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Abstract
We investigate an exponential utility maximization problem for an insurer who faces
a stream of non-hedgeable claims. The insurer’s risk aversion coefficient changes
in time and depends on the current insurer’s net asset value (the excess of assets
over liabilities). We use the notion of an equilibrium strategy and derive the HJB
equation for our time-inconsistent optimization problem.We assume that the insurer’s
risk aversion coefficient consists of a constant risk aversion and a small amount of
a wealth-dependent risk aversion. Using perturbation theory, the equilibrium value
function, which solves the HJB equation, is expanded on the parameter controlling the
degree of risk aversion depending on wealth. We find the first-order approximations
to the equilibrium value function and the equilibrium investment strategy. Some new
results for exponential utility maximization problem with constant risk aversion are
derived in order to approximate the solution to our exponential utility maximization
problem with wealth-dependent risk aversion.

Keywords Time-inconsistency · Equilibrium strategy · First-order approximation ·
BSDEs · PDEs · Perturbation theory

1 Introduction

Optimal investment problems are extensively studied in financial mathematics and the
key example is exponential utility maximization problem. Among many papers in this
field, we can mention the works by Hu et al. (2005), Morlais (2009), Ankirchner et al.
(2010), Lim and Quenez (2011), Jiao et al. (2013) and Jeanblanc et al. (2015). In these
papers the authors consider dynamic investment problems for an agentwhovaluates his
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terminal wealth with exponential utility with absolute risk aversion coefficient which
is constant in time. However, when deciding on dynamic asset allocation, it seems
more reasonable to assume that the investor’s risk preferences are time-varying.

Themotivation for considering time-varying and stochastic risk preferences is clear.
In a bull market investors are willing to take more risk, which should be modeled
with a lower risk aversion coefficient, whereas in a bear market investors are willing
to take less risk, which should be modeled with a higher risk aversion coefficient.
Hence, the coefficient of risk aversion depending on the state of economy should be
used in dynamic portfolio selection problems. Pirvu and Zhang (2013) and Kwak
et al. (2014) study exponential utility indifference pricing and optimal investment
strategies under exponential utility with regime-switching risk aversion coefficient.
Gordon and St-Amour (2000) show that a state-dependent risk aversion can explain
asset price movements which cannot be explained by constant risk aversion. There is
also a strong empirical evidence that the degree of risk aversion depends on prior gains
and losses, or on the available wealth in general. Thaler and Johnson (1990) claim that
after a gain on a prior gamble people are more risk seeking than usual, while after a
prior loss they become more risk averse. The observation that the risk aversion goes
down after a prior gain is called the “house money” effect.

We investigate an exponential utility maximization problem for an insurer who
faces a stream of non-hedgeable claims. The policyholders are entitled to annuity, life
insurance and endowment benefits. The benefits are contingent on a non-tradeable
financial index correlated with a stock available for trading in the financial market.
The deaths of the policyholders and the benefits’ occurrence times are modelled with
a counting process. We assume that the insurer’s risk aversion coefficient changes
in time and its value depends on the current insurer’s net asset value (the excess of
assets over liabilities). If the assets are above the liabilities, then the insurer is less risk
averse and is willing to implement more risky investment strategy. If the assets are
below the liabilities, the insurer is more risk averse and switches to more conservative
investment strategies. Hence, we take into account the “house money” effect when
the insurer solves his asset allocation problem. To the best of our knowledge, there
is only one paper (by Dong and Sircar 2014) which studies exponential utility maxi-
mization for investor with wealth-dependent risk aversion. At the same time we can
find papers in which mean-variance optimization problems with wealth-dependent
risk aversion coefficients are considered, see e.g. Zeng and Li (2011), Björk et al.
(2014) and Kronborg and Steffensen (2015).

It is known that exponential utility maximization problems with time-varying risk
aversion coefficient are time-inconsistent and classical techniques of stochastic control
cannot be applied. We follow the game-theoretic approach from Ekeland and Lazrak
(2006), Ekeland and Pirvu (2008), Björk and Murgoci (2014) and Björk et al. (2017)
and we derive the HJB equation for our time-inconsistent optimization problem with
wealth-dependent risk aversion. The HJB equation characterizes the so-called equilib-
rium investment strategy and the equilibrium value function. In order to solve our HJB
equation, we use the expansion techniques from Fouque et al. (2011), Fouque et al.
(2014), Fouque and Hu (2017), Fouque et al. (2017) and Dong and Sircar (2014). We
assume that the insurer’s risk aversion coefficient consists of a constant risk aversion
and a small amount of a wealth-dependent risk aversion. We apply perturbation theory
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and expand the solution to the HJB equation on the parameter controlling the degree
of risk aversion depending on wealth. In the first step, we investigate an exponential
utility maximization problem for an insurer with constant risk aversion coefficient
and we derive some new results for exponential utility maximization problem with
constant risk aversion. In particular, we investigate derivative of the value function
with respect to risk aversion coefficient. We show existence of solutions to systems
of nonlinear BSDEs and nonlinear PDEs which describe the value function for our
exponential utility maximization problem with constant risk aversion and the deriva-
tive of the value function with respect to risk aversion. We show that the PDEs have
smooth solutions. Finally, we use these results to postulate the first-order approxima-
tion to the solution to our HJB equation. We derive the first-order approximations to
the equilibrium value function and the equilibrium investment strategy. Our first-order
approximation to the equilibrium investment strategy is new and agrees with intuition.

