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Abstract A multi-objective evolutionary algorithm which can be applied to
many nonlinear multi-objective optimization problems is proposed. Its aim is
to quickly obtain a fixed size set approximating the complete Pareto-front.
It adapts ideas from different multi-objective optimization evolutionary algo-
rithms, but also incorporates new devices. In particular, the search in the space
is carried out on promising areas (hyperspheres) determined by a radius value,
which decreases as the optimization procedure evolves. This mechanism helps
to maintain a balance between exploration and exploitation of the search space.
Additionally, a new local search method which accelerates the convergence of
the population towards the optimal Pareto-front, has been incorporated. It is
an extension of the local optimizer SASS and improves a given solution along
a search direction (no gradient information is used). Finally, a termination
criteria has also been proposed, which stops the algorithm if during three con-
secutive iterations the changes experimented in the candidate Pareto-front are
negligible (in terms of the objective function values). To know how far two
sets are from each other, a modification of the well-known Hausdorff distance
is proposed. In order to analyze the algorithm performance, it has been com-
pared to the reference algorithms NSGA-II and SPEA2 and the state-of-the-art
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E-mail: jlredondo@ual.es, ortigosa@ual.es

J. Fernández
Dpt. of Statistics and Operations Research, University of Murcia, Murcia, Spain
E-mail: josefdez@um.es, tlf: +34 868884186, fax: +34 868884181 (Corresponding author)



2 J.L. Redondo et al.

algorithms MOEA/D and SMS-EMOA. Several quality indicators have been
considered, namely, hypervolume, average distance, additive epsilon indicator,
spread and spacing. According to the computational results performed, the
new algorithm, named FEMOEA, outperforms the other algorithms.

Keywords Nonlinear multi-objective optimization · evolutionary algorithm ·
quality indicators · computational study

1 Introduction

Multiobjective optimization problems are ubiquitous. Many real-life problems
require taking several conflicting points of view into account. In fact, although
the origins of multi-objective optimization literature are linked to utility the-
ory, game theory, linear production theory and economics (see [31]), we now
can find applications in many and diverse fields, such as portfolio optimiza-
tion [22], jury selection [51], airline operations [23], radiation therapy [39],
manpower planning [54] or reservoir management [1], among others. In [65],
White mentions more than 500 applications between 1955 and 1986. Classi-
cal references on multi-objective optimization are the books [6,12,56,67,68].
Other more recent books are [20,27,44].

In this paper, we deal with the general nonlinear multi-objective optimiza-
tion problem (MOP), which can be formulated as follows:

min {f1(y), . . . , fm(y)}
s.t. y ∈ S ⊆ R

n (1)

where f1, . . . , fm : Rn −→ R are m real-valued functions. Let us denote by
f(y) = (f1(y), . . . , fm(y)) the vector of objective functions and by Z = f(S)
the image of the feasible region.

When dealing with multi-objective problems we need to clarify what ‘solv-
ing’ a problem means. In the following some widely known definitions are
provided to explain the concept of solution of (1).

Definition 1 A feasible vector y∗ ∈ S is said to be efficient iff there does not
exist another feasible vector y ∈ S such that fl(y) ≤ fl(y

∗) for all l = 1, . . . ,m,
and fj(y) < fj(y

∗) for at least one index j (j ∈ {1, . . . ,m}). The set SE of all
the efficient points is called the efficient set or Pareto-set. If y1 and y2 are two
feasible points and fl(y1) ≤ fl(y2) for all l = 1, . . . ,m, with at least one of the
inequalities being strict, then we say that y1 dominates y2.

Efficiency is defined in the decision space. The corresponding definition in
the criterion space is as follows:

Definition 2 An objective vector z∗ = f(y∗) ∈ Z is said to be non-domi-
nated iff y∗ is efficient. The set ZN of all non-dominated vectors is called the
non-dominated set or Pareto-front. If y1 and y2 are two feasible points and y1
dominates y2, then we say that f(y1) dominates f(y2).
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Ideally, solving (1) means obtaining the whole efficient set, that is, all the
points which are efficient, and its corresponding Pareto-front. However, for a
majority of MOPs, it is not easy to obtain an exact description of the efficient
set or Pareto-front, since those sets typically include an infinite number of
points (usually a continuum set). To the extent of our knowledge, only two
exact general methods, namely, two interval branch-and-bound methods (see
[25,26]) have been proposed in literature which obtain an enclosure of those
sets up to a pre-specified precision. Specifically, they offer a list of boxes (multi-
dimensional intervals) whose union contains the complete efficient set (and
their images the corresponding Pareto-front) as a solution. However, they are
time consuming. Furthermore, they have large memory requirements, so that
only small instances can be solved with them.

Contrarily, the use of (meta)heuristics may allow to obtain ‘good approx-
imations’ of the Pareto-front, even for problems with more variables and ob-
jectives. By a good approximation we mean a discrete set of points covering
the complete Pareto-front and evenly distributed over it. There is a plethora
of methods with that purpose in literature. These include extensions of simu-
lated annealing [14,46,52,58,61], tabu search [32,33,37,40], scatter search [13,
47,62], ant systems [18,42,43,53] or particle swarm optimization [11,41,49],
among others, to multi-objective programming. However, most of them are
designed to deal with combinatorial MOPs (some exceptions are [37,47,53]).

Nonetheless, the most common approaches utilized in literature to cope
with (1) is the use of multi-objective evolutionary algorithms (MOEAs). This
is due to their ability to find multiple efficient solutions in one single simulation
run. The numerous proposed variants have been surveyed, for instance, in [7,
21,28,36,60]. For a more complete review of all the topics related to MOEAs
see the book [10]. For an excellent selection of applications of MOEAs to real-
world problems we refer the reader to [9].

