Skip to main content
Log in

On the quantification of nomination feasibility in stationary gas networks with random load

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

The paper considers the computation of the probability of feasible load constellations in a stationary gas network with uncertain demand. More precisely, a network with a single entry and several exits with uncertain loads is studied. Feasibility of a load constellation is understood in the sense of an existing flow meeting these loads along with given pressure bounds in the pipes. In a first step, feasibility of deterministic exit loads is characterized algebraically and these general conditions are specified to networks involving at most one cycle. This prerequisite is essential for determining probabilities in a stochastic setting when exit loads are assumed to follow some (joint) Gaussian distribution when modeling uncertain customer demand. The key of our approach is the application of the spheric-radial decomposition of Gaussian random vectors coupled with Quasi Monte-Carlo sampling. This approach requires an efficient algorithmic treatment of the mentioned algebraic relations moreover depending on a scalar parameter. Numerical results are illustrated for different network examples and demonstrate a clear superiority in terms of precision over simple generic Monte-Carlo sampling. They lead to fairly accurate probability values even for moderate sample size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice Hall, New Jersey

    MATH  Google Scholar 

  • Bertsimas D, Tsitsiklis JN (1997) Introduction to linear optimzation. Athena Scientific, Belmont

    Google Scholar 

  • Brauchart JS, Saff EB, Sloan IH, Womersley RS (2014) QMC designs: optimal order Quasi Monte Carlo integration schemes on the sphere. Math Comput 83:2821–2851

    Article  MathSciNet  MATH  Google Scholar 

  • Deák I (2000) Subroutines for Computing normal probabilities of sets—computer experiences. Ann Oper Res 100:103–122

    Article  MathSciNet  MATH  Google Scholar 

  • Dick J, Pillichshammer F (2010) Digital nets and sequences: discrepancy theory and Quasi-Monte Carlo integration. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Dvijotham K, Vuffray M, Misra S, Chertkov M (2015) Natural gas flow solutions with guarantees: a monotone operator theory approach. Cornell University Library. arXiv:1506.06075v1

  • Fügenschuh A, Geissler B, Gollmer R, Hayn C, Henrion R, Hiller B, Humpola J, Koch T, Lehmann T, Martin A, Mirkov R, Römisch W, Rövekamp J, Schewe L, Schmidt M, Schultz R, Schwarz R, Schweiger J, Stangl C, Steinbach M, Willert B (2014) Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets. Energy Syst 5:449–473

    Article  Google Scholar 

  • Genz A, Bretz F (2009) Computation of multivariatenormal and t probabilities (Lecture notes in statistics), vol 195. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Kirchhoff G (1847) Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann Phys Chem 12:497–508

    Article  Google Scholar 

  • Koch T, Hiller B, Pfetsch M, Schewe L (eds) (2015) Evaluating gas network capacities. MOS-SIAM Series on optimization, vol 21

  • Misra S, Vuffray M, Chertkov M (2015) Maximum throughput problem in dissipative flow networks with application to natural gas systems. Cornell University Library. arXiv:1504.02370v1

  • Osiadacz A (1987) Simulation and analysis of gas networks. Gulf Publishing Company, Houston

    MATH  Google Scholar 

  • Pfetsch M, Fügenschuh A, Geissler B, Geissler N, Gollmer R, Hiller B, Humpola J, Koch T, Lehmann T, Martin A, Morsi A, Rövekamp J, Schewe L, Schmidt M, Schultz R, Schwarz R, Schweiger J, Stangl C, Steinbach M, Vigerske S, Willert B (2015) Validation of nominations in gas network optimization: models, methods, and solutions. Optim Methods and Softw 30:15–53

    Article  MathSciNet  MATH  Google Scholar 

  • Prékopa A (1995) Stochastic programming. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Ríos-Mercado RZ, Boras-Sánchez C (2015) Optimization problems in natural gas transportation systems: a state-of-the-art review. Appl Energy 147:536–555

    Article  Google Scholar 

  • Ríos-Mercado RZ, Wu S, Boyd EA, Scott LR (2000) Model relaxations for the fuel cost minimization of steady-state gas pipeline networks. Math Comput Model 31:197–220

    Google Scholar 

  • Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming. MPS-SIAM series on optimization, vol 9

  • Stangl C (2014) Modelle, Strukturen und Algorithmen für stationäre Flüsse in Gasnetzen. Dissertation, Fakultät für Mathematik, Universität Duisburg-Essen

  • Van Ackooij W, Henrion R (2014) Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions. SIAM J Optim 24:1864–1889

    Article  MathSciNet  MATH  Google Scholar 

  • Vuffray M, Misra S, Chertkov M (2015) Monotonicity of dissipative flow networks renders robust maximum profit problem tractable:general analysis and application to natural gas flow. Cornell University Library. arXiv:1504.000910v1

  • Wong P, Larson R (1968) Optimization of natural gas pipeline systems via dynamic programming. IEEE Trans Autom Control 13:475–481

    Article  Google Scholar 

  • Zucker RD, Biblarz B (2002) Fundamentals of gas dynamics, 2nd edn. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft for their support within Projects B04, B05 in the Sonderforschungsbereich/Transregio 154 Mathematical Modelling, Simulation and Optimization using the Example of Gas Networks. Moreover, we wish to express our gratitude to Open Grid Europe (OGE) for stimulating discussion and providing network data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Henrion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gotzes, C., Heitsch, H., Henrion, R. et al. On the quantification of nomination feasibility in stationary gas networks with random load. Math Meth Oper Res 84, 427–457 (2016). https://doi.org/10.1007/s00186-016-0564-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-016-0564-y

Keywords

Mathematics Subject Classification

Navigation