Dong and Sircar (2014) investigate time-inconsistent optimization problems,
including an indifference pricing problem for a terminal claim under exponential
utility with wealth-dependent risk aversion coefficient. They also assume that a small
amount of wealth-dependent risk aversion is added to constant risk aversion and apply
perturbation theory to find the first-order approximation to the solution to their HJB
equation. Our model and results are much more general than the model and results
from Dong and Sircar (2014). We consider an insurance portfolio where the run-off
is modelled with a counting process and the insurer is exposed to a stream of non-
hedgeable claims of three different types. Since we consider an insurance portfolio
with an arbitrary number of policies, we study a recursive system of HJB equations.
The results presented in Dong and Sircar (2014) are heuristic and in a summary form,
whereaswe present formal proofs of our results.We use not only PDEs but also BSDEs
to characterize the first-order approximation to the solution. Finally, Dong and Sircar
(2014) are only interested in the exponential utility indifference price of a terminal
claim and they do not give the first-order equilibrium investment strategy for their
problem.

The remainder of the paper is organized as follows. Sections 2 and 3 describe the
model and the optimization problem. In Sect. 4 we recall perturbation theory and
explain the idea behind the (asymptotic) first-order approximation to a solution to
a problem. In Sect. 5 we investigate an exponential utility maximization problem
with constant risk aversion coefficient whereas in the subsequent Sect. 6 we study
an exponential utility maximization problem with wealth-dependent risk aversion.
Section 7 contains some examples which illustrate our key result from Sect. 6. All
proofs are presented in Sect. 8.

2 The financial and insurancemodel

We deal with a probability space (Ω,F,P) with a filtration F = (Ft )0≤t≤T and a
finite time horizon T < ∞. On the probability space (Ω,F,P) we define a stan-
dard two-dimensional Brownian motion (W , B) = (W (t), B(t), 0 ≤ t ≤ T ) and a
càdlàg (right-continuous with left limits) counting process N = (N (t), 0 ≤ t ≤ T ).
The uncorrelated Brownian motions (W , B) are used to model the financial risk and
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FW ,B
t = σ(W (u), B(u), u ∈ [0, t]) contains information on the evolution of the

financial indices. The counting process N is used to model the insurance risk and
FN

t = σ(N (u), u ∈ [0, t]) contains information on the number of in-force policies in
the insurance portfolio. We assume that

(A1) the subfiltrations FW ,B
t and FN

t are independent and we set Ft = ⋂
ε>0(

FW ,B
t+ε ∨ FN

t+ε

)
for 0 ≤ t ≤ T ,

Under assumption (A1), the financial risk is independent of the insurance risk. As far as
the filtration F is concerned, we use the standard approach of progressive enlargement
of the Brownian filtration. The filtration F is right-continuous and completed with sets
of measure zero.

The financial market consists of a risk-free deposit D = (D(t), 0 ≤ t ≤ T ) and
two risky indices: S = (S(t), 0 ≤ t ≤ T ) and P = (P(t), 0 ≤ t ≤ T ). The value of
the risk-free deposit is constant:

D(t) = 1, 0 ≤ t ≤ T , (2.1)

i.e. we assume that the interest rate is zero or we consider discounted quantities in
our problem. The prices of the risky indices are modelled with correlated Brownian
motions. We assume that the prices of S and P satisfy the dynamics

d S(t)

S(t)
= μdt + σdW (t), 0 ≤ t ≤ T ,

S(0) = s0, (2.2)
d P(t)

P(t)
= adt + b

(
ρdW (t) +

√
1 − ρ2d B(t)

)
, 0 ≤ t ≤ T ,

P(0) = p0, (2.3)

where μ, a, σ, b are positive constants which denote drifts and volatilities and ρ ∈
[−1, 1] denotes the correlation coefficient between the log-returns of S and P . The
insurance company can invest in the deposit D and in the index S. The index P is not
available for trading. The index P is the underlying investment fund for the insurance
contracts sold by the insurance company. We use two indices in our model since in
practice equity-linked life insurance contracts may be contingent on non-tradeable
indices.