In this paper, a new Fast and Efficient Multi-Objective Evolutionary Algo-
rithm (FEMOEA), aimed at obtaining a good fixed size approximation of the
Pareto-front is presented. To help FEMOEA to accelerate its convergence to-
wards the optimal Pareto-front, two new devices have been incorporated: a new
improving method, where no differentiability is assumed, and a new stopping
rule. These two contributions can be included in any MOEA. Furthermore,
it adapts some concepts from other evolutionary algorithms (EAs) devised to
cope with single-objective optimization problems. It also includes ideas from
other typical MOEAs, as the use of the crowding distance as a way to compute
the estimation of the density of solutions during the selection procedure (see
[16]). It is known that the crowding mechanism only works well for bi-objective
problems [17]. However, we use this operator in this work because we want to
focus on solving optimization problems with few objectives, usually only two.
The interest in this type of problems comes from the fact that, in practice, it is
only for those bi- (or tri-)objective problems that obtaining the whole efficient
set and its corresponding Pareto-front makes sense. For problems with more
objectives those sets are usually big, representing them in a understandable
way for the decision-maker is difficult, and even if it was possible, the amount
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of information will be so big for the decision-maker that he/she will not be
able to handle it in an appropriate way. For that type of problems other multi-
objective optimization techniques which somehow incorporate preferences for
the objectives in order to reduce the set of efficient solutions to be shown to
the decision maker, may be a better choice. For instance, in interactive meth-
ods the decision-maker can direct the search for efficient points to the areas of
his/her interest. On the other hand, there are many real world problems where
only two (maybe three) objectives are considered. As an example, the authors
are familiar with continuous location theory, an area of operations research
where only bi-objective problems have been considered so far (see [25,26] and
the references therein). Location theory is a prolific research area, to the point
that it has now its own entry (90B85) in the Mathematics Subject Classifica-
tion used by Mathematical Reviews and Zentralblatt für Mathematic. In fact,
many optimization methods are evaluated by making use of location problems
[57], mainly due to their high complexity and required computational effort.
FEMOEA was indeed initially designed to cope with a competitive facility
location and design problem, with an improving method which made use of
differentiability (see [2,50]).It proved in [50] to be superior to other state-of-
the-art MOEAs. The aim of this paper is to investigate whether FEMOEA
is still a competitive algorithm when applied to general MOPs with two or
three objectives. For this study, a derivative-free improving method has been
implemented, to make FEMOEA more widely applicable.

FEMOEA could also be used to cope with problems with more than three
objectives, but the selection procedure should then be based on other measures
of the density of solutions different from the crowding distance.

A comprehensive computational study is carried out in this paper to com-
pare FEMOEA with the well-known NSGA-II [16] and SPEA2 [72] algo-
rithms, which have become the reference algorithms in the multi-objective
evolutionary computation community. Additionally, two other state-of-the-art
algorithms have been included in the comparison: the algorithms MOEA/D
[69] and SMS-EMOA [3], which have proved to be very competitive in dif-
ferent studies. The implementation of those four algorithms in the platform
j-Metal [19] has been used for the evaluation. Following the existing perfor-
mance indicators in literature, the comparisons have been accomplished in
terms of effectiveness, i.e. in terms of quality of the obtained approximations
of the Pareto-front. The modus operandi has been to provide the algorithms
with a budget in the number of function evaluations and to obtain a fixed size
approximation of the Pareto-front.

A set of 20 benchmark problems with 2 or 3 objectives and 2 or 3 variables,
and another set with 10 problems with 2 or 3 objectives and 30 variables
have been solved, and different quality indicators have been analyzed. The
results show that FEMOEA reaches, on average, better results than the other
algorithms.

The rest of the paper is organized as follows. Our new algorithm FEMOEA
is introduced in the following section, where special subsections are devoted to
the new improving method and stopping rule. Section 3 presents the computa-
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tional study. The test problems and the implementations employed are given
first. Next, the quality indicators used in the comparative study are presented.
In addition, some results proving the usefulness of the improving method are
provided along with the comparison with NSGA-II, SPEA2, MOEA/D and
SMS-EMOA algorithms. In Section 4, our main conclusions are summarized
and the research issues that we believe to be worth exploring in the future are
highlighted.

2 Description of FEMOEA

FEMOEA is an evolutionary algorithm devised to cope with nonlinear multi-
objective problems. Its main objective is to provide a good fixed size ap-
proximation of the Pareto-front, i.e., a fixed number of well-distributed and
non-dominated solutions. To this aim, it combines ideas from typical algo-
rithms for solving general multi-objective optimization problems: an external
archive is utilized to store preferable non-dominated solutions [38,47], and
the crowded comparison operator is applied to guide the algorithm towards
a uniformly spread Pareto-front approximation [16]. Additionally, it also in-
herits some concepts from other evolutionary algorithms devised to cope with
single-objective optimization problems, namely from UEGO algorithm [48].
In particular, it has adopted the concept of a decreasing radius, as a mech-
anism of maintaining a balance between exploration and exploitation of the
search space. In addition, FEMOEA incorporates new mechanisms which help
to accelerate the optimization process (efficiency) and improve the quality
(effectiveness) of the solutions. The ‘termination criteria’ or the ‘improving
method’ are two of those specific contributions.

The most important concept in FEMOEA is that of individual. An indi-
vidual is a solution of the decision space, but it has associated a radius which
determines the subregion of the search space (a hypersphere) covered by that
individual. The main aim of the radius is to focus the searching operators on
the corresponding hyperspheres. At any iteration of the algorithm, an indi-
vidual can be created and its assigned radius only depends on this iteration
number. The radius is a monotonous function that decreases as the optimiza-
tion process moves forward, i.e., as the number of iterations increases. At
each stage of the algorithm, several individuals with different radii (created
at different iterations) can coexist simultaneously. The use of different radii
throughout the optimization process allows, on the one hand, to identify re-
gions in the search space with high quality solutions and, on the other hand,
not to waste too much time on regions of the search space which are either
already explored or do not provide high quality solutions [5]. This idea of a
decreasing radius is a legacy of UEGO [48].

Apart from the radius, an individual has two attributes which are related to
the criterion space: the non-domination rank (drank) and the crowding distance
(cdist), see [16]. The non-domination rank indicates the number of individuals
which dominate that particular individual. In this sense, a zero value means
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Algorithm 1 Crowding distance assignment(P )

1: p = |P |
2: for i = 1 to p
3: ci

dist
= 0

4: for l = 1 to m
5: P=sort(P, l) Sort using the l-th objective function value
6: c1

dist
= cp

dist
= ∞ In this way, boundary points are always selected

7: for i = 2 to p− 1

8: ci
dist

= ci
dist

+

(

f
i−1
l

−f
i+1
l

fmax
l

−fmin
l

)2

9: for i = 1 to p

10: ci
dist

=
√

ci
dist

that such an individual is not dominated by any of the remaining ones in the
current population. Regarding the second attribute, the crowding distance is
an estimation of the density of solutions surrounding a particular solution in
a population. In [16], Deb et al. proposed an algorithm which calculated the
crowding distance of each point in a population P . In that paper, the crowding
distance was computed using the rectangular distance. However, in FEMOEA,
the Euclidean distance has been considered, since it represents the crowding
better than the rectangular one. For the sake of completeness, the algorithm
proposed in [16] is depicted (see Algorithm 1). Notice that steps 8 to 10 have
been modified to consider the Euclidean distance.

In Algorithm 1, f i
l refers to the l-th objective function value of the i-th

point in the set P , and fmax
l and fmin

l refer to the maximum and minimum
objective function values of the l-th objective function, respectively.

FEMOEA works with two lists of individuals, whose maximum size M is
the same for both lists and it is a given input parameter. ParameterM refers to
the desired number of solutions in the final Pareto-front. The first list, named
population list, is composed of M diverse individuals with different attributes,
i.e. various radii, non-domination ranks and crowding distances. FEMOEA is
in fact a method for managing this list (i.e. creating, deleting and improving in-
dividuals). The second list, called external list, can be understood as a deposit
to keep non-dominated solutions. Notice that the number of non-dominated
points may be fewer than M during the early stages of the optimization algo-
rithm and hence, the external list may contain fewer elements than the desired
ones. In fact, it cannot be guaranteed that M non-dominated solutions have
been found once the termination criteria have been satisfied, although this
has always been the case in our computational experiments. When this is not
the case, the external list is then completed up to M elements with the most
preferable solutions.

Definition 3 A solution i is preferable to a solution i′, i ≻ i′, if

dirank < di
′

rank, or

dirank = di
′

rank and cidist > ci
′

dist.
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The previous relation is known as crowded comparison operator (see [16]).
To accelerate the selection process, both lists are always sorted according to
the crowded comparison operator, i.e. in ascending order according to non-
domination rank, and in descending order of the crowding distance when sev-
eral elements share the same non-domination rank.

In FEMOEA, each individual is intended to occupy an efficient solution.
For this purpose, FEMOEA directs the individuals during the searching pro-
cess towards the most suitable regions. Notice, therefore, that a particular
individual is not a fixed part of the search domain, but it can move through
the space as the search proceeds. ‘Individuals-management’ is one of the core
parts of FEMOEA. It consists of procedures for creating and selecting individ-
uals during the whole optimization process. Additionally, FEMOEA includes
an improving method, which has been logically separated from the individual-
management. In this sense, FEMOEA can be considered a memetic algorithm
[45]. Furthermore, this means that FEMOEA can easily be adapted to solve
any multi-objective problem, only adapting the improving technique (applica-
tions to competitive facility location problems can be found in [24,50]).

2.1 The algorithm

A global description of FEMOEA is given in Algorithm 2. In the following,
the different key stages in the algorithm are described:

Algorithm 2 Algorithm FEMOEA
1: Init individual lists
2: while termination criteria are not satisfied
3: Create new individual(evals)
4: if (length(population list) > M)
5: Select individual(population list)
6: Improve individual(population list)
7: Update external list
8: if length(external list) > M
9: Select individual(external list)
10: Improve individual(external list)
11: if length(external list) < M
12: Compose pareto

– Init individual lists: In this procedure, as many individuals as the parame-
ter M indicates are randomly created. The radius associated to them will
be the one associated at level 1. Such a radius should be greater than or
equal to the diameter of the search space, so that the whole search area will
be covered by each individual. The population list is initialized from this set
of individuals, while the external list will consist only of the non-dominated
individuals.
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After this procedure, the FEMOEA main loop starts, which basically con-
sists of three procedures: creating, improving and selecting individuals. This
loop is executed until a stopping condition is fulfilled, namely, until a consid-
erable improvement is not obtained in three consecutive Pareto-fronts (placed
in external list) or a number of maximum levels is achieved. The number of
levels (cycles or generations) will be given by the input parameter L.

– Create new individual(evals): For every individual in the population list,
evals/2 random trial points in the area defined by its radius are created.
evals refers to the budget of function evaluations available for each existing
individual for creating a new offspring. After a preliminary computational
study, this value has ben set to evals = 20.
Furthermore, for each new random candidate solution, the closest point (in
the objective space) in the external list is calculated. Then, a new random
point is computed in the segment joining the candidate solution with its
closest point. Notice that the intermediate point can be placed outside the
area covered by the original individual. If the intermediate point dominates
the candidate solution, then it will be included in the population list as a
new individual. On the contrary, if the candidate solution is the one which
dominates the other, it will be the one inserted in the population list. Addi-
tionally, if the two points are indeterminate (not one dominates the other),
then both will be inserted as new individuals. The radius assigned to each
new individual is the one associated with the current level i. The radius
of an individual created at level i, Ri, is given by a decreasing exponential
function, where RL and R1 are the given (input parameters) smallest and
largest radii. For a detailed description of how to compute the radius at each
level of the algorithm see [48]. It is interesting to remark that a location
in the search space can be covered by different individuals with different
radii. Individuals with small radii examine a relatively small area, their
motion in the space is slower, but they are able to differentiate between
efficient solutions which are very close. On the contrary, individuals with
large radii study a somewhat bigger region, they may move great distances
and discover new promising areas, which may be analysed conscientiously
in later stages of the algorithm.
Additionally, both the non-domination rank and the crowding distance
associated to each new individual are computed. The population list is then
sorted according to the crowding comparison operator.

