the limit price. The limit price
specifies the highest price per unit a buyer is willing to pay or the lowest price per
unit a seller is willing to accept. If a participant submits a market order, the exchange
only receives the ID of the financial product, whether it should be bought or sold, and

http://www.sec.gov/answers/limit.htm
http://www.sec.gov/answers/mktord.htm
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the maximum quantity. Market orders have a higher priority than limit orders and the
trader is accepting all prices. In an opening auction a market order can be treated as a
limit order with the highest feasible limit price (defined by the exchange) if it is a buy
order, or the lowest feasible limit price if it is a sell order; therefore, we do not need
to model them explicitly and in the following all orders are of limit type.

A partial execution of limit orders or market orders is only feasible if the limit
price coincides with the market clearing price. Fractional partial executions are in-
feasible, as contracts are indivisible; therefore, a partial execution must trade an inte-
gral number of contracts. For the sake of completeness, we want to mention that the
fill-or-kill order type, which must either be executed entirely or not executed at all, is
not available in the opening auction.

3 Modeling orders as directed arcs

In the opening auction, the participants express their preferences by submitting limit
orders to the exchange. In order to model these limit orders we define several sets,
input parameters, and variables.

Let T be the set of the different contracts the participants can bid for. Hereinafter
T is also referred to as the contract set. Remember that a contract is characterized by
its underlying asset and its expiration date. Two contracts are equal if they have the
same underlying asset and the same expiration date. Let the contract set be a totally
ordered set sorted in ascending order, where the first sort criterion is the underlying
asset ID and the second criterion is the expiration date.

The main idea of the model is to treat the contracts as nodes in a graph and the
orders as directed arcs connecting the nodes. To be able to model all orders as arcs, we
introduce a super node ◦ that represents the source or sink of orders that only involve
a single futures contract. The super node can be interpreted as cash. Let T ′ = T ∪{◦}
be the extended node set (contract set) so that ◦ becomes the new maximum. Then all
orders can be modeled as arcs in T ′×T ′.

Definition 4 A directed arc (r,s) ∈ T ′ × T ′ models an order for demanding r and
offering s. The case r = s is not allowed. The arc represents a buy order if r < s.
Otherwise, it represents a sell order. Per definition r < ◦ for all r ∈ T .

Examples for contracts r 6= s ∈ T :

Arc Buy/Sell Product Meaning

(r,◦) buy contract r demand contract r

(◦,s) sell contract s offer contract s

(r,s) with r < s buy combination {r,s} demand contract r and offer contract s

(s,r) with r < s sell combination {r,s} demand contract s and offer contract r.

Note that the arcs (r,s) and (s,r) refer to the same financial product: the futures
contract combination {r,s}.
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Remark 1 The super node ◦ is only used to visualize orders in a graph. We will omit it
in the LP representation of the network flow model, as the flow conservation equation
of the super node is a redundant equation and is a source of degeneracy in the dual
LP.

The set of limit orders (and market orders) is denoted by I and hereinafter also
referred to as the order book. To model an order i ∈ I we use the parameters δ i,
pi,t , and Qi,t with t ∈ T . The first parameter δ i ∈ N+ models the demanded/offered
quantity. The second parameter pi,t is the t-th entry of a price vector pi ∈ ZT that
represents the limit price of order i. And Qi,t is the t-th entry of the characteristic
vector Qi ∈ {−1,0,1}T of the arc associated with order i. If (r,s) is the arc associated
with i and t = min{r,s} is the smallest index, then the price vector pi vanishes at the
entries T \ {t} and the entry pi,t is the limit price of order i. The execution state of
order i is represented by a non-negative integer variable δi.

In other words, let (r,s) be the arc associated with order i ∈ I, then the input
parameters are filled as follows: for all t ∈ T

Qi,t ∈ {−1,0,1} Qi,t =


+1 if t = r (demand contract r)
−1 if t = s (offer contract s)
0 otherwise

pi,t ∈ Z pi,t =

{
limit price of order i if t = min{r,s}
0 otherwise

δ i ∈ N+ δ i = maximal demanded/offered quantity of order i.

And the solution variables are interpreted as follows:

δi ∈ [0,δ i]∩Z δi =


δ i i is completely executed
otherwise i is partially executed
0 i is not executed

πt ∈ Z πt = market clearing price per unit for contract t ∈ T .