The insurance company keeps a homogeneous portfolio of n unit-linked policies.
The counting process N is used to count the number of deaths in the insurance portfolio.
We assume that the lifetimes of the policyholders are independent and exponentially
distributed, i.e. we assume that

(A2)
(

N (t) − ∫ t
0 (n − N (s−))λds, 0 ≤ t ≤ T

)
is an F-martingale, where λ > 0.

Parameter λ denotes the mortality intensity for the policyholders. Since mortality
intensity depends on age, we should assume that λ depends on time t . Such a mod-
ification of (A2) can be easily introduced. However, we keep (A2) to simplify the
presentation of our results. Let
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J (t) = n − N (t), 0 ≤ t ≤ T ,

count the number of policies in force in the insurance portfolios.
The insurer faces a stream of non-hedgeable claims which is modelled with the

process C = (C(t), 0 ≤ t ≤ T ). The process C is described with the equation

C(t) =
∫ t

0
(n − N (s−))α(P(s))ds +

∫ t

0
β(P(s))d N (s)

+ (n − N (T ))η(P(T ))1t=T , 0 ≤ t ≤ T . (2.4)

Each policyholder in the insurance portfolio is entitled to three types of benefits:
annuity α paid as long as the policyholder lives, life insurance benefit β paid if the
policyholder dies and endowment benefit η paid if the policyholder survives till the
terminal time T . The benefits α, β and η are contingent on the value of the index P .
We assume that

(A3) the functionsα, β, η : (0,∞) �→ [0,∞) are bounded andLipschitz continuous.

In order to fulfill the future obligations, the insurer must hold a reserve. The reserve
is set for the policies in force. We define the reserve:

Fk(t, p) = E
Q̃
[
C(T ) − C(t)

∣
∣P(t) = p, J (t) = k

]
,

(t, p, k) ∈ [0, T ] × (0,∞) × {0, 1, . . . , n}, (2.5)

where Q̃ denotes a pricing measure for C . Here, by reserve we mean an amount of
money which the insurer sets aside to cover the future benefits. The insurer can choose
any pricing measure to calculate the reserve (2.5). We don’t make any assumptions on
the pricing measure Q̃ in (2.5). However, we assume that

(A4) Fk(t, p) = k F1(t, p), (t, p, k) ∈ [0, T ] × (0,∞) × {0, . . . , n}, and the
function F1 : [0, T ] × (0,∞) �→ [0,∞) is C1,2([0, T ] × (0,∞)).

In the sequel, the reserve for one policy in force F1 is simply denoted by F . If the
counting process N is independent of (S, P) under the pricing measure Q̃ and the
prices of the pay-offs α, β, η are smooth functions of time and the underlying index
P , then (A4) is satisfied.

3 The optimization problem and the HJB equation

Let π := (π(t), 0 ≤ t ≤ T ) denote a strategy which determines the amount of
wealth invested in the index S. The wealth process of the insurer, denoted by Xπ =
(Xπ (t), 0 ≤ t ≤ T ), satisfies the SDE

d Xπ (t) = π(t)
(
μdt + σdW (t)

)

−J (s−)α(P(s))ds + β(P(s))d J (s), 0 ≤ t ≤ T ,
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X(0) = x . (3.1)

where x > 0 denotes the initial wealth. We assume that the survival benefits η are
subtracted from Xπ (T ) at the terminal time T .

In this paper we study the optimization problem:

sup
π

E

[
− e−Γ

(
Xπ (t)−J (t)F(t,P(t))

)
×
(

Xπ (T )−J (T )η(P(T ))
)

|Ft

]
, 0 ≤ t ≤ T , (3.2)

whereΓ denotes a time-varying risk aversion coefficient which value at time t depends
on the process

R(t) = Xπ (t) − J (t)F(t, P(t)), 0 ≤ t ≤ T .

The process R is interpreted as the insurer’s net asset value - the excess of the insurer’s
assets over his liabilities. By the liability we mean the value of the reserve (2.5). The
dynamics of the net asset value process R is given by the equation

d R(t) = π(t)
(
μdt + σdW (t)

)
− J (t−)α(P(t))dt + β(P(t))d J (t)

− J (t−)Ft (t, P(t))dt − J (t−)Fp(t, P(t))P(t)
(

a + b
(
ρdW (t) +

√
1 − ρ2d B(t)

))

− J (t−)
1

2
Fpp(t, P(t))b2P2(t)dt − F(t, P(t))d J (t), 0 ≤ t ≤ T .

We assume that the risