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An Investment Model with Switching Costs
and the Option to Abandon

Mihail Zervos∗, Carlos Oliveira† and Kate Duckworth

June 6, 2018

Abstract

We develop a complete analysis of a general entry-exit-scrapping model. In particular,
we consider an investment project that operates within a random environment and
yields a payoff rate that is a function of a stochastic economic indicator such as the price
of or the demand for the project’s output commodity. We assume that the investment
project can operate in two modes, an “open” one and a “closed” one. The transitions
from one operating mode to the other one are costly and immediate, and form a
sequence of decisions made by the project’s management. We also assume that the
project can be permanently abandoned at a discretionary time and at a constant sunk
cost. The objective of the project’s management is to maximise the expected discounted
payoff resulting from the project’s management over all switching and abandonment
strategies. We derive the explicit solution to this stochastic control problem that
involves impulse control as well as discretionary stopping. It turns out that this has
a rather rich structure and the optimal strategy can take eight qualitatively different
forms, depending on the problems data.

Keywords. Decision analysis, project management, real options, entry-exit-scrapping
decisions, optimal switching with discretionary stopping.

1 Introduction

Optimal sequential switching is an area of stochastic control that emerged from financial
economics in the context of real options (see Dixit and Pindyck [5] and Trigeorgis [28]).
Its numerous applications include the optimal scheduling of production in a real asset such
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as a power plant that can operate in distinct modes, say “open” and “closed”, as well as
the optimal timing of sequentially investing and disinvesting, e.g., in a given stock. The
references Bayraktar and Egami [1], Brekke and Øksendal [2], Carmona and Ludkovski [4],
Djehiche, Hamadène and Popier [7], Duckworth and Zervos [8], El Asri [9], El Asri and
Hamadène [10], Elie and Kharroubi [11], Gassiat, Kharroubi and Pham [12], Guo and Tome-
cek [13], Hamadène and Jeanblanc [14], Hamadène and Zhang [15], Johnson and Zervos [17],
Korn, Melnyk and Seifried [19], Lumley and Zervos [20], Ly Vath and Pham [21], Martyr [22],
Pham [23], Pham, Ly Vath and Zhou [24], René, Campi, Langrené and Pham [25], Song,
Yin and Zhang [26], Tang and Yong [27], Tsekrekos and Yannacopoulos [29], Zhang and
Zhang [31], and Zhang [32] provide an alphabetically ordered list of important contributions
in the area.

In this paper, we derive the complete solution to a problem of optimal sequential switching
that incorporates an additional permanent abandonment option. The model that we study
goes back to Brennan and Schwartz [3] who considered a firm’s decisions to operate, mothball
or abandon a mine producing a natural resource. A special case of the model is extensively
analysed in Dixit and Pindyck [5, Section 7.2] using heuristic arguments and numerical
examples in the context of several real options applications.

To fix ideas, we consider an investment project that operates within a random environ-
ment and yields a payoff rate that is a function of a stochastic economic indicator such as
the price of or the demand for the project’s output commodity. We model this economic
indicator by the geometric Brownian motion given by

dXt = bXt dt+
√

2σXt dWt, X0 = x > 0, (1)

where b and σ 6= 0 are given constants and W is a standard Brownian motion. We assume
that the investment project can operate in two modes, an “open” one and a “closed” one.
The transitions from one operating mode to the other one are immediate and form a sequence
of decisions made by the project’s management. We use a process Z with values in {0, 1} to
model such a sequence of decisions. In particular, we assume that Zt = 1 (resp., Zt = 0) if
the project is “open” (resp., “closed”) at time t. We also denote by z ∈ {0, 1} the project’s
mode at time 0, so that Z0 = z. The stopping times at which the jumps of Z occur are the
intervention times at which the project’s operating mode is changed. We assume that the
project can be permanently abandoned at a stopping time τ , which is an additional decision
variable. With each admissible strategy (Z, τ), we associate the performance criterion

Jz,x(Z, τ) = E
[ ∫ τ

0

e−rsh(Xs)Zs ds

−
∞∑
j=1

e−rT
1
j K11{T 1

j ≤τ} −
∞∑
j=1

e−rT
0
j K01{T 0

j ≤τ} − e
−rτK

]
, (2)

where (T 1
j ) (resp., (T 0

j )) is the sequence of times at which Z jumps from 0 to 1 (resp., from 1
to 0). Here, h : ]0,∞[→ R models the running payoff resulting from the investment project
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while this is in its “open” operating mode.1 The constants K1 > 0 and K0 > 0 are the costs
resulting from “switching” the project from its “closed” mode to its “open” one and vice
versa, whereas K ∈ R is the cost resulting from the decision to permanently abandon it.
Note that we allow for K to be negative, which corresponds to a situation where capital can
be recovered at abandonment.2 Also, on the event {T `j = τ}, ` = 1, 0, a cost of K` + K is
incurred at time T `j , which corresponds to the possibility that the project’s operating mode
can be switched just before the project is permanently abandoned.3 The objective is to
maximise the performance criterion Jz,x over the set Πz of all admissible strategies (Z, τ).
Accordingly, we define the value function v by

v(z, x) = sup
(Z,τ)∈Πz

Jz,x(Z, τ), for (z, x) ∈ {0, 1} × ]0,∞[. (3)

The related special case that arises if X = W , h(x) = x and K > 0 was solved by Zer-
vos [30]. Although the analysis of this related problem has shed some light on the qualitative
nature of the optimal strategy, its impact on the real options theory has been limited by the
rather unrealistic assumptions that the underlying economic indicator is a standard Brown-
ian motion rather than a geometric Brownian motion and that the running payoff function
h is linear. The existence of an optimal strategy in a more general context with finite time
horizon was established by Djehiche and Hamadène [6] using systems of Snell envelopes and
viscosity solutions. Despite its fundamental mathematical importance, this result is of rather
limited practical use because it does not provide a qualitative characterisation of the optimal
strategy or a genuinely practical way of implementing it.

We derive the complete solution to the problem that we study in an explicit form by
solving its Hamilton-Jacobi-Bellman (HJB) equation that takes the form of a pair of cou-
pled quasi-variational inequalities. In particular, we identify the five regions that partition
the state space {0, 1} × ]0,∞[ and characterise the optimal strategy, namely, the “produc-
tion” region, the “waiting” region, the “switch in” region, the “switch out” region and the
“abandonment” region. It turns out that the qualitative nature of the problem’s solution
is surprisingly rich and can take eight different forms, depending on the problem data. We
illustrate the results derived using the choice

h(x) = c+ xϑ, x > 0, (4)

for some constants c ∈ R, ϑ ∈ ]0, n[ 4, and some related numerical calculations (see Exam-
ples 1–9).

1Using a trivial re-parametrisation, we can allow for the project to yield a constant payoff rate while it
is in its “closed” mode (see Remark 1).

2For the same reason, it would make sense in some economic applications to allow for at least K0 to be
negative, as long as K1 + K0 > 0. However, such a relaxation would add most significant complexity and
would result in a substantially longer paper.

3Although this setting is convenient for the problem’s formulation, switching followed by immediate
abandonment is never optimal due to the strict positivity of K`, ` = 1, 0.