Note that the market clearing price for combinations is given by the difference of the
prices of the two underlying contracts: The price of combination {r,s} with r < s is
given by πr−πs. Therefore, it is not necessary to model them explicitly. The market
clearing prices determine the amount of money a participant has to pay or receive for
the execution of his or her order. For an order i the net amount of money to be paid or
received is given by

∑
t∈T

πtQi,tδi. (1)

If this amount is positive one has to pay money, otherwise one will receive money.
Similarly, we can determine the net amount a participant is willing to pay for the
execution of his or her order:

∑
t∈T

pi,tQi,tδi. (2)
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If this amount is negative the participant wants to receive money for the execution of
his or her order. The difference of the two terms is the surplus:

∑
t∈T

pi,tQi,tδi−∑
t∈T

πtQi,tδi. (3)

The participant incurs a loss if this term is negative.

Example 2 Assume that there are three different contracts T = {1,2,3}. An order
i ∈ I for buying contract 1 with limit price 40 is represented by the arc (1,◦) and
modeled as follows:

Qi =
(
1 0 0

)> pi =
(
40 0 0

)>
.

And an order j ∈ I for selling contract 2 with limit price 53 is represented by the arc
(◦,2) and modeled by

Q j =
(
0 −1 0

)> p j =
(
0 53 0

)>
.

Whereas an order k ∈ I for buying contract 1 and selling contract 2 with a minimal
spread (the limit price) of at least 13 currency units is represented by the arc (1,2)
and modeled by directly involving the minimal spread:

Qk =
(
1 −1 0

)> pk =
(
−13 0 0

)>
.

Alternatively we can also use reference prices for the two underlying contracts:

Qk =
(
1 −1 0

)> pk =
(
40 53 0

)>
.

The negative limit price indicates that the buyer wants to receive at least 13 currency
units. In practice, we use the first encoding since it only involves one price: the limit
price of the combination order.

Observe that if we model a single buy or sell order, then the quantity vector and
the price vector vanish at all but one entry. If we model a combination order, being
a linear combination of a single buy and a single sell order, then the quantity vector
vanishes at all but two entries. As order k is a linear combination of order i and j, we
can write Qi +Q j = Qk and pi + p j = pk.

4 Derivation of an hierarchical min cost flow model to be solved by the
exchange

In the opening auction, the exchange determines the orders that will be executed and
the prices at which those orders are executed. The employed algorithm that performs
this task implements the market rules of the exchange. These rules include quantity
constraints as well as price constraints. We propose an algorithm which solves an
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optimization problem that couples interdependent market products, guarantees con-
sistent prices, and covers all given market rules. The objective is to maximize the
executed volume subject to the quantity and price constraints:

max ∑
i∈I

δi (MIP)

s.t. ∀t ∈ T ∑
i∈I

Qi,tδi = 0 clearing constraint (4)

∀i ∈ I δi > 0 ⇒ ∑
t∈T

(pi,t −πt)Qi,t ≥ 0 price condition (5)

∀i ∈ I δi < δ i ⇒ ∑
t∈T

(pi,t −πt)Qi,t ≤ 0 price condition (6)

∀i ∈ I 0≤ δi ≤ δ i quantity restriction (7)
∀i ∈ I δi ∈ Z integrality constraint (8)
∀t ∈ T πt ∈ Z price variable (9)

The price conditions (5) and (6) are so-called indicator constraints, which can
be modeled with linear constraints by using big-M formulations. The first price con-
straint ensures that no participant incurs a loss if his or her order is executed. If, for
example, the order is an executed buy order, then the products market price must be
smaller than or equal to the limit price of the order. The second price constraint en-
sures that if a buy order (sell order) is not executed entirely, then the products market
price must be greater than (smaller than) or equal to the limit price. Later we will see
that both price conditions together actually ensure that a solution is feasible if and
only if it maximizes the economic surplus of all participants. This model property
will allow us to enforce the price conditions implicitly such that we do not have to
model them explicitly.

An example that illustrates the outcome of the above presented model is provided
in Sect. 6.

Consider the following relaxation of (MIP). The integrality of the execution vari-
ables δ is relaxed, as well as the price conditions are relaxed. We also replace the ob-
jective function so that we maximize the economic surplus of all participants instead
of the execution volume. The model is a so-called surplus maximization problem.

max ∑
i∈I

∑
t∈T

pi,tQi,tδi (LP1)

s.t. ∀t ∈ T ∑
i∈I

Qi,tδi = 0 [πt ] clearing constraint

∀i ∈ I δi ≤ δ i [vi] quantity restriction
∀i ∈ I −δi ≤ 0 [vi] quantity restriction

The terms in square brackets denote the dual variables of the corresponding primal
constraints. In the following, we see that if (LP1) is feasible, there exists an integral
primal optimal solution δ ∗ and a dual optimal solution (π∗,v∗,v∗) to (LP1). The vec-
tor π∗ is called a uniform price vector and the tuple (δ ∗,π∗) is called a competitive
equilibrium (cf. Arrow and Debreu (1954); Mas-Colell et al (1995) or Müller (2014,
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Thm. 2.17)). Furthermore, we will see that an integral primal-dual feasible solution
pair to (LP1) is optimal if and only if it is feasible for (MIP).