– Select individual(list): If list reaches its maximum allowable capacity, a
decision has to be made to determine which individuals should be kept
and not removed. The selection strategy used in this work is based on the
crowded comparison operator [16]. Then, the most preferable individuals
will be selected, i.e. between two individuals with different non-domination
rank we prefer the one with the lower rank. Otherwise, we prefer the point
which is located in a region with the fewest number of points (i.e., the
highest crowding distance). In this process, each time an individual is re-
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moved, the crowded comparison operator associated to the adjacent points
is updated before removing the next individual.

– Improve individual(list): This procedure applies the improving method to
all the individuals on the list. As can be observed in Algorithm 2, this tech-
nique is applied to both the population list and the external list at different
stages of the optimization process, i.e., steps 6 and 10, respectively. Once
all the individuals in the input list have invoked the improving method, the
improved individuals are reordered according to the crowded comparison
operator.
Subsection 2.2 describes the improving method proposed in this paper.

– Update external list: New non-dominated points may be generated during
the previous process. In Step 7 of Algorithm 2, the external list is updated
by copying the non-dominated solutions of the population list to it. Of
course, this implies that the points on the external list dominated by the
new ones have to be removed, and a reordering of the remaining ones
according to the new values of the crowded comparison operator has to be
performed.

– Compose pareto: The solution provided by the algorithm must include M
solutions since it is a requirement imposed by the user. If the number of
solutions on the external list reaches this value, the Pareto-set presented as
the final solution will be the one kept on that list. Notice that, on the ex-
ternal list, the non-dominated solutions which are better spread during the
optimization process have been stored. However, it may happen that the
number of non-dominated solutions found by the algorithm is smaller than
M . In such a case, a joint list will be composed considering all the elements
on the population list and the external list, and the M most preferable so-
lutions among them will be offered as a result by the algorithm.

2.2 The improving method

Most MOEAs include a mutation operator that alters the individuals of the
population from its initial state. This can result in entirely new solutions being
added to the population. With these new solution values, a multi-objective
algorithm may be able to increase the population diversity and the probability
to escape from local optima, helping then to push the population towards the
true Pareto-set. However, the mutation operators are usually slow, requiring
many function evaluations for convergence.

In this work, an improving method is suggested to accelerate the conver-
gence of the population towards the optimal Pareto-front. Basically, the local
method improves a given solution by making changes of different sizes along a
search direction. In fact, the designed improving method is an extension of the
local optimizer SASS, initially proposed by Solis and Wets in [55] to cope with
single-objective optimization problems. Here, it has been adapted to work on
multi-objective optimization problems. The proposed algorithm will be called



10 J.L. Redondo et al.

MO SASS throughout this paper. The way the heuristic MO SASS works is
described in Algorithm 3.

The algorithm MO SASS can be applied to an arbitrary multi-objective
optimization problem over a bounded subset of R

n, although internally it
assumes, as the original SASS does, that the range in which each variable is
allowed to vary is the interval [0, 1]. The new points are generated using a
Gaussian perturbation ξ ∈ R

n over the search point y and a normalized bias
term b ∈ R

n to direct the search. In this way, given y, a first trial point, y+ ξ
is considered, and if it dominates y, then y + ξ replaces the initial point, but
maintaining the same radius value. Otherwise, if y and y+ξ are indeterminate
solutions, then y + ξ is compared pairwise to the points on the external list.
If it is dominated by any point from such a list, it is discarded; otherwise, it
is stored in the external list. Notice that, as a consequence of this inclusion,
there may be dominated solutions in the external list. In such a case, those
solutions are removed.

The coefficient values 0.4, 0.2 and 0.5 in steps 18, 24 and 26, used for
updating the bias term b are retained from Solis and Wets’s results [55]. No
attempt has been made in this work to fine-tune those parameters. The stan-
dard deviation σ specifies the size of the sphere that most likely contains the
perturbation vector, whereas the bias term b locates the center of the sphere
based on directions of past successes. The size of the standard deviation of
the normalized perturbation ξaux is controlled by the repeated number of suc-
cesses, scnt, or failures, fcnt. A success occurs when the new point dominates
the initial one. The contraction (ct) and expansion (ex) constants are set by
the user.

As for the individual radius, it was mentioned that an individual has a
radius associated to it which determines the subregion of the search space
covered by that individual, in such a way that any single step taken by the
improving method in a given individual is no longer than the radius of the
individual. Since in MO SASS the standard deviation σ specifies the size of
the sphere that most likely contains the normalized perturbation vector, its
upper bound σub should have the same value than the normalized radius of the
caller individual. That is why the parameter σub is also considered an input
argument in MO SASS.