4The inequality ϑ < n, where n is defined by (15), is essential for the value function to be finite.
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The value that may be added by waiting before implementing a certain investment de-
cision is a central feature of the real options theory. In some of the cases that arise in our
analysis, value may be added by waiting before choosing one of two investment actions of a
qualitatively different nature, one partially reversible and one totally irreversible. To the best
of our knowledge, such a possibility has not been appreciated in the real options literature.
For instance, in Case II.3 in Section 4.2 (see also Figure 6), the part of the “production”
region identified by the set {1}× ]δ, γ[ separates the “abandonment” region from the “switch
out” region. In this case, if the initial condition of the state process is in this part of the state
space, then it is optimal to take no action before committing to either enter a perpetual
cycle of operating the investment project by optimally switching it between its two modes
or permanently abandoning the project, depending on whether the economic indicator X
first rises to the level γ or first drops to the level δ. Furthermore, the investment project has
infinite lifetime if the initial condition of the state process is in {1} × [γ,∞[ ∪ {0} × ]0,∞[
and finite lifetime with strictly positive probability otherwise. The situation becomes more
dramatic in Case III.2 in Section 4.3 (see also Figure 8). In this case, the part of the “pro-
duction” region identified by the set {1} × ]δ, γ[ separates the “abandonment” region from
the “switch out” region, while the whole “waiting” region {0} × ]ζ, α[ separates the “aban-
donment” region from the “switch in” region. If the initial condition of the state process is
in this part of the “production” region (resp., in the “waiting” region), then it is optimal
to take no action before committing to either switch the investment project to its “closed”
mode or permanently abandon it (resp., either switch the investment project to its “open”
mode or permanently abandon it). Contrary to the previous case, the investment project’s
lifetime is always finite with strictly positive probability, and with probability 1 if µ−σ2 ≤ 0.

The paper is organised as follows. We formulate the stochastic optimisation problem
that we solve in Section 2. In Section 3, we consider the problem’s HJB equation, we
discuss how it characterises the five regions that determine the optimal strategy and we recall
some related implications of the assumptions we make. We present the explicit solution
to the stochastic control problem in Section 4. Here, we organise the eight cases that
arise in three groups based on the analytical affinity of the different cases. The proofs
of Lemmas 1-8 can be found in the complete version of the paper that is available online
(https://arxiv.org/abs/1607.08406).

2 Problem formulation

We build the model that we study on a filtered probability space (Ω,F , (Ft),P) satisfying
the usual conditions and supporting a standard one-dimensional (Ft)-Brownian motion W .
We denote by Z the family of all (Ft)-adapted finite variation càglàd processes Z with values
in {0, 1}, and by S the set of all (Ft)-stopping times.

As we have discussed in the introduction, we consider an investment project that operates
within a random environment and yields a payoff rate that is a function of a stochastic
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economic indicator that is modelled by the geometric Brownian motion given by (1). We
assume that the investment project can operate in two modes, an “open” one and a “closed”
one. We use a process Z ∈ Z to model such a sequence of decisions: Zt = 1 (resp., Zt = 0) if
the project is “open” (resp., “closed”) at time t. We also denote by z ∈ {0, 1} the project’s
mode at time 0, so that Z0 = z. The stopping times at which the jumps of Z occur are the
intervention times at which the project’s operating mode is changed. If we define recursively

T 1
1 = inf {t ≥ 0 | ∆Zt = 1} , T 0

1 = inf {t ≥ 0 | ∆Zt = −1} ,
T 1
j+1 = inf

{
t > T 1

j | ∆Zt = 1
}

and T 0
j+1 = inf

{
t > T 0

j | ∆Zt = −1
}
, for j ≥ 1,

where ∆Zt = Zt+−Zt and we adopt the usual convention that inf ∅ =∞, then T 1
j (resp., T 0

j )
are the (Ft)-stopping times at which the project is switched from “closed” to “open” (resp.,
from “open” to “closed”). We also assume that the project can be permanently abandoned
at an (Ft)-stopping time τ . We define the set of all admissible strategies to be

Πz =
{

(Z, τ) | Z ∈ Z, Z0 = z, and τ ∈ S
}
.

With each admissible strategy (Z, τ) ∈ Πz, we associate the performance criterion given by
(2). The objective is to maximise the performance criterion Jz,x over Πz. Accordingly, we
define the value function v by (3).

For the resulting optimisation problem to be well-posed in the sense that there are no
integrability problems and there are no admissible strategies with payoff equal to ∞, we
make the following assumption.

Assumption 1 The running payoff function h : ]0,∞[→ R is right-continuous and increas-
ing, limx→∞ h(x) =∞, and

E
[∫ ∞

0

e−rt
∣∣h(Xt)

∣∣ dt] <∞ (5)

for every initial condition x > 0. Furthermore, K1, K0 > 0 and K ∈ R.

Remark 1 To simplify the exposition, we have assumed that the investment project yields
zero payoff while it is in its “closed” mode. In view of the calculation

Jz,x(Z, τ) = E
[ ∫ τ

0

e−rs
[
h̄(Xs)Zs − C(1− Zs)

]
ds

−K1

∞∑
j=1

e−rT
1
j 1{T 1

j ≤τ} −K0

∞∑
j=1

e−rT
0
j 1{T 0

j ≤τ} − e
−rτK̄

]
+
C

r
,

where C is a constant, h̄ = h− C and K̄ = K + C
r

, we can see that allowing for a constant
payoff rate while the project is in its “closed” mode can be accommodated trivially in the
model that we study.
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3 The Hamilton-Jacobi-Bellman (HJB) equation

In view of standard stochastic control theory that has been developed and used in references
we have discussed in the introduction, we expect that the value function of the problem we
study is given by

v(1, ·) = w1 and v(0, ·) = w0, (6)

where the functions w1, w0 : ]0,∞[→ R satisfy the coupled quasi-variational inequalities

max
{
σ2x2w′′1(x) + bxw′1(x)− rw1(x) + h(x), w0(x)− w1(x)−K0, −w1(x)−K

}
= 0, (7)

max
{
σ2x2w′′0(x) + bxw′0(x)− rw0(x), w1(x)− w0(x)−K1, −w0(x)−K

}
= 0, (8)

as well as appropriate growth conditions (see Zervos [30, Theorem 1] for a general verification
theorem). In view of the heuristics explaining the structure of this HJB equation, the state
space {0, 1} × ]0,∞[ splits into five pairwise disjoint regions5:

(i) The “production” region {1} × P, where P is an open subset of ]0,∞[. Whenever the
project is in its “open” mode and the process X takes values in P , it is optimal to keep the
project in its “open” mode, which is associated with production. In particular, P is the set
in which the function w1 satisfies the ODE

σ2x2w′′(x) + bxw′(x)− rw(x) + h(x) = 0. (9)

(ii) The “waiting” region {0}×W, where W is an open subset of ]0,∞[. If the project is in
its “closed” mode and the process X takes values inW , then it is optimal to take no action,
namely, keep the project on standby. The set W is characterised by the requirement that
w0 satisfies the ODE

σ2x2w′′(x) + bxw′(x)− rw(x) = 0. (10)

(iii) The “switch out” region {1}×Sout, where Sout is a closed subset of ]0,∞[. If the project
is in its “open” mode, then it is optimal to switch it to its “closed” mode as soon as X takes
values in Sout. The set Sout is characterised by the identity

w1(x) = w0(x)−K0 for all x ∈ Sout. (11)

(iv) The “switch in” region {0}×Sin, where Sin is a closed subset of ]0,∞[. It is optimal to
switch the project from its “closed” to its “open” mode as soon as X takes values in Sin. In
this case,

w0(x) = w1(x)−K1 for all x ∈ Sin. (12)

5In the description of the five possible regions, we characterise subsets of ]0,∞[ as open or closed relative
to the topology on ]0,∞[ that is the trace of the usual topology on R, for instance, ]0, a] = ]0,∞[ \ ]a,∞[
and [a,∞[ = ]0,∞[ \ ]0, a[ are closed sets.