Recall that a matrix A of integers is totally unimodular if and only if for all vectors
b,b′,c,c′, whose components are integers or ±∞, every minimal face of the polyhe-
dron {x|b≤ Ax≤ b′ and c≤ x≤ c′} contains an integral point (Hoffman and Kruskal
1956). By construction the matrix Q is a node-arc incidence matrix of a directed graph
and it is known that such matrices are totally unimodular. As the polyhedron of (LP1)
is bounded, every minimal face is an extreme point of the polyhedron, and thus all
extreme points are integral. In particular all extreme points of (LP1) that maximize
the objective are integral.

Now we analyze the properties of such an optimal extreme point δ ∗. For that
purpose we apply the Karush-Kuhn-Tucker optimality conditions [see e.g., Boyd and
Vandenberghe (2004)]. Let δ ∗ be integral and primal optimal to (LP1). Then there
exist dual variables π,v, and v that satisfy equations (10) to (13).

∀i ∈ I −∑
t∈T

pi,tQi,t + ∑
t∈T

Qi,tπt +(vi− vi) = 0 (10)

∀i ∈ I vi,vi ≥ 0 (11)

∀i ∈ I (δ ∗i −δ i)vi = 0 (12)
∀i ∈ I (−δ

∗
i )vi = 0 (13)

Proposition 1 The previous condition holds if and only if there exist prices π such
that equations (14) and (15) hold.

∀i ∈ I δ
∗
i > 0 ⇒ ∑

t∈T
(pi,t −πt)Qi,t ≥ 0 (14)

∀i ∈ I δ
∗
i < δ i ⇒ ∑

t∈T
(pi,t −πt)Qi,t ≤ 0 (15)

These equations coincide with price conditions (5) and (6). This means that given an
integral optimal solution δ ∗ to (LP1), there exist prices π such that the price condi-
tions hold and (δ ∗,π) is feasible for (MIP). Vice versa, a feasible solution for (MIP)
is optimal for (LP1), as it satisfies the price condition and thereby maximizes the
economic surplus of all participants.

Now we can characterize a feasible solution to (MIP) in the following way: Any
integral point of (LP1) that maximizes the economic surplus is feasible to (MIP). As
the polyhedron of (LP1) is integral, also the optimal face is integral. Hence, we can
maximize the execution volume subject to the constraints of (MIP) by using a linear
program where the economic surplus is fixed to its optimal value δ ∗ obtained from
(LP1):
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max ∑
i∈I

δi (LP2)

s.t. ∀t ∈ T ∑
i∈I

Qi,tδi = 0 clearing constraint

∀i ∈ I δi ≤ δ i quantity restriction
∀i ∈ I −δi ≤ 0 quantity restriction

∑
i∈I

∑
t∈T

pi,tQi,tδi = ∑
i∈I

∑
t∈T

pi,tQi,tδ
∗
i optimality of economic surplus

Now we can construct an optimal solution to (MIP) by finding at first an optimal
solution δ ∗ to the linear program (LP1). Then we solve (LP2) using δ ∗ as input to
fix the economic surplus to the optimal value. An optimal extreme point of (LP2) is
feasible and optimal to (MIP).

4.1 Combining both hierarchy levels in one model

In this section, we show that it is not necessary to solve the two LPs successively. Both
LPs can be incorporated into just one LP. At first we describe an intuitive scaling
technique based on an upper bound of the executed volume. Then we improve the
scaling technique by using a smaller scaling factor which exploits the network flow
structure of the model.

We know that each component of p and Q is integral. If a solution δ ∗ is integral,
then the objective of (LP1) is also integral. The objective of (LP2) (volume maximiza-
tion) is strictly bounded from above by V := 1+∑i∈I δ i. We define a new objective
function that is given by V times the objective of (LP1) (surplus maximization) plus
the objective function of (LP2):

max V ∑
i∈I

∑
t∈T

pi,tQi,tδi +∑
i∈I

δi. (16)

Now we replace the objective in (LP1) by objective (16). An optimal solution to the
resulting LP will be optimal to both (LP1) and (LP2). Thus, it is optimal to (MIP).

In practice the scaling factor V might be too large, causing numerical difficulties.
We will now argue that we can choose a much smaller factor that is independent of
the number of orders. This becomes evident from the following proposition.