It is worth mentioning that the use of MO SASS allows, on the one hand, to
push y towards the true Pareto-set (steps 14-15 and 20-21 in Algorithm 3) and,
on the other hand, to study its surrounding area to obtain indeterminate solu-
tions (steps 17-18 and 23-24 in Algorithm 3). The inclusion of indeterminate
points in the external listmay improve the quality of the final Pareto-front, but
it increases the computational effort (the more elements on the list, the more
computing time required to order it). Notice that MO SASS is called (through
the Improving method) by FEMOEA to improve both the population list and
the external list, which may involve a large number of indeterminate points.
Looking for a compromise between quality in the final Pareto-front and com-
putational effort, Improving method does not execute steps 17-18 and 23-24
when improving the external list. The input parameter bel tells MO SASS
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Algorithm 3 Algorithm MO SASS(y, σub, bel)

1: Set ic = 1, y(ic) = y, b(ic) = 0, scnt = 0, fcnt = 0, σ(0) = σub, σlb =
max{σub/1000, 10

−5}
2: Fix ex, ct, Scnt, F cnt, Maxfcnt, icmax

3: while ic < icmax and fcnt < Maxfcnt
4: σ(ic) = σ(ic−1)

5: if scnt > Scnt
6: σ(ic) = ex · σ(ic−1)

7: if fcnt > Fcnt
8: σ(ic) = ct · σ(ic−1)

9: if σ(ic) < σlb

10: σ(ic) = σub and b(ic) = 0
11: if σ(ic) > σub

12: σ(ic) = σub

13: Generate a multivariate Gaussian random vector ξ
(ic)
aux = N(b(ic), σ(ic)I)

14: if y(ic) + ξ(ic) dominates y(ic)

15: y(ic+1) = y(ic) + ξ(ic); scnt = scnt+ 1, fcnt = 0
16: else

17: if bel = 0 and y(ic) + ξ(ic) is not dominated by any point on the external list

18: Include y(ic)+ξ(ic) in external list; scnt = 0, fcnt = fcnt+1; b(ic+1) = 0.4ξ
(ic)
aux+

0.2b(ic)

19: else

20: if y(ic) − ξ(ic) dominates y(ic)

21: y(ic+1) = y(ic) − ξ(ic); scnt = scnt+ 1, fcnt = 0
22: else

23: if bel = 0 and y(ic)− ξ(ic) is not dominated by any point on the external list
24: Include y(ic) − ξ(ic) in external list; scnt = 0, fcnt = fcnt + 1; b(ic+1) =

b(ic) − 0.4ξ
(ic)
aux

25: else

26: b(ic+1) = 0.5b(ic), fcnt = fcnt+ 1, scnt = 0
27: ic = ic+ 1
28: Return y(ic)

whether the solution y belongs to the population list (bel = 0) or the exter-
nal list (bel = 1).

The stopping rules are determined by the maximum number of iterations
(icmax) and by the maximum number of consecutive failures (Maxfcnt). Af-
ter a preliminary computational study, they have been set to 400 and 20,
respectively.

In order to study whether the introduction of MO SASS into FEMOEA
really helps to accelerate its convergence towards the optimal Pareto-front
or, on the contrary, the obtained results are the consequence of randomness,
another improving method has been designed. Algorithm 4 sketches its main
structure. Basically, this method behaves like MO SASS, although it tries to
improve the initial solution y by making random changes, instead of following
a search direction. The actions carried out when indeterminate solutions are
obtained as well as the termination criteria, are the same as the ones described
for MO SASS.

Another improving method which makes use of the differentiability of the
objective functions can be found in [50].
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Algorithm 4 Algorithm Random1(y, σub, bel)

1: Set ic = 1, y(ic) = y, scnt = 0, fcnt = 0
2: Fix Scnt, F cnt, Maxfcnt, icmax

3: while ic < icmax and fcnt < Maxfcnt

4: Generate a random vector y
(ic)
ran in the area defined by the species radius σub

5: if y
(ic)
ran dominates y(ic)

6: y(ic+1) = y
(ic)
ran; scnt = scnt+ 1, fcnt = 0

7: else

8: if bel = 0 and y
(ic)
ran is not dominated by any point on the external list

9: Include y
(ic)
ran in external list; scnt = 0, fcnt = fcnt+ 1

10: else

11: scnt = 0, fcnt = fcnt+ 1
12: ic = ic+ 1
13: Return y(ic)

2.3 The stopping rule

The termination criterion of most MOEAs in literature is only based on a num-
ber of function evaluations, i.e. the algorithms usually stop when a maximum
is achieved [16,47,72]. However, although this stopping rule can be suitable to
compare algorithms in terms of efficiency, it can be counterproductive for prac-
tical purposes. The number of function evaluations required to obtain good
approximations of the Pareto-front is not known in advance and depends on
the particular instance to be solved. Hence, whatever the number we choose,
it may be too small for some problems and too high for others, to obtain the
quality desired by the user.

In this work, a new stopping rule based on the well-known Hausdorff dis-
tance is proposed. Informally, it measures how far two sets are from each other.
Mathematically, the modified Hausdorff distance hd used is given by

hd(F1, F2) =

∑
a∈F1

min{d(a,b):b∈F2}

max{d(a,a′):a,a′∈F1}
+

∑
b∈F2

min{d(a,b):a∈F1}

max{d(b,b′):b,b′∈F2}

2
,

where F1 and F2 are two given discrete sets and d(·, ·) is a distance function
(we have used the Euclidean distance).

The termination criteria proposed in this work establishes that the algo-
rithm will finish if during three consecutive iterations, the changes experi-
mented in the candidate Pareto-front are negligible (in terms of the objective
function values), for a given tolerance tol (for this work, tol = 10−7), i.e. the
algorithm stops at iteration t provided

hd(Pareto-frontt,Pareto-frontt−1) < tol, and

hd(Pareto-frontt−1,Pareto-frontt−2) < tol.

Notice that this stopping criterion allows the algorithm to terminate when-
ever a good approximation of the Pareto-front is obtained, or even if the al-
gorithm is trapped, unable to converge to a better Pareto-front. Notice that,
due to the way new individuals are created and improved, it is rather unlikely
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that two consecutive approximations of the Pareto-front have a neglibible hd
distance, unless they provide the best possible output of the algorithm. Still,
we require this condition for two consecutive pairs of iterations. This stopping
rule allow the algorithm to save considerable CPU time in some instances.