6



(v) The “abandonment” region {0} × A0 ∪ {1} × A1, where A0, A1 are closed subsets of
]0,∞[. It is optimal to abandon permanently the project as soon as the state process hits
the abandonment region. Accordingly,

wi(x) = −K for all x ∈ Ai and i = 0, 1. (13)

The tactics associated with these regions exhaust all possible control actions. Therefore,

P ∪ Sout ∪ A1 =W ∪ Sin ∪ A0 = ]0,∞[.

We will solve the control problem that we study by identifying these regions and deriving
appropriate explicit solutions to the HJB equation (7)–(8). To this end, we will use the
following facts. It is well-known that the general solution to the Euler’s ODE (10) is given
by

w(x) = Axm +Bxn, (14)

for some constants A,B ∈ R, where the constants m < 0 < n are defined by

m,n =
1

2σ2

[
σ2 − b∓

√
(b− σ2)2 + 4σ2r

]
. (15)

If h : ]0,∞[→ R is a function satisfying the integrability condition in (5), then a particular
solution to the ODE (9) is the function Rh : ]0,∞[→ R given by

Rh(x) =
1

σ2(n−m)

[
xm
∫ x

0

s−m−1h(s) ds+ xn
∫ ∞
x

s−n−1h(s) ds

]
= E

[∫ ∞
0

e−rsh(Xs) ds

]
. (16)

A straightforward calculation reveals that

R′h(x) =
1

σ2(n−m)

[
mxm−1

∫ x

0

s−m−1h(s) ds+ nxn−1

∫ ∞
x

s−n−1h(s) ds

]
. (17)

Furthermore, for a choice of h as in Assumption 1,

Rh is increasing, (18)

h(0) := lim
x↓0

h(x) = r lim
x↓0

Rh(x) and lim
x→∞

Rh(x) =∞, (19)

lim
T→∞

e−rT E
[∣∣Rh(XT )

∣∣] = 0 (20)

and E
[∫ T

0

e−2rtX2
t

∣∣R′h(Xt)
∣∣2 dt] <∞ for all T > 0. (21)

All of these claims regarding the function Rh as well as several more general results can be
found in Knudsen, Meister and Zervos [18, Section 4], and Johnson and Zervos [16].
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Example 1 If h is the function given by (4), then Assumption 1 holds true if and only if
ϑ ∈ ]0, n[, in which case,

Rh(x) = − xϑ

σ2ϑ2 + (b− σ2)ϑ− r
+
c

r
.

We will illustrate our results numerically for the choices

b = 0, σ = 1, r = 2, ϑ = 1 and K1 = K0 =
1

2
,

which are associated with

m = −1, n = 2 and Rh(x) =
1

2
x+

c

2
.

4 The solution to the control problem

We now derive the solution to the stochastic control problem formulated in Section 2 by
identifying the sets P , W , Sout, Sin, A1, A0 we have discussed in the previous section and
deriving appropriate solutions to the HJB equation (7)–(8) using (9)–(13). To this end,
we first note that, if the investment project is in its “open” mode at time 0 and is never
switched to its “closed” mode or abandoned, then it will yield a total expected discounted
payoff equal to Rh(x) (see (16)). On the other hand, if the project is “closed” at time 0
and is never switched to its “open” operating mode or abandoned, then it will yield 0 total
expected discounted payoff. Since Rh is increasing and limx→∞Rh(x) = ∞ (see (18) and
(19)), it should be optimal to operate the project in its “open” mode whenever the process
X takes sufficiently high values. It follows that there exists M > 0 such that

]M,∞[ ⊆ P and ]M,∞[ ⊆ Sin.

If A1 6= ∅ (resp, A0 6= ∅), then A1 = ]0, δ] (resp., A0 = ]0, ζ]) for some δ > 0 (resp., ζ > 0)
because Rh is increasing. Furthermore, in view of the smoothness of a solution to the HJB
equation (7)–(8) that is required to identify it with the control problem’s value function and
the analysis in the previous section, we expect that the “abandonment” region does not have
any common boundary points with either the “switch in” region or the “switch out” region.

In light of these observations, we will show that the production and the waiting regions
P and W have the general forms

P = ]δ, γ[ ∪ ]β,∞[ and W = ]ζ, α[, (22)

for some 0 ≤ δ ≤ γ ≤ β < ∞ and 0 ≤ ζ ≤ α < ∞ (see Figures 1-8), where we adopt the
usual convention that, e.g., ]0, 0[ = ∅. In view of the solutions to the ODEs (9), (10) given
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in the previous section, the solution to the HJB equation (7)–(8) should be such that

w1(x) =


Rh(x), for all x ∈ ]0,∞[, if δ = γ = β = 0

Axm +Rh(x), for all x ∈ ]β,∞[, if γ < β or 0 < δ = γ = β

Γ1x
m + Γ2x

n +Rh(x), for all x ∈ ]δ, γ[, if 0 < δ < γ < β

 (23)

and

w0(x) =

{
Bxn, for all x ∈ ]0, α[, if ζ = 0 < α

∆1x
m + ∆2x

n, for all x ∈ ]ζ, α[, if 0 < ζ < α

}
, (24)

for some constants A, Γ1, Γ2, B, ∆1 and ∆2 because these are the only choices that are
consistent with the requirements of the verification theorem that we will use to identify the
solution to (7)–(8) with the control problem’s value function.

To determine free-boundary points such as δ, γ, β, ζ, α appearing in (22) and constants
such as A, Γ1, Γ2, B, ∆1, ∆2 appearing in (23)–(24), we will use the C1 continuity that we
expect the functions w1, w0 to have. In particular, we will require that w1, w0 should be C1

at every boundary point separating any two of the five regions. Using the expressions (16),
(17) and the identity σ2mn = −r, we will then derive appropriate systems of equations for
the unknown parameters. We will only provide the results of these calculations because they
are straightforward to replicate.

We have organised the presentation of the possible cases arising by splitting them in
three groups. Group I includes the cases in which it is not optimal to switch or abandon the
project if this is in its “open” mode. Group II contains all cases where it may be optimal to
switch or abandon the project if this is in its “open” mode but abandonment is not optimal
if the project is in its “closed” mode. Finally, Group III includes all remaining cases. The
proofs of Lemmas 1-8 can be found in the complete version of the paper that is available
online (https://arxiv.org/abs/1607.08406).

4.1 Group I: taking action is not optimal whenever the project is
in its “open” operating mode (P = ]0,∞[P = ]0,∞[P = ]0,∞[)

All cases in this group are such that P = ]0,∞[ and are associated with a solution to the
HJB equation (7)–(8) such that

w1(x) = Rh(x) for all x > 0. (25)

Case I.1 (Figure 1) In this case, it is optimal to immediately switch the investment project
to its “open” mode if it is originally “closed”. Accordingly,

P = Sin = ]0,∞[ and W = Sout = A0 = A1 = ∅,

9



and the functions w1 and w0 given by (25) and

w0(x) = Rh(x)−K1, for x > 0, (26)

should satisfy the HJB equation (7)–(8).

-

-

z = 0

z = 1

x

x

66666666666

w0(x) = Rh(x)−K1

(switch in)

(production)

w1(x) = Rh(x)

Figure 1. Illustration of the regions determining

the optimal strategy in the context of Case I.1

Lemma 1 The increasing functions w1, w0 defined by (25), (26) satisfy the HJB equation
(7)–(8) if and only if

max{rK1, rK1 − rK} ≤ h(0).

Example 2 If h is the function given by (4) and the problem data is as in Example 1, then
this case characterises the optimal strategy if and only if K ∈ R and max{1, 1− rK} ≤ c.

Case I.2 (Figure 2) In this case, it is optimal to switch the investment project to its “open”
mode if it is originally “closed” as long as the process X takes sufficiently high values. In
particular, there exists a boundary point α > 0 such that, if the project starts in its “closed”
mode, then it is optimal to wait for all long as X takes values strictly less than α and switch
the project to its “open” mode as soon as X takes a value exceeding α. Accordingly,

P = ]0,∞[, W = ]0, α[, Sin = [α,∞[ and Sout = A0 = A1 = ∅.

In view of (12) and (23)–(24), the functions w1 and w0 given by (25) and

w0(x) =

{
Bxn, if x < α

Rh(x)−K1, if x ≥ α

}
(27)

should satisfy the HJB equation (7)–(8).
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-

-

z = 0

z = 1

x

x

s
α

6 6 6 6 666

w0(x) = Rh(x)−K1

(switch in)

w0(x) = Bxn

(waiting)

(production)

w1(x) = Rh(x)

Figure 2. Illustration of the regions determining

the optimal strategy in the context of Case I.2

The requirement that w0 should be C1 at α yields the expressions

B =
1

σ2(n−m)

∫ ∞
α

s−n−1
[
h(s)− rK1

]
ds (28)

and

∫ α

0

s−m−1
[
h(s)− rK1

]
ds = 0. (29)

Lemma 2 Equation (29) has a unique solution α > 0 and the functions w1, w0 defined by
(25), (27), for B > 0 given by (28), are increasing and satisfy the HJB equation (7)–(8) if
and only if

0 ≤ K and max{−rK0, −rK} ≤ h(0) < rK1.

Example 3 If h is the function given by (4), then (28) and (29) are equivalent to

α =

(
−(ϑ−m)(rK1 − c)

m

)−1/m

and B =
α−n

σ2(n−m)

(
αϑ

n− ϑ
− rK1 − c

n

)
.

If the problem data is as in Example 1, then this case characterises the optimal strategy if
and only if 0 ≤ K and max{−1, −rK} ≤ c < 1. In particular, if c = 1

2
, then

α = 1 and B =
1

4
.

Case I.3 (Figure 3) This case differs from the previous one by the fact that abandoning
the investment project if it is in its “closed” mode and the process X takes values below a
given threshold level ζ becomes optimal. Accordingly,

P = ]0,∞[, A0 = ]0, ζ], W = ]ζ, α[, Sin = [α,∞[ and Sout = A1 = ∅,
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and, in view of (12)–(13) and (23)–(24), the required solution to the HJB equation (7)–(8)
should be given by the function w1 defined by (25) and the function w0 defined by

w0(x) =


−K, if x ≤ ζ

∆1x
m + ∆2x

n, if ζ < x < α

Rh(x)−K1, if x ≥ α

 . (30)

-

-

z = 0

z = 1

x

x

ss
αζ

6 6 6 6

w0(x) = Rh(x)−K1

(switch in)

w0(x) = ∆1xm + ∆2xn

(waiting)

w0(x) = −K

(abandonment)

(production)

w1(x) = Rh(x)

Figure 3. Illustration of the regions determining

the optimal strategy in the context of Case I.3

To determine the free-boundary points ζ, α and the parameters ∆1, ∆2, we require that w0

should be C1, which yields the expressions

f1(ζ, α) := m

∫ α

0

s−m−1
[
h(s)− rK1

]
ds− rKζ−m = 0, (31)

f2(ζ, α) := n

∫ ∞
α

s−n−1
[
h(s)− rK1

]
ds+ rKζ−n = 0, (32)

∆1 =
rKζ−m

σ2m(n−m)
and ∆2 = − rKζ−n

σ2n(n−m)
. (33)

Lemma 3 The system of equations (31)–(32) has a unique solution (ζ, α) such that 0 <
ζ < α and the functions w1, w0 defined by (25), (30), for ∆1 > 0, ∆2 > 0 given by (33), are
increasing and satisfy the HJB equation (7)–(8) if and only if

K < 0 and − rK ≤ h(0) < rK1 − rK.

Example 4 If h is the function given by (4), then the system of equations (31)–(32) takes
the form

(rK1 − c)α−m +
m

ϑ−m
αϑ−m − rKζ−m = 0,

(rK1 − c)α−n −
n

n− ϑ
α−(n−ϑ) − rKζ−n = 0.

12



If the problem data is as in Example 1, then this case characterises the optimal strategy if
and only if K < 0 and −rK ≤ c < 1− rK. In particular, if K = −1

2
and c = 1, then

ζ = 2−
1
3 , α = 2

1
3 and ∆1 = ∆2 = 2−

1
3 × 3−1.

4.2 Group II: taking action may be optimal if the project is in
its “open” mode but abandonment is not optimal whenever
the project is in its “closed” operating mode (P 6= ]0,∞[P 6= ]0,∞[P 6= ]0,∞[ and
A0 = ∅A0 = ∅A0 = ∅)

We now consider cases that complement the ones in the previous group and are characterised
by the non-optimality of abandonment whenever the project is in its “closed” mode. In all
of these cases, W = ]0, α[ and Sin = [α,∞[. Otherwise, the cases are differentiated by the
arrangement of the optimal tactics whenever the project is in its “open” mode.

Case II.1 (Figure 4) In this case, sequential switching of the investment project from
“open” to “closed” and vice versa is optimal, and abandonment is not part of the optimal
strategy. Whenever the project is in its “open” (resp., “closed”) mode, it is optimal to stay
there for as long as the process X takes values above (resp., below) a given threshold β
(resp., α) and switch to its “closed” (resp., “open”) mode as soon as X takes values below
(resp., above) the threshold β (resp., α). Of course, for such a strategy to be well-defined,
we must have β < α. Accordingly,

Sout = ]0, β], P = ]β,∞[, W = ]0, α[, Sin = [α,∞[ and A0 = A1 = ∅.

In view of (11)–(12) and (23)–(24), we can see that the required solution to the HJB equation
(7)–(8) should be given by the functions defined by

w1(x) =

{
Bxn −K0, if x ≤ β

Axm +Rh(x), if x > β

}
(34)

and w0(x) =

{
Bxn, if x < α

Axm +Rh(x)−K1, if x ≥ α

}
. (35)

13
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z = 0

z = 1

x

x

s
α

6 6 6 6

sβ
? ? ?

w0(x) = Axm +Rh(x)−K1

(switch in)

w0(x) = Bxn

(waiting)

(production)

w1(x) = Axm +Rh(x)
(switch out)

w1(x) = Bxn −K0

Figure 4. Illustration of the regions determining

the optimal strategy in the context of Case II.1

To determine the free-boundary points β, α and the parameters A, B, we once again require
that the functions w1, w0 should be C1, which yields the expressions

A = − 1

σ2(n−m)

∫ β

0

s−m−1
[
h(s) + rK0

]
ds, (36)

B =
1

σ2(n−m)

∫ ∞
α

s−n−1
[
h(s)− rK1

]
ds, (37)

and the system of equations

m

∫ α

β

s−m−1h(s) ds+ rK0β
−m + rK1α

−m = 0, (38)

n

∫ α

β

s−n−1h(s) ds+ rK0β
−n + rK1α

−n = 0. (39)

Lemma 4 The system of equations (38)–(39) has a unique solution (β, α) such that 0 <
β < α and the functions w1, w0 defined by (34), (35), for A > 0, B > 0 given by (36), (37),
are increasing and satisfy the HJB equation (7)–(8) if and only if

K0 ≤ K and h(0) < −rK0.