Proposition 2 (Price rounding; Müller 2014, Proposition 1.12 Let c∈Zn, d,u∈Rn,
b ∈ Rm, A ∈ Zm×n totally unimodular with rank(A) = m ≥ 1, and G > 2md with
d = maxi |di|. If x∗ and π∗ are primal and dual optimal extreme points of

max Gc>x+d>x, (17)
s.t. Ax = b, [π]

0≤ x≤ u,
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then x∗ and π ′ with π ′i =
⌊
π∗i /G+ 1

2

⌋
for i = 1, . . . ,m are primal and dual optimal

extreme points of

max c>x, (18)
s.t. Ax = b, [π]

0≤ x≤ u.

Proof Let (B,NL,NU ) be an optimal basis for the optimal solution (x∗,π∗) to (17).
Corollary 1.9 (resp. Theorem 1.8) in Müller (2014) yields that the basis is also optimal
for (18), because G > 2md ≥ d(1+m).

Recall that (A·B)−1 is totally unimodular, as A·B is totally unimodular. In partic-
ular, all of its components are ±1 or 0. The following equations reflect the relation
between the dual variables of (18) and (17) and the basis.

π
′> = c>B︸︷︷︸

integral

(A·B)−1︸ ︷︷ ︸
integral

∈ Zm

π
∗> = (Gc+d)>B (A·B)

−1 = (GcB +dB)
>(A·B)−1 = Gc>B (A·B)

−1︸ ︷︷ ︸
π ′>

+d>B (A·B)−1

= Gπ
′>+d>B (A·B)−1

We will now determine the maximal absolute distance between π∗i /G and π ′i .

π
∗
i = Gπ

′
i +
(

d>B (A·B)−1
)

i
= Gπ

′
i +d>B

(
(A·B)−1)

·,i (19)∣∣π∗i −Gπ
′
i
∣∣= ∣∣d>B ((A·B)−1)

·,i︸ ︷︷ ︸
∈{−1,0,1}m

∣∣≤ (d, . . . ,d)1m,1 = dm <
G
2

(20)

∣∣∣∣π∗iG
−π

′
i

∣∣∣∣< 1
2

(21)

Equation (21) and π ′i ∈ Z yield the desired result.

Note that in Proposition 2 we omit the dual variables of the lower and upper
bounds, as we are only interested in the π-part of a dual solution. For this reason, we
call π ′ dual optimal, if it is the π-part of a dual optimal solution including all dual
variables, in particular those of the bounds.

Without loss of generality, let the rank of the constraint matrix of (LP1) be equal
to the number of contracts |T |. According to Proposition 2 we can use the scaling
factor G := 2|T |+1 in objective (16) instead of V . In futures opening auctions, G is
typically much smaller than V , because the number of contracts (e.g., 4) is typically
much smaller than the number of orders (e.g., 1500). For this reason, the scaling factor
G causes less numerical problems than the scaling factor V .



Pricing and clearing combinatorial markets with singleton and swap orders 13

Putting all together we obtain the linear program (LP3).

max ∑
i∈I

(
1+G ∑

t∈T
pi,tQi,t

)
δi (LP3)

s.t. ∀t ∈ T ∑
i∈I

Qi,tδi = 0 [π]

∀i ∈ I 0≤ δi ≤ δ i

An optimal primal solution to (LP3) provides us with the δ -part of an optimal solution
to (MIP). In the next section, we present techniques for computing the π-part, the
prices, of an optimal solution to (MIP).

4.2 Market clearing prices and bid and ask prices

We will now explain how market clearing prices and the bid-ask prices can be recov-
ered. For the former we present two implicit methods, both arising from the special
structure of optimal solutions.

Let δ ∗ be an optimal solution to (LP3). We want to compute market clearing
prices π for all contracts such that all participants are completely satisfied, that is, if
their individual surplus maximization problems

∀i ∈ I δ
∗
i ∈ argmax

δi∈{0,...,δ i}

(
∑
t∈T

pi,tQi,tδi−∑
t∈T

πtQi,tδi

)
(22)

get maximized. These individual problems are also called oracles (de Vries and Vohra
2003). Each oracle determines the amount a participant wants to trade at the given
market clearing prices. The most straightforward explicit method to compute market
clearing prices π is to solve the δ ∗-parameterized linear feasibility problem

∀i ∈ I with δ
∗
i > 0 ∑

t∈T
(pi,t −πt)Qi,t ≥ 0, (LP4)

∀i ∈ I with δ
∗
i < δ i ∑

t∈T
(pi,t −πt)Qi,t ≤ 0.