As a safeguard, a second termination criterion, which can be based on the
maximum number of function evaluations allowed, the maximum number of
iterations permitted or even the maximum execution time admitted to provide
the solution should be defined. For the particular case of FEMOEA, we have
fixed a maximum number of iterations. This maximum value is represented by
the input parameter L.

2.4 Input parameters

Five input parameters must be provided by the user:

– M : The number of solutions which must compose the final Pareto-front.
– L: The maximum number of levels (or iterations).
– R1 and RL: The radii of the individuals that are associated to the minimum

and maximum level, respectively.
– tol: The tolerance associated with the termination criterion.

Notice that the only parameters which really need to be fine tuned are RL

and L. The remaining ones are either a determination of the user based on
his/her experience, requirements or needs (as occurs with the value of M and
tol), or a parameter associated to the particular problem to be handled (R1).

3 Computational studies

All the computational results in this paper have been carried out on a 4-core
processor HP ProLiant ML330 G6 to 2.00GHz and 7.8GB memory (using one
of its cores).

3.1 Test problems

A thorough study has been conducted to investigate the performance of the
analyzed algorithms. Two sets of benchmark problems have been used. The
first one (Set 1 in what follows) is composed of 20 problems, 18 of them are bi-
objective problems, and the other 2 are tri-objective problems. It includes the
so-called ZDT family of problems [71] (in particular, functions ZDT1, ZDT2,
ZDT3, ZDT4 and ZDT6) and the DTLZ suite [17] (in particular, DTLZ1,
DTLZ2, DTLZ3, DTLZ5, DTLZ6 and DTLZ7), all with m = 2 objective
functions and n = 2 variables, as well as other 9 test problems from literature,
namely, Viennet and Viennet2 [10] (m = 3, n = 2), Deb (m = 2, n = 2),
Kursawe (m = 2, n = 3) and Poloni (m = 2, n = 2) (see [35]), and Deb1
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(m = 2, n = 2), Fonseca (m = 2, n = 3), Qv (m = 2, n = 2) and Schaffer
(m = 2, n = 1) (see [10,15,35,72,71]).

The second set of problems (Set 2 in what follows) is composed of the
first 10 unconstrained test instances employed in the algorithm contest in the
Congress on Evolutionary Computation 2009 (CEC09) [70]. Contrary to Set
1, where the number of variables in the problems is small, all the problems in
Set 2 have 30 variables; 7 of the instances are bi-objective problems, and the
other 3 are tri-objective problems.

3.2 The algorithms and their implementations

In order to study its performance, FEMOEA has been compared to the refer-
ence algorithms NSGA-II and SPEA2, and to the state-of-the-art algorithms
MOEA/D and SMS-EMOA. The implementations provided by the framework
jMetal [19] have been used.

jMetal is an object-oriented Java-based framework aimed at the develop-
ment, experimentation, and study of metaheuristics for solving multi-objective
optimization problems. jMetal provides a rich set of classes which can be used
as the building blocks of multi-objective metaheuristics; taking advantage of
code-reusing, the algorithms share the same base components, such as imple-
mentations of genetic operators and density estimators. jMetal includes several
multi-objective metaheuristics and many problems usually included in perfor-
mance studies. Additionally, it also provides quality indicators to performance
assessing as well as a set of utilities that help in carrying out experimental
studies.

The versions of MOEA/D, SMS-EMOA, NSGA-II and SPEA2 obtained
from jMetal are in Java. The algorithm FEMOEA has been implemented in
C++.

The parameter setting for NSGA-II is the one used by Deb in [16]. The
operators for crossover and mutation are SBX and polynomial mutation, with
distribution indexes of ηc = 20 and ηm = 20, respectively. A crossover prob-
ability of pc = 0.9 and a mutation probability pmut = 1/n (where n is the
number of decision variables) are used. Regarding SPEA2, the crossover and
mutation operators are the same as those used in NSGA-II, using the same
values concerning their application probabilities and distribution indexes. The
parameters used for MOEA/D are the ones proposed in [69], and those of
SMS-EMOA the ones suggested in [3]. Regarding FEMOEA, we found that a
good parameter setting is: L = 30, RL = 0.005 and tol = 10−7. The parameter
R1 coincides with the diameter of the search space.

For all the algorithms, the number M of points in the Pareto-front has
been set to 100 for bi-objective problems and 300 for tri-objective instances.
The same number of function evaluations employed in average (considering all
the runs) by FEMOEA for a given problem was used in each of the runs of
the other algorithms.
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3.3 Effectiveness measures

Effectiveness measures the accuracy and convergence of obtained solutions (the
quality of the final Pareto-fronts). Several indicators used in literature have
been utilized. To quantify effectiveness, we have proceeded as in literature and
all the algorithms have been run considering the same number of function eval-
uations. Since the analyzed algorithms are heuristics, every particular instance
has been run a given number of times (100 in our computational studies) for
each algorithm, and average values for every performance indicator have been
computed.

For the assessment and comparison of Pareto-set approximations, the dom-
inant method in literature, the quality indicator method, has been used. It
maps each Pareto-front approximation to a number, and performs an analyt-
ical study on the resulting numbers. Before detailing the quality indicators
employed, some definitions are needed.

Definition 4 A feasible vector y∗ ∈ S is said to be weakly efficient iff there
does not exist another feasible vector y ∈ S such that fl(y) ≤ fl(y

∗) for all l =
1, . . . ,m. If y1 and y2 are two feasible points and fl(y1) ≤ fl(y2), l = 1, . . . ,m,
then we say that y1 weakly dominates y2, and will be denoted by y1 � y2.