Example 5 If h is the function given by (4), then the system of equations (38)–(39) takes
the form

(rK1 − c)α−m + (rK0 + c)β−m +
m

ϑ−m
(
αϑ−m − βϑ−m

)
= 0,

(rK1 − c)α−n + (rK0 + c)β−n − n

n− ϑ
(
α−(n−ϑ) − β−(n−ϑ)

)
= 0,

while

A =
β−m

σ2(n−m)

(
rK0 + c

m
− βϑ

ϑ−m

)
and B =

α−n

σ2(n−m)

(
αϑ

n− ϑ
− rK1 − c

n

)
.
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If the problem data is as in Example 1, then this case characterises the optimal strategy if
and only if 1

2
≤ K and c < −1. In particular, if c = −2, then

β ' 0.537, α ' 5.866, A ' 0.131 and B ' 0.042.

Case II.2 (Figure 5) Abandoning the project if this is in its “open” mode and the state
process X takes values below a given threshold δ† instead of switching it to its “closed” mode
is the difference between this case and the previous one.6 Accordingly,

A1 = ]0, δ†], P = ]δ†,∞[, W = ]0, α[, Sin = [α,∞[ and Sout = A0 = ∅,

and the functions defined by

w1(x) =

{
−K, if x ≤ δ†

Axm +Rh(x), if x > δ†

}
(40)

and w0(x) =

{
Bxn, if x < α

Axm +Rh(x)−K1, if x ≥ α

}
(41)

should provide a solution to the HJB equation (7)–(8).

-

-

z = 0

z = 1

x

x

s
α

6 6 6 6

sδ†

w0(x) = Axm +Rh(x)−K1

(switch in)

w0(x) = Bxn

(waiting)

(production)

w1(x) = Axm +Rh(x)

(abandonment)

w1(x) = −K

Figure 5. Illustration of the regions determining

the optimal strategy in the context of Case II.2

Requiring that w1, w0 should be C1, we obtain the expressions

A = − 1

σ2(n−m)

∫ δ†

0

s−m−1
[
h(s) + rK

]
ds, (42)

B =
1

σ2(n−m)

∫ ∞
α

s−n−1
[
h(s)− rK1

]
ds, (43)

6We use the notation δ† rather than the simpler δ because this point will appear in assumptions that we
will make in later cases.
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and the system of equations ∫ ∞
δ†

s−n−1
[
h(s) + rK

]
ds = 0, (44)

f(δ, α) := m

∫ α

δ†

s−m−1
[
h(s)− rK1

]
ds+ r(K1 +K)δ−m† = 0. (45)

The following result involves the point

K?
0 = −K1 −

mx̂m

r

∫ α

x̂

s−m−1
[
h(s)− rK1

]
ds, (46)

where x̂ solves the equation

mx̂m
∫ α

x̂

s−m−1
[
h(s)− rK1

]
ds− nx̂n

∫ α

x̂

s−n−1
[
h(s)− rK1

]
ds = 0. (47)

Lemma 5 The system of equations (44)–(45) has a unique solution (δ†, α) such that 0 <
δ† < α, while equation (47) has a unique solution x̂ ∈ ]δ†, α[. Given these solutions, the
functions w1, w0 defined by (40), (41), for A > 0, B > 0 given by (42), (43), are increasing
and satisfy the HJB equation (7)–(8) if and only if

0 ≤ K

and (
K < K0 and − rK0 ≤ h(0) < −rK

)
or

(
K?

0 ≤ K0 and h(0) < −rK0

)
,

where K?
0 ∈ ]K,−r−1h(0)[, which depends on all problem data except K0, is defined by (46).

Example 6 If h is the function given by (4), then the system of equations (44)–(45) takes
the form

δϑ† = −(n− ϑ)(c+ rK)

n
,

(rK1 − c)α−m +
m

ϑ−m
αϑ−m + (rK + c)δ−m† − m

ϑ−m
δϑ−m† = 0,

while

A = −
ϑ(rK + c)δ−m†
r(ϑ−m)

and B =
α−n

σ2(n−m)

(
αϑ

n− ϑ
− rK1 − c

n

)
.

The critical point K?
0 defined by (46) admits the expression

K?
0 = −K1 +

rK1 − c
r

[
1−

(
x̂

α

)m]
− m

r(ϑ−m)
x̂m(αϑ−m − x̂ϑ−m) ∈ ]K,−r−1c[,
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where x̂ is the unique solution to the equation

(rK1 − c)
[(

x̂

α

)m
−
(
x̂

α

)n]
+

m

ϑ−m
αϑ−mx̂m +

n

n− ϑ
α−(n−ϑ)x̂n − ϑ(n−m)

(n− ϑ)(ϑ−m)
x̂ϑ = 0.

If the problem data is as in Example 1, then this case characterises the optimal strategy if
and only if either (0 ≤ K < 1

2
and −1 ≤ c < −rK) or (0 ≤ K, K?

0 ≤ 1
2

and c < −1). If
K = 0 and c = −1, then

δ† =
1

2
, α = 2 +

√
13

2
, A =

1

8
and B ' 0.065.

while, if K = 1
4

and c = −2, then

x̂ ' 0.808, K?
0 = 0.276, δ† =

3

4
, α = 3 +

√
117

4
, A =

9

32
and B ' 0.043.

Case II.3 (Figure 6) The last case in this group is a hybrid of the previous two. If the
investment project is initially in its “open” mode and the initial value x of the process X is
greater than a threshold γ or it is initially in its “closed” mode, then it is optimal to follow
the same strategy as in Case II.1, which is determined by two thresholds β < α such that
γ < β. In this case, the project is sequentially switched from “open” to “closed” and vice
versa, and it is never abandoned. On the other hand, if the project is initially in its “open”
mode and the initial value x of X is strictly less than γ, then it is optimal to abandon the
project as soon as X falls below another threshold δ < γ before hitting γ. Otherwise, it is
optimal to switch the project to its “closed” mode if X rises to γ before hitting δ, and then
maintain the sequential switching strategy defined by β and α. Accordingly,

A1 = ]0, δ], P = ]δ, γ[ ∪ ]β,∞[, Sout = [γ, β],

W = ]0, α[, Sin = [α,∞[ and A0 = ∅.

In view of (11)–(13) and (23)–(24), we can see that the required solution to the HJB equation
(7)–(8) should be given by the functions defined by

w1(x) =


−K, if x ≤ δ

Γ1x
m + Γ2x

n +Rh(x), if δ < x < γ

Bxn −K0, if γ ≤ x ≤ β

Axm +Rh(x), if x > β

 (48)

and w0(x) =

{
Bxn, if x < α

Axm +Rh(x)−K1, if x ≥ α

}
. (49)
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z = 0
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w0(x) = w1(x)−K1
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Figure 6. Illustration of the regions determining

the optimal strategy in the context of Case II.3

To determine Γ1, Γ2, A, B, δ, γ, β and α we require that w1, w0 should be C1 at the free-
boundary points δ, γ, β and α. In view of this requirement, we can verify that δ, γ, β and
α should satisfy the equations (38), (39),

F1(δ, γ) := m

∫ γ

δ

s−m−1
[
h(s) + rK0

]
ds+ r(K −K0)δ−m = 0 (50)

and F2(δ, γ) := n

∫ γ

δ

s−n−1
[
h(s) + rK0

]
ds+ r(K −K0)δ−n

+ n

∫ ∞
β

s−n−1
[
h(s) + rK0

]
ds = 0, (51)

while A, B, Γ1 and Γ2 should be given by (36), (37),

Γ1 = − 1

σ2(n−m)

∫ γ

0

s−m−1
[
h(s) + rK0

]
ds (52)

and Γ2 = − 1

σ2(n−m)

∫ β

γ

s−n−1
[
h(s) + rK0

]
ds. (53)

Lemma 6 The system of equations (38), (39), (50) and (51) has a unique solution (δ, γ, β, α)
such that 0 < δ < γ < β < α and the functions w1, w0 defined by (48), (49), for A > 0,
B > 0, Γ1 > 0, Γ2 > 0 given by (36), (37), (52), (53), are increasing and satisfy the HJB
equation (7)–(8) if and only if

0 ≤ K, h(0) < −rK0 and K < K0 < K?
0 ,

where K?
0 ∈ ]K,−r−1h(0)

[
, which depends on all problem data except K0, is as in Lemma 5.