The model is motivated by the optimality conditions of (22), however it comes at
the cost of solving yet another linear program, which is undesirable. Instead, using
Proposition 2, we can directly read-off the prices as follows: If π∗ is the π-part of a
dual optimal extreme point of (LP3) and G > 2|T |, then the market clearing prices π

are given by

πi =

⌊
π∗t
G

+
1
2

⌋
for all t ∈ T. (23)

Such a dual optimal extreme point is a by-product of the simplex method if we use it
for solving (LP3).

Alternatively, we can use the following theorem, which shows how the optimal
base of (LP3) can be used to obtain market clearing prices. The theorem forms the
basis for the proof of the previous proposition and provides a stronger result as its
scaling factor is smaller.
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Theorem 1 (Weighted objective theorem; Müller 2014, Theorem 1.10) Let c ∈ Zn,
d,u∈Rn, A∈Zm×n unimodular with rank(A) = m, b∈Rm, and G > d(1+m), where
d = maxi |di|. If (B,N) is an optimal basis to (17) and x∗ is an optimal solution to
(17), then (x∗,π∗) with π∗> = c>B (A·B)

−1 is an optimal solution to

max d>x s.t. x maximizes (18) and π minimizes the dual of (18). (24)

The lower bound of d(1+m) for G is as small as possible: if G≤ d(1+m), the theo-
rem becomes false in general. As in Proposition 2 above, we omit the dual variables
of lower and upper bounds.

If (B,N) is an optimal basis to (LP3) and G > 1+ |T |, then the market clearing
prices π , which satisfy (22), are given by

π
> = c>B (A·B)

−1, (25)

where c is the objective vector of (LP1) and A is the constraint matrix of the clearing
condition of (LP1). If we use the simplex method for solving (LP3), then the method
computes the matrix (A·B)−1 in its final iteration and hence the required additional
computation for the prices is simply a vector-matrix multiplication.

Finally, the bid and ask prices for each product are given by the limit prices of
the best non-executed buy and sell orders of the respective product. The search for
the best non-executed buy and sell orders can be done in linear time by iterating only
once through all orders.

5 Numerical results

We will now present numerical results for various versions of our algorithms and
compare them to previously employed algorithms.

5.1 Algorithms and variants

In this section, we provide five different algorithms that are based on primal optimal
and dual optimal extreme points of linear programs. The first two algorithms (Algo-
rithms 1 and 2) solve the linear program (LP3) with the weighted objective and then
apply Proposition 2 to compute market clearing prices via scaling and rounding the
dual variables. The only difference is the scaling factor for combining the objective
functions, 2|T |+ 1 in the former and the naive one in latter case; we will see that
the size of the scaling factor influences the computing times. Note that we could also
compute the prices using a primal dual optimal basis as described in (25) [see also
Alg. 1.3.1 in Müller (2014)]. This method might slightly outperform price rounding
as it uses a smaller scaling factor (|T |+ 2 versus 2|T |+ 1), however the actual price
computation is slightly more expensive: matrix-vector multiplication versus round-
ing. Regardless, both scaling factors have the same order of magnitude O(|T |) and
we expect that their running times also have the same order of magnitude. We will
only focus on price rounding in this comparison, due to its simplicity.
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Algorithm 3 solves two LPs successively: it solves (LP1) first to compute market
clearing prices and reduced costs. Then it fixes all variables with positive reduced
costs to the upper bound, and variables with negative reduced costs to the lower
bound. The remaining free variables are used to maximize the execution volume;
see Müller (2014, Section 1.4) for a discussion of this approach.

Algorithm 4 also solves two LPs successively: it solves (LP1) first to compute the
market clearing prices and then (LP2) to maximize the executed volume subject to
the maximized economic surplus of the first LP.

Finally, Algorithm 5 represents our initial approach proposed in Winter et al
(2014): it scales the objective with the naive scaling factor, solves (LP3), and then
recovers the prices using (LP4).

Algorithm 1 Weighted objective, see Müller (2014, Alg. 1.3.2)

G← 2|T |+1
(δ ∗,π∗)← Compute a pair of primal and dual optimal extreme points of (LP3).
for t ∈ T do π ′t ←

⌊
π∗t /G+ 1

2

⌋
Return (δ ∗,π ′).

Algorithm 2 Naive weighted objective

G←max
{

1+∑i∈I δ i, 2|T |+1
}

(δ ∗,π∗)← Compute a pair of primal and dual optimal extreme points of (LP3).
for t ∈ T do π ′t ←

⌊
π∗t /G+ 1

2

⌋
Return (δ ∗,π ′).