Definition 5 We say that set A weakly dominates set B, A � B, provided
that every point y2 ∈ B is weakly dominated by at least one point y1 ∈ A.

The corresponding definitions apply in the criterion space.
In the following we will give the formulae of several unary quality indica-

tors. A general formal definition follows.

Definition 6 A unary quality indicator is a function I : Ω → R which assigns
each Pareto-front approximation set PFap ∈ Ω a real value I(PFap).

It is desired that whenever an approximation set A of the Pareto-set is
preferable to an approximation set B with respect to weak Pareto dominance,
the indicator value for f(A) should be at least as good as the indicator value
for f(B). Such indicators are called Pareto compliant.

Definition 7 A quality indicator is said to be Pareto compliant iff for any
pair of approximation sets A,B, A � B implies that the indicator assigns a
better (or equal) indicator value to f(A).

Notice that many of the indicators employed in literature are not Pareto com-
pliant. They are usually designed to assess a single aspect of the approximation
(its proximity to the true Pareto-front, its spread, its evenness, etc). They are
still useful, since they may refine the preference structure of Pareto compliant
indicators.

Assume that we want to compare the quality of the outcomes generated by
Q stochastic algorithms (in this paper Q = 5) for a given problem. For each
algorithm q, q ∈ {1, . . . , Q}, eq runs are performed (in this paper, eq = 100
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for all q), generating the approximation sets PSq
1 , . . . , PSq

eq
(in the decision

space). Let us denote by SPS the set of all the approximation sets of the

Pareto set, SPS = {PS1
1 , . . . , PS1

e1
, . . . , PSQ

1 , . . . , PSQ
eQ

}.
In some of the indicators listed below the approximation sets of the Pareto-

front need to be compared to the true Pareto-front. However, the true Pareto-
front is not usually known or cannot be completely obtained. Then, a reference
set RS which approximates the true Pareto-front is used instead. In our stud-
ies, the reference set RS has been obtained as follows. All the approximation
sets in SPS are combined, and then, the dominated points are removed from
this union. The image of the remaining points forms the reference set.

Additionally, normalized objective values are used to allow different ob-
jectives to contribute equally to comparative indicator values. The standard
normalization is

fl(y)
′ =

fl(y)− z
(min)
l

z
(max)
l − z

(min)
l

,

where z
(min)
l (resp. z

(max)
l ) denotes the minimum (resp. maximum) value of fl

when considering all the solutions in SPS.
The most commonly used quality indicator in literature is hypervolume [64,

75]. This Pareto compliant indicator measures the hypervolume of the portion
of the criterion space that is weakly dominated by the approximation set. The
higher the hypervolume, the better the approximation. In order to measure
this quantity, a reference point that is dominated by all points is needed. For
a given problem, the same reference point has to be used for all the algorithms
and all the runs. In our computational studies, the point whose l-th component
is the maximum of all the l-th components of points in f(SPS) is considered.
It is an approximation of the Nadir point obtained when considering all the
approximations of the Pareto-front together.

Hypervolume can be thought of as a global quality indicator, in the sense
that it assesses the approximation set as a whole. On the other hand, proximity
indicators somehow measure the distance between the approximation set and
the reference set. In this paper we have used two of those measures, namely,
the average distance [14] and the unary additive epsilon indicator [73]. The
former is not Pareto compliant, and is given by

Dav(f(PSi)) =

∑

br∈RS minai∈PSi
d∞(f(ai), br)

|RS|

where

d∞(f(ai), br) = max
l=1,...,m

{|fl(a
i)− brl |/z

(max)
l − z

(min)
l }.

The latter is Pareto compliant and is computed as

Iǫ+(f(PSi)) = min
ǫ∈R

{∀br ∈ RS ∃ai ∈ PSi :

fl(a
i)− z

(min)
l

z
(max)
l − z

(min)
l

− ǫ ≤
brl − z

(min)
l

z
(max)
l − z

(min)
l

) ∀l ∈ {1 . . . ,m}}
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and gives the minimum distance by which f(PSi) needs to be translated in
each dimension in objective space such that RS is weakly dominated.

Other two evenness/diversity indicators are used in the studies. None of
them is Pareto compliant. They are the spread [16,47], another well-known
indicator, and the spacing [59], given by

TS(f(PSi)) =

√

√

√

√

1

|PSi|

∑

aj∈PSi

(Dj −D)2

D
2

whereD =
∑

aj∈PSi
Dj/|PSi| andDj is the Euclidean distance in the criterion

space between the solution f(aj) and its nearest solution, i.e.,

Dj = minai∈PSi
{ℓ2((

f1(a
j)−z

(min)
1

z
(max)
1 −zmin

1

, . . . ,
fm(aj)−z(min)

m

z
(max)
m −z

(min)
m

),

(
f1(a

i)−z
(min)
1

z
(max)
1 −z

(min)
1

, . . . ,
fm(ai)−z(min)

m

z
(max)
m −z

(min)
m

))}.

It is related to the generational distance [63].

3.4 About the improving method

This section researches, as a first step, whether the designed improving method,
i.e. Algorithm 3, really collaborates to approximate the solutions to the opti-
mal Pareto-front or, on the contrary, a simple optimization technique based
on random movements (Algorithm 4) is able to obtain similar results. To this
aim, only the first set of benchmark problems has been used, and FEMOEA
has been executed with both local searching methods. Only a global indica-
tor (the hypervolume), a proximity indicator (I1ǫ+) and a dispersion indicator
(spread) haven been computed.