We note that the conditions of this result can all hold true only if h(0) < 0.
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Example 7 If h is the function given by (4), then the system of equations (50)–(51) takes
the form

(rK0 + c)(γ−m − δ−m)− m

ϑ−m
(γϑ−m − δϑ−m) + r(K0 −K)δ−m = 0,

(rK0 + c)(δ−n − γ−n + β−n) +
n

n− ϑ
(δ−(n−ϑ) − γ−(n−ϑ) + β−(n−ϑ))− r(K0 −K)δ−n = 0,

while

Γ1 =
γ−m

σ2(n−m)

(
rK0 + c

m
− γϑ

ϑ−m

)
and Γ2 = − 1

σ2(n−m)

[
rK0 + c

n

(
γ−n − β−n

)
+

1

n− ϑ
(
γ−(n−ϑ) − β−(n−ϑ)

)]
.

If the problem data is as in Example 1, then this case characterises the optimal strategy if
and only if 0 ≤ K < 1

2
, c < −1 and 1

2
< K?

0 , where K?
0 is as in Example 6. In particular, if

K = 5
11

and c = −4, then

x̂ ' 1.706, K?
0 ' 0.524, δ ' 0.279, γ ' 1.348, β ' 1.740, α ' 9.194,

A ' 1.235, B ' 0.026, Γ1 ' 1.045 and Γ2 ' 0.054.

4.3 Group III: the remaining cases

We now consider the remaining cases. These are characterised by the fact that it may be
optimal to abandon the investment project when this is in its “closed” mode.

Case III.1 (Figure 7) This case is the modification of Case II.2 (see Figure 5) that arises if
abandonment when the project is in its “closed” mode becomes part of the optimal tactics.
In this case,

A1 = ]0, δ†], P = ]δ†,∞[, A0 = ]0, ζ], W = ]ζ, α[, Sin = [α,∞[ and Sout = ∅,

and the functions defined by

w1(x) =

{
−K, if x ≤ δ†

Axm +Rh(x), if x ≥ δ†

}
(54)

and w0(x) =


−K, if x ≤ ζ

∆1x
m + ∆2x

n, if ζ ≤ x ≤ α

Axm +Rh(x)−K1, if x ≥ α

 (55)

should provide a solution to the HJB equation (7)–(8).
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w0(x) = ∆1xm + ∆2xn

(waiting)

w1(x) = −K

(abandonment)

(production)

w1(x) = Axm +Rh(x)

(abandonment)

w1(x) = −K

Figure 7. Illustration of the regions determining the optimal strategy

in the context of Case III.1 (ζ can be smaller as well as larger than δ†)

To determine A, ∆1, ∆2, δ†, ζ and α we require that w1, w0 should be C1 at the free-
boundary points δ†, ζ and α. In view of this requirement, we can verify that δ†, ζ and α
should satisfy the system of equations

G1(δ†, ζ, α) := m

∫ α

δ†

s−m−1
[
h(s)− rK1

]
ds+ r(K1 +K)δ−m† − rKζ−m = 0 (56)

and G2(δ†, ζ, α) := −n
∫ α

δ†

s−n−1
[
h(s)− rK1

]
ds− r(K1 +K)δ−n† + rKζ−n = 0, (57)

where δ† is given by (44), while, A, ∆1 and ∆2 should be given by (42),

∆1 = A+
1

σ2(n−m)

∫ α

0

s−m−1
[
h(s)− rK1

]
ds =

rKζ−m

σ2m(n−m)
(58)

and ∆2 =
1

σ2(n−m)

∫ ∞
α

s−n−1
[
h(s)− rK1

]
ds = − rKζ−n

σ2n(n−m)
. (59)

The following result involves the equation

G2

(
δ†, δ†, α(K1);K1

)
= 0, (60)

for K1, in which we make explicit the dependence of α and G2 on K1 (note that δ† does not
depend on K1). Also, it involves the point

K†0 = −K1 −
nx̂n

r

∫ α

x̂

s−n−1
[
h(s)− rK1

]
ds, (61)

where x̂ solves the equation

mx̂m
∫ α

x̂

s−m−1
[
h(s)− rK1

]
ds− nx̂n

∫ α

x̂

s−n−1
[
h(s)− rK1

]
ds = 0. (62)
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Lemma 7 The system of equations (44), (56) and (57) has a unique solution (δ†, ζ, α) such

that 0 < δ† ∧ ζ ≤ δ† ∨ ζ < α. If h(δ†) < 0, then there exists a unique solution K†1 > 0 to

(60) that depends on all of the problem data except K1, K0. If h(δ†) < 0 and K < K†1, then

equation (62) has a unique solution x̂ ∈ ]δ†, α[ and the point K†0 > 0 depends on all of the

problem data except K0. Furthermore, limK1↑K†
1
K†0(K1) = 0, and the free-boundary points ζ

and δ†, which do not depend on K0, are such that

0 < ζ < δ† if h(δ†) < 0 and K1 < K†1, (63)

0 < ζ = δ† if h(δ†) < 0 and K1 = K†1 (64)

and 0 < δ† < ζ if h(δ†) ≥ 0 or
(
h(δ†) < 0 and K1 > K†1

)
. (65)

The functions w1, w0 defined by (54), (55), for A > 0, ∆1 > 0, ∆2 > 0 given by (42), (58),
(59), are increasing and satisfy the HJB equation (7)–(8) if and only if

K < 0, h(0) < −rK

and (
−rK0 ≤ h(0)

)
or

(
h(0) < −rK0 and h(δ†) ≥ 0

)
or

(
h(0) < −rK0, h(δ†) < 0 and K1 ≥ K†1

)
or

(
h(0) < −rK0, h(δ†) < 0, K1 < K†1 and K0 ≥ K†0

)
.

Example 8 If h is the function given by (4), then the system of equations (56)–(57) takes
the form

(rK1 − c)(α−m − δ−m† ) +
m

ϑ−m
(αϑ−m − δϑ−m† ) + r(K1 +K)δ−m† − rKζ−m = 0,

(rK1 − c)(α−n − δ−n† )− n

n− ϑ
(α−(n−ϑ) − δ−(n−ϑ)

† ) + r(K1 +K)δ−n† − rKζ
−n = 0,

where δ† admits the expression given in Example 6. The equation (60) that the critical point

K†1 satisfies if h(δ†) < 0 takes the form

c
[
α−n(K1)− δ−n†

]
+

n

n− ϑ
[
α−(n−ϑ)(K1)− δ−(n−ϑ)

†
]
−K1α

−n(K1) = 0,

while that critical point K?
0 defined by (61) if h(δ†) < 0 admits the expression

K?
0 = −K1 +

rK1 − c
r

[
1−

(
x̂

α

)n]
+

n

r(n− ϑ)
x̂n(α−(n−ϑ) − x̂−(n−ϑ)),
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where x̂ is the unique solution to the equation

(rK1 − c)
[(

x̂

α

)m
−
(
x̂

α

)n]
+

m

ϑ−m
αϑ−mx̂m +

n

n− ϑ
α−(n−ϑ)x̂n − ϑ(n−m)

(n− ϑ)(ϑ−m)
x̂ϑ = 0.