Algorithm 3 Reduced costs, see Müller (2014, Alg. 1.4.1)

(π∗,v∗,v∗)← Compute a dual optimal extreme point of (LP1).
P←{i ∈ I | (v∗i − v∗i )> 0}
Z←{i ∈ I | (v∗i − v∗i ) = 0}
N←{i ∈ I | (v∗i − v∗i )< 0}
δ ∗P ← δ P // Fix variables with positive reduced costs to upper bound.
δ ∗N ← 0 // Fix variables with negative reduced costs to lower bound.
δ ∗Z ← Compute a primal optimal extreme point of

max

{
∑
i∈Z

δi |∑
i∈Z

Qiδi =−∑
i∈P

Qiδ i, 0≤ δZ ≤ δ Z

}
.

Return (δ ∗,π∗).
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Algorithm 4 Fixed objective

(δ ′,π∗)← Compute a pair of primal and dual optimal extreme points of (LP1).
δ ∗← Compute a primal optimal extreme point of (LP2) using δ ′ as input.

Return (δ ∗,π∗).

Algorithm 5 Explicit prices

G← 1+∑i∈I δ i
δ ∗← Compute a primal optimal extreme point of (LP3).
π∗← Compute a primal optimal extreme point of (LP4) using δ ∗ as input.

Return (δ ∗,π∗).

In the following we will provide numerical results for the previously introduced
algorithms.

5.2 Comparison of Algorithm 1 using varying subroutines

In each algorithm up to two linear programs need to be solved by a subroutine. In Al-
gorithm 1, for instance, the subproblem (LP3) must be solved. In general, we can use
the simplex method for solving these subproblems. In the case of (LP3), we can also
use special purpose solvers as it is a min cost flow problem. The chosen subroutine
for solving the LPs can have a huge impact on the overall running time.

We will now compare the running time of four different variants of Algorithm 1
using four different subroutines for solving (LP3). For this purpose, we solved 3000
random instances, each having 20 contracts and up to 10,000 orders. Note that (LP3)
is a min cost flow problem with a large number of parallel arcs and a small number
of nodes. Ahuja et al. propose to solve such problems with algorithms which handle
the parallel arcs implicitly (Ahuja et al 1993, Chapter 14.4 and 14.5) and the authors
describe such a polynomial time algorithm. In order to be able to apply this algo-
rithm to (LP3), one must transform it into a convex cost flow problem with separable
piecewise linear cost functions, which can be done in polynomial time.

For our comparison here we will focus on utilizing available state-of-the-art soft-
ware libraries. We compare the Lemon network simplex and the Lemon cost scaling
algorithm [both from COIN-OR Lemon Graph Library (Lemon 2014)] with CPLEX’s
network simplex and Gurobi’s dual simplex; Gurobi and CPLEX are the leading
mixed-integer programming solvers. The COIN-OR Lemon Graph Library (Lemon
2014) provides several efficient implementations of min cost flow algorithms (Király
and Kovács 2012), for instance, the network simplex and the cost-scaling algorithm
of Goldberg and Tarjan (Bünnagel et al 1998).
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Fig. 1: Computing times for 3000 random instances with 20 contracts/nodes and a varying number of
orders/arcs. The wide bars represent the model creation times. The thick marked upper borders of these
bars represent the total computing times and the thin marked lower borders represent the raw computing
times.

The two graphs in Figure 1 display the average computing time1 for instances with
20 contracts/nodes and a varying number of orders/parallel arcs. Each data point rep-
resents the average computing time of 50 random-instances. The instances are solved
as follows: At first we load the raw instance parameters into the memory (RAM).
Then, in the model creation phase, we create and load an instance of (LP3) with scal-
ing factor G := 2|T |+ 1 into the memory of the respective solver via its application
programming interface (API). Next, in the raw computing phase, we call the solver
routine that starts the computations, we import the results via the API, and finally
compute the prices as described in equation (23).

1 C++ program running on a Core i7-920, 6GB-DDR3, 64Bit Linux using Lemon 1.3, CPLEX 12.6.
Network C-API, and Gurobi 5.6.3 without presolving.
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Figure 1 shows that in our test cases, the Lemon network simplex clearly out-
performs the other three algorithms. For example, its average computing time for
instances with 1000 orders amounts to only 678µs, whereas Gurobi’s dual sim-
plex requires 3168µs; on average, instances with 10,000 orders are solved in 9.3 ms,
whereas Gurobi requires 28.5 ms. The long total computing times of Gurobi are basi-
cally due to the fact that the creation of the LP model requires a lot of time. In contrast
to Gurobi, CPLEX provides a network API that allows for a fast model creation. Due
to this fast API, the CPLEX network simplex easily outperforms Gurobi’s dual sim-
plex. Nevertheless, the Lemon cost scaling is still slightly faster than the CPLEX
network simplex. We would like to stress, though, that the cost scaling algorithm is
actually not a valid subroutine for Algorithm 1, as it provides arbitrary optimal so-
lutions and does not provide the required optimal extreme points. We included this
algorithm mainly for the sake of comparison.