Since FEMOEA is a heuristic, different runs may provide different so-
lutions. To take this effect into account, FEMOEA with every improving
method, has been run 100 times for each test problem, and average values
have been computed. In particular, the mean computing time (Av(T )) in sec-
onds, the mean number of function evaluations (Av(eval)), the mean hyper-
volume (Av(hyper)), the mean I1ǫ+ indicator (Av(I1ǫ+)) and the mean spread
(Av(Spr)), have been calculated. Table 1 summarizes those results: it gives
the average of the average values for the 20 problems of Set 1. As can be
observed, the results obtained by FEMOEA are better when Algorithm 3 is
considered as improving method. Notice that the number of consecutive suc-
cesses is larger when such an algorithm is taken into account, i.e. the number
of points which subsequently dominates the caller solution is greater. It means
that Algorithm 3 uses more function evaluations, and hence more computing
time than Algorithm 4, which usually finishes because the maximum number
of failures is reached (see step 3 in Algorithm 4). This fact can be observed
when comparing Av(T ) and Av(eval) columns.
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Table 1 Results obtained by FEMOEA with the different improving methods.

Av(T ) Av(eval) Av(hyper) Av(I1ǫ+) Av(Spr)

Algorithm 3 5.49e+01 5.66e+05 0.5381 0.0048 0.3245
Algorithm 4 4.78e+01 5.33e+05 0.5293 0.0075 0.4341
ModAlg4 2.55e+02 2.44e+06 0.5305 0.0071 0.4315

However, in order to clearly show that the results of FEMOEA are af-
fected by the selected improving method, Algorithm 4 has been modified by
omitting Step 11. This allows the method to significantly reduce the number
of counted consecutive failures, which obviously increases the number of at-
tempts to achieve non-dominated solutions. Algorithm 4 without step 11 will
be called ModAlg4. The results obtained by FEMOEA with ModAlg4 are also
shown in Table 1. As can be seen, the Pareto fronts provided by FEMOEA
are better when Algorithm 3 is considered, in spite of ModAlg4 executing a
larger number of function evaluations.

In what follows, only FEMOEA with Algorithm 3 is used in the compara-
tive studies, and it will be denoted simply by FEMOEA.

3.5 Comparison of the algorithms

In Table 2, the average results obtained by the different algorithms for both
sets of benchmark problems, and for all the quality indicators, are given.

Table 2 Average values. MOEA/D, SMS-EMOA, NSGA-II and SPEA2 were run with the
same number of functions evaluations as FEMOEA.

FEMOEA MOEA/D SMS-EMOA NSGA-II SPEA2
Hypervolume

Set 1 0.5381 0.5343 0.5373 0.5356 0.5357
Set 2 0.9041 0.8797 0.8785 0.8897 0.8821

Average distance
Set 1 1.0834 1.9625 2.4642 1.5086 1.3152
Set 2 5.1917 6.8059 4.5332 3.9534 4.2271

I1ǫ+
Set 1 0.0048 0.0135 0.0056 0.0050 0.0059
Set 2 0.0251 0.0442 0.0332 0.0288 0.0339

Spread
Set 1 0.3245 0.5316 0.3952 0.5165 0.3528
Set 2 1.0568 0.6228 0.9656 0.9190 0.8599

Spacing
Set 1 0.5240 1.0919 0.6358 0.7080 0.5451
Set 2 2.2734 0.8915 1.0685 0.9497 0.8692

First of all, we have to say that, regardless of the quality indicator consid-
ered, none of the algorithms obtains the best results in all the problems. Also,
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the algorithm obtaining the best result for more problems for a given quality
indicator is not necessarily the one with the best average value.

All this said, we can see that, on average, FEMOEA obtains the best
average hypervolume value (highlighted with gray background) for both sets
of benchmark problems. For Set 1 SMS-EMOA is the second best, and for Set
2 MOEA/D.

Concerning proximity indicators, FEMOEA obtains the smallest average
distance for Set 1, and the smallest I1ǫ+ for both sets. NSGA-II is the algorithm
with the smallest average distance for Set 2. For the average distance, the
second best algorithm for both sets is SPEA2, whereas for I1ǫ+ is NSGA-II.

As for the dispersion indicators, FEMOEA gets the best results for both
spread and spacing for Set 1, whereas for Set 2 MOEA/D gets the best results
for the spread and SPEA2 for the spacing. For the spacing indicator, NSGA-II
is defeated in all the particular problems.

4 Conclusions and future research

In this work, a new multi-objective optimization algorithm, FEMOEA, has
been proposed. Furthermore, a new technique (Algorithm 3) to improve the
quality of the obtained approximation of the Pareto-front and a new stop-
ping rule to reduce the computational effort have been also presented. These
tools, included in FEMOEA, can also be incorporated to any multi-objective
optimization algorithm.

FEMOEA has been compared to four algorithms widely referenced in lit-
erature, i.e. MOEA/D [69], SMS-EMOA [3], NSGA-II [16] and SPEA2 [72],
and using two sets of benchmark problems with 2 or 3 objectives, the first one
including problems with up to 3 variables, and the second one with problems
with 30 variables. The performance of these four algorithms has been analyzed
considering several metrics. More precisely, global indicators (hypervolume),
proximity indicators (average distance and I1ǫ+) and also dispersion indicators
(spread and spacing) have been computed. Results have shown that, on av-
erage, FEMOEA overcomes all the algorithms in terms of hypervolume and
I1ǫ+ for both sets of benchmark problems. It is also the best algorithm for the
other metrics on the first set of problems, although not on the second one.

In the future, FEMOEA will be adapted to solve constrained problems in
order to be able to solve any kind of multi-objective optimization problem.
Hitherto, little research has been done on the design of methods for the con-
straint handling in multi-objective optimization (see some examples in [8,16,
30,66]). Therefore, it is an important challenge to research on defining new
mechanisms able to solve the different conflicting objectives subject to various
constraints.

Another issue that is worth exploring is how to modify FEMOEA to handle
problems with more than three objectives. As it has been already pointed out,
the selection procedure should then be based on other measures of the density
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of solutions different from the crowding distance. But which is the best choice
for FEMOEA? And are other changes required?
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