If the problem data is as in Example 1, then this case characterises the optimal strategy
if and only if (K < 0 and −1 ≤ c < −rK) or (K < 0 and rK ≤ c < −1) or (K < 0,
c < min{−1, rK} and K†1 ≤ 1

2
) or (K < 0, c < min{−1, rK}, 1

2
< K†1 and K†0 ≤ 1

2
). If

K = −1
2

and c = 0, then

δ† =
1

2
, ζ ' 1.283, α ' 2.678, A =

1

8
, ∆1 ' 0.428 and ∆2 ' 0.101,

if K = −1 and c = −3
2
, then

δ† =
7

4
, ζ ' 2.625, α ' 5.250, A =

49

32
, ∆1 ' 1.750 and ∆2 ' 0.048,

if K = −1
2

and c = −3
2
, then

K†1 ' 0.007, δ† =
5

4
, ζ ' 1.798, α ' 4.771,

A =
25

32
, ∆1 ' 0.599 and ∆2 ' 0.052,

while, if K = −1
2

and c = −4, then

K†1 ' 0.595, x̂ ' 2.542, K†0 ' 5× 10−4, δ† =
5

2
, ζ ' 2.440, α ' 8.336,

A =
25

8
, ∆1 ' 0.813 and ∆2 ' 0.028.

Case III.2 (Figure 8) This case is the modification of Case II.3 that arises when it is
optimal to abandon the project when this is in its “closed” mode and the process X takes
sufficiently low values. In this case,

A1 = ]0, δ], P = ]δ, γ[ ∪ ]β,∞[, Sout = [γ, β],

A0 = ]0, ζ], W = ]ζ, α[ and Sin = [α,∞[,

and the required solution to the HJB equation (7)–(8) should be given by the functions

w1(x) =


−K, if x ≤ δ

Γ1x
m + Γ2x

n +Rh(x), if δ < x < γ

∆1x
m + ∆2x

n −K0, if γ ≤ x ≤ β

Axm +Rh(x), if x > β

 (66)

and w0(x) =


−K, if x ≤ ζ

∆1x
m + ∆2x

n, if ζ < x < α

Axm +Rh(x)−K1, if x ≥ α

 . (67)
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-

-

z = 0

z = 1

x

x

s
α

6 6

sδ sγ
s
ζ

? ?

sβ

w0(x) = w1(x)−K1

(switch in)

w0(x) = ∆1xm + ∆2xn

(waiting)

(abandonment)

w1(x) = −K

(switch out)

w1(x) = w0(x)−K0

(production)

Γ1xm + Γ2xn +Rh(x)

w1(x) =

(production)

w1(x) = Axm +Rh(x)

(abandonment)

w0(x) = −K

Figure 8. Illustration of the regions determining

the optimal strategy in the context of Case III.2

Once again, we specify Γ1, Γ2, A, ∆1, ∆2, ζ, δ, γ, β and α by requiring that the functions
w1, w0 should be C1. This requirement implies that the free-boundary points ζ, δ, γ, β and
α should satisfy the system of equations given by (38), (39),

G3(δ, γ, β) := n

∫ ∞
δ

s−n−1
[
h(s) + rK

]
ds− n

∫ β

γ

s−n−1
[
h(s) + rK0

]
ds

= 0, (68)

G4(ζ, β) := n

∫ ∞
β

s−n−1
[
h(s) + rK0

]
ds+ rKζ−n

= 0 (69)

and G5(ζ, δ, γ) := m

∫ γ

0

s−m−1
[
h(s) + rK0

]
ds−m

∫ δ

0

s−m−1
[
h(s) + rK

]
ds− rKζ−m

= 0, (70)

while the constants Γ1, Γ2, A, ∆1, ∆2 should be given by

Γ1 = − 1

σ2(n−m)

∫ δ

0

s−m−1
[
h(s) + rK

]
ds, (71)

Γ2 = − 1

σ2(n−m)

∫ ∞
δ

s−n−1
[
h(s) + rK

]
ds, (72)

∆1 =
rKζ−m

σ2m(n−m)
, ∆2 = − rKζ−n

σ2n(n−m)
(73)

and A = ∆1 −
1

σ2(n−m)

∫ α

0

s−m−1
[
h(s)− rK1

]
ds. (74)

Lemma 8 The system of equations (38), (39), (68), (69), (70) has a unique solution
(δ, γ, β, α) such that 0 < δ < γ < β < α and the functions w1, w0 defined by (66), (67), for
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Γ1 > 0, Γ2 > 0, A > 0, ∆1 > 0, ∆2 > 0 given by (71)–(74), are increasing and satisfy the
HJB equation (7)–(8) if and only if

K < 0, h(0) < −rK0, h(δ†) < 0, K1 < K†1 and K0 < K†0,

where δ† > 0 is the unique solution to (44), and K†1 > 0 (resp., K†0 > 0), which depends on
all problem data except K1, K0 (resp., K0) is as in Lemma 7.

Example 9 If h is the function given by (4), then the system of equations (56)–(57) takes
the form

(rK + c)δ−n +
n

n− ϑ
(δ−(n−ϑ) − γ−(n−ϑ) + β−(n−ϑ)) + (rK0 + c)(β−n − γ−n) = 0,

(rK0 + c)β−n +
n

n− ϑ
β−(n−ϑ) + rKζ−n = 0,

(rK + c)δ−m − (rK0 + c)γ−m − m

ϑ−m
(δϑ−m − γϑ−m)− rKζ−m = 0,

while

Γ1 = − δ−m

σ2(n−m)

(
−rK + c

m
+

δϑ

ϑ−m

)
, Γ2 = − δ−n

σ2(n−m)

(
rK + c

n
+

δϑ

n− ϑ

)
and A = ∆1 −

α−m

σ2(n−m)

(
rK1 − c
m

+
αϑ

ϑ−m

)
.

If the problem data is as in Example 1, then this case characterises the optimal strategy if
and only if K < 0, c < min{−1, rK}, 1

2
< K†1 and 1

2
< K†0. If K = − 1

50
and c = −13, then

K†1 ' 392.048, x̂ ' 9.756, K†0 ' 0.501,

ζ ' 0.806, δ ' 6.514, γ ' 7.924, β ' 7.942, α ' 22.275,

Γ1 ' 21.242, Γ2 ' 5× 10−5, ∆1 ' 0.011, ∆2 ' 0.010 and A ' 21.266.