Apart from the significantly shorter computing times, the Lemon network simplex
has further advantages in comparison to CPLEX and Gurobi: as it is open source the
source code can be readily modified. Moreover, it uses exact arithmetic without any
numerical errors, whereas CPLEX and Gurobi use floating point operations, which
are exposed to small numerical errors. These numerical errors though are of secondary
importance as they can be safely ignored: due to optimal solutions being integral,
rounding a flawed fractional basic solution yields the correct integral basic solution.

5.3 Comparison of Algorithms 1 to 5 on real-world instances

We will now compare the running times of Algorithms 1 to 5. For each algorithm
we present numerical results of the algorithm variant that uses the CPLEX network
simplex as a subroutine2. In the previous section, we used different standard solvers
as subroutines for Algorithm 1 (weighted objective) and observed that the Lemon
network simplex is in all likelihood the best solver for this task (see Figure 1)3. How-
ever, in this section, Algorithms 4 and 5 require an LP solver as subroutine. For this
reason, we decided to use the CPLEX network simplex for all five algorithms in our
comparison.

In this test, we solved 40 real-world instances with each algorithm. The instances
were generated from historical order books of EUREX and were initially studied
by Winter et al (2011). The proposed solution approach therein is an integer pro-
gramming model4 solving the futures opening auction problem. For completeness,
we would like to mention that the original data set has 55 instances, however only for
40 instances the order books could be fully reconstructed, which is necessary for a
comparison.

2 Java program running on a Core i7-920, 6GB-DDR3, 64Bit Linux using CPLEX 12.4 and OpenJDK
IcedTea6 1.12.6.

3 Average computing time of Alg. 1 with Lemon network simplex for the real-world instances in Sec. 5.3
(20 runs per instance): 445µs (Java program running on a Core i7-920, 6GB-DDR3, 64Bit Linux using
Lemon 1.3.1 and OpenJDK IcedTea7 2.6.6).

4 ZIMPL model running on a Pentium 4, 3.06GHz, 512MB, Windows XP SP3 using SCIP 1.1.0.
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Fig. 2: Comparison of five different algorithms.

Figure 2 shows the computing times of Algorithm 1 to 5. The figure suggests that
the computing time is roughly linear in the number of orders, which is also consistent
with the results in Section 5.2. Furthermore, we can see that Algorithm 4 (fixed objec-
tive) is the slowest one. The second slowest algorithm is Algorithm 5 (explicit prices)
as its price computation via (LP4) is very time consuming. The computing times of
the other three algorithms are the shortest ones and are more or less similar.

Table 1 presents the average computing times of the five algorithms and the one
of Winter et al (2011). Note that the computing times of Winter et al (2011) are not
directly comparable as the computations where performed on a slower machine and
with a different solver. However, the table shows that this method is the slowest one
by a huge margin so that the difference in hard- and software is negligible. The fastest
method is Algorithm 1 (weighted objective). Its average computing time amounts to
only 2966µs. Furthermore, we see that Algorithm 3 (reduced costs) is a reasonable al-
ternative to Algorithm 1, since its average computing time of 3474µs is only slightly
longer but it is numerically more robust, as it does not scale the objective.

Furthermore, we can observe that the running time of the CPLEX network sim-
plex depends on the size of the scaling factor: the smaller the factor, the shorter the
running time (see Table 1). The polynomial network simplex variant of Orlin (1997)
behaves in a qualitatively similar way. It runs in

O
(
min{|T |2|I| log |T |C, |T |2|I|2 log |T |}

)
time, where C is the largest absolute objective coefficient.
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Table 1: Computing times for 40 real instances

Computing time in µs (average of 10 runs per instance)