4.4 The main result

The following table summarises the conditions on the problem data that determine the
optimality of each of the cases that we have studied in Sections 4.1-4.3. An inspection of the
table reveals that these mutually exclusive conditions exhaust the whole range of possible
problem data. Therefore, Lemmas 1-8 provide a complete solution to the HJB equation
(7)–(8).
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Conditions on K1 > 0, K0 > 0, K ∈ R and h(·) Case w1, w0

0 ≤ K

rK1 ≤ h(0) I.1, Lemma 1 (25), (26)

max{−rK0, −rK} ≤ h(0) < rK1 I.2, Lemma 2 (25), (27)

K0 ≤ K and h(0) < −rK0 II.1, Lemma 4 (35), (34)

K < K0 and −rK0 ≤ h(0) < −rK II.2, Lemma 5 (40), (41)

K < K?
0 ≤ K0 and h(0) < −rK0 II.2, Lemma 5 (40), (41)

K < K0 < K?
0 and h(0) < −rK0 II.3, Lemma 6 (48), (49)

K < 0

rK1 − rK ≤ h(0) I.1, Lemma 1 (25), (26)

−rK ≤ h(0) < rK1 − rK I.3, Lemma 3 (25), (30)

−rK0 ≤ h(0) < −rK III.1, Lemma 7 (54), (55)

h(0) < −rK0 and[
h(δ†) ≥ 0 or

(
h(δ†) < 0 and K1 ≥ K†1

)
III.1, Lemma 7 (54), (55)

or
(
h(δ†) < 0, K1 < K†1 and K0 ≥ K†0

)]
h(0) < −rK0,

III.2, Lemma 8 (66), (67)
h(δ†) < 0, K1 < K†1 and K0 < K†0

Theorem 9 Consider the stochastic optimal control problem formulated in Section 2 and
suppose that Assumption 1 holds true. The value function v is given by (6), where w1, w0

are as in Lemmas 1-8. In each of the possible cases arising, the optimal strategy (Z◦, τ ◦) is
as discussed in the proof below.

Proof. Given any initial condition (z, x) ∈ {0, 1}× ]0,∞[ and any strategy (Z, τ) ∈ Πz, the
monotone convergence theorem and (5) in Assumption 1 imply that limm→∞ Jz,x(Z, τ∧Tm) =
Jz,x(Z, τ) for every sequence of times (Tm) such that Tm →∞. By construction, there exists
a constant C > 0 such that∣∣w(z, x)

∣∣ ≤ C
(
1 +

∣∣Rh(x)
∣∣) and

∣∣wx(z, x)
∣∣ ≤ C

(
1 +

∣∣R′h(x)
∣∣) for all x > 0,

where w(z, x) = zw1(x) + (1− z)w0(x). These estimates, (20) and (21) imply that

lim
T→∞

E
[
e−rT

∣∣w(ZT , XT )
∣∣] = 0,
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and that the process M defined by

MT =

∫ T

0

e−rtXtwx(Zt, Xt) dWt

is a square integrable martingale for every switching strategy Z ∈ Z. Furthermore, w1, w0

are C1 as well as C2 outside a finite set, and they satisfy the HJB equation (7)–(8) in the
classical sense. In view of these observations, we can see that Theorem 1 in Zervos [30]
implies that w = v as long as there exists an optimal strategy (Z◦, τ ◦), namely, a switching
strategy Z◦ ∈ Z such that

σ2X2
t wxx(Z

◦
t ,Xt) + bXtwx(Z

◦
t , Xt)− rw(Z◦t , Xt) + Z◦t h(Xt) = 0,[

w(1, Xt)− w(0, Xt)−K1

]
(∆Z◦t )+ = 0

and
[
w(0, Xt)− w(1, Xt)−K0

]
(∆Z◦t )− = 0,

for all t ≤ τ ◦, where

τ ◦ = inf {t ≥ 0 | w(Z◦t , Xt) = −K} .

Such a switching strategy is constructed in Duckworth and Zervos [8, Theorem 5] and Zer-
vos [30, Theorem 1] for Cases I.1, I.2, II.1, II.2 and II.3. For the remaining cases, it can be
constructed using similar arguments. �

5 Conclusion

In this paper, we considered a general entry-exit-scrapping model with positive switching
costs. We fully characterised the optimal switching and abandonment strategy by deriving
an explicit solution to the control problem’s HJB equation. It turned out that the optimal
strategy can take eight qualitatively different forms, depending on the problem data. The
analysis of these cases gives rise to the observation that value may be added by waiting before
choosing between two investment actions of a qualitatively different nature (one partially re-
versible and one totally irreversible). Furthermore, it suggests that having “waiting” regions
to separate regions of the state space associated with different types of actions should be a
generic rather than an exceptional property of the optimal strategy in real option models.

Acknowledgments

We thank an anonymous referee and an associate editor for comments and suggestions that
enhanced our original manuscript.

The research of Carlos Oliveira was supported by Fundação para a Ciência e Tecnologia
through the grant SFRH/BD/102186/2014.

26



References

[1] Bayraktar E, Egami MA (2010) On the one-dimensional optimal switching problem.
Math Oper Res 35:140–159

[2] Brekke KA, Øksendal, B (1994) Optimal switching in an economic activity under un-
certainty. SIAM J Control Optim 32:1021–1036

[3] Brennan MJ, Schwartz ES (1985) Evaluating natural resource investments, J Bus
58:135–157

[4] Carmona R, Ludkovski M (2008) Pricing asset scheduling flexibility using optimal
switching. Appl Math Finance 15:405–447

[5] Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press

[6] Djehiche B, Hamadène S (2009) On a finite horizon starting and stopping problem with
risk of abandonment. Int J Theor Appl Finance 12:523–543

[7] Djehiche B, Hamadène S, Popier A (2009/10) A finite horizon optimal multiple switching
problem. SIAM J Control Optim 48:3659–3669

[8] Duckworth K, Zervos M (2001) A model for investment decisions with switching costs.
Ann Appl Probab 11:239–260

[9] El Asri B (2010) Optimal multi-modes switching problem in infinite horizon. Stoch Dyn
10:231–261

[10] El Asri B, Hamadène S (2009) The finite horizon optimal multi-modes switching prob-
lem: the viscosity solution approach. Appl Math Optim 60:213–235

[11] Elie R, Kharroubi I (2014) BSDE representations for optimal switching problems with
controlled volatility. Stoch Dyn 14, 1450003, 15pp

[12] Gassiat P, Kharroubi I, Pham H (2012) Time discretization and quantization methods
for optimal multiple switching problem. Stochastic Process Appl 122:2019–2052

[13] Guo X, Tomecek P (2008) Connections between singular control and optimal switching,
SIAM J Control Optim 47:421–443

[14] Hamadène S, Jeanblanc M (2007) On the starting and stopping problem: Application
in reversible investments. Math Oper Res 32:182–192

[15] Hamadène S, Zhang J (2010) Switching problem and related system of reflected back-
ward SDEs. Stochastic Process Appl 120:403–426

27



[16] Johnson TC, Zervos M (2007) The solution to a second order linear ordinary differential
equation with a non-homogeneous term that is a measure. Stochastics 79:363–382

[17] Johnson TC, Zervos M (2010) The explicit solution to a sequential switching problem
with non-smooth data. Stochastics 82:69–109

[18] Knudsen TS, Meister B, Zervos M (1998) Valuation of investments in real assets with
implications for the stock prices. SIAM J Control Optim 36:2082–2102

[19] Korn R, Melnyk Y, Seifried FT (2017) Stochastic impulse control with regime-switching
dynamics. European J Oper Res 260:1024–1042

[20] Lumley RR, Zervos M (2001) A model for investments in the natural resource industry
with switching costs. Math Oper Res 26:637–653

[21] Ly Vath V, Pham H (2007) Explicit solution to an optimal switching problem in the
two-regime case. SIAM J Control Optim 46:395–426

[22] Martyr R (2016) Finite-horizon optimal multiple switching with signed switching costs.
Math Oper Res 41:1432–1447

[23] Pham H (2007) On the smooth-fit property for one-dimensional optimal switching prob-
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