Weighted Naive Reduced Fixed Explicit

objective weighted obj. costs objective prices

1 LP 1 LP 2 LPs 2 LPs 2 LPs IP model

# Bids Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Winter et al (2011)

1 246 937 931 1120 1464 1947 270000

2 300 1115 1095 1307 1729 2121 80000

3 324 1037 1060 1231 1666 2112 70000

4 334 1161 1101 1629 1841 2157 750000

5 336 1170 1106 1386 1947 2140 970000

6 342 1102 1139 1290 1757 2251 90000

7 361 1184 1148 1449 1909 2273 530000

8 393 1192 1180 1387 1880 2167 500000

9 443 1186 1193 1387 1904 2360 210000

10 445 1511 1442 1894 2305 2520 340000

11 478 1821 1744 2056 2621 2477 120000

12 491 1473 1512 1661 2488 2786 140000

13 496 1807 1736 2227 2956 2829 250000

14 505 1355 1364 1555 2137 2468 110000

15 516 1441 1437 1871 2322 2665 630000

16 518 1695 1637 2215 2690 2608 700000

17 555 1774 1809 2076 2645 2327 130000

18 614 1747 1685 1941 2997 2871 220000

19 701 2277 2303 2640 3530 3769 80000

20 787 2454 2643 3117 4336 4071 480000

21 794 2363 2457 2821 3705 3360 110000

22 833 2132 2063 2943 3885 3399 110000

23 917 2155 2113 2416 3934 3307 8220000

24 2023 4354 4105 4906 7404 5340 30000

25 2190 4470 5089 5066 9720 7328 90000

26 2361 3828 4154 5345 8046 5957 100000

27 2424 3925 3869 4112 7788 6557 1270000

28 2502 4271 5907 4612 11424 7782 110000

29 2530 5180 5250 6536 11706 7710 220000

30 2537 3787 4089 4311 10686 6083 120000

31 2663 4244 4522 4806 12753 6650 5330000

32 2767 4286 4947 4656 11623 7130 450000

33 2812 3877 3853 4358 8922 5678 50000

34 2906 4446 4449 4734 10205 6465 150000

35 3074 4693 6626 5067 16617 8976 11970000

36 3616 6072 6431 7611 15096 8746 1200000

37 3683 7731 8211 9356 16172 10004 350000

38 3684 4764 4960 5172 13393 7731 40000

39 3751 7156 7785 8831 16996 10173 70000

40 4298 5458 6829 5844 16254 10701 70000

avg. 1539 2966 3174 3474 6586 4750 918250
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6 Arbitrage example

We now provide an example where the new model yields a higher surplus, a higher
liquidity, and a better price quality than the old one. Moreover, we show how an
arbitrage trader can make a risk free profit in this situation.

Example 3 Assume that there are three orders in the order books:

1. Buy 1 gold contract with delivery in June; Limit price: 1072 USD.
Q1 = (1,0)> p1 = (1072,0)

2. Sell 1 gold contract with delivery in August; Limit price: 1068 USD.
Q2 = (0,−1)> p2 = (0,1068)

3. Sell 1 gold combination {June, August}; Limit price: 1 USD.
Q3 = (−1,1)> p3 = (1,0)

The old auction model would not match any contracts as it would perform a separate
auction for each product. The total surplus would amount to 0 USD and the exchange
would not publish any market clearing price because no order was executed. In the
new model, all three orders can be matched. The total surplus amounts to 3 USD and
the exchange would, for example, publish the following market clearing prices:

– June: πJun = 1069USD,
– August: πAug = 1068USD,
– {June, August}: πJun−πAug = 1USD.

This solution is preferred to the zero solution since it increases the liquidity and price
quality. Now assume that an arbitrage trader looks at the order books and submits the
following three additional orders immediately before the auction starts:

4. Sell 1 gold contract with delivery in June; Limit price: 1072 USD.
Q1 = (−1,0)> p1 = (1072,0)

5. Buy 1 gold contract with delivery in August; Limit price: 1068 USD.
Q2 = (0,1)> p2 = (0,1068)

6. Buy 1 gold combination {June, August}; Limit price: 1 USD.
Q3 = (1,−1)> p3 = (1,0)

In the old model, all 6 orders would be executed and the surplus of each product
auction would be zero, but the arbitrage trader would end up with a risk free profit
of 3 USD (minus trading fees, e.g.: 3 · 0.7USD). The exchange would publish the
following inconsistent prices:

– June: πJun = 1072USD,
– August: πAug = 1068USD,
– {June, August}: 1USD, which differs from πJun−πAug = 4USD.

In the new model, the additional orders of the arbitrage trader would not be executed
and would not affect the outcome of the auction.
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7 Summary

We introduced several new methods for solving the futures opening auction prob-
lem. We showed that the problem can be modeled as a min cost flow problem with
two hierarchical objectives. The primary objective is the surplus maximization and
the secondary one is the volume maximization. This kind of problem can be solved
efficiently by exploiting the properties of extreme point solutions, as it is done in
Proposition 2 and Theorem 1. The resulting algorithm is very simple as it just com-
putes a pair of primal dual optimal extreme points of a min cost flow problem with
a weighted objective and then scales and rounds the dual solution. However, it is not
only the simplest algorithm but also turned out to be the fastest one in our numerical
tests. In those tests we also compared different standard solvers for solving the un-
derlying optimization problems. The results suggest that the Lemon network simplex
is the fastest one for this task. Due to the short computing times, our algorithm (with
Lemon as a subroutine) is well suited for real-world applications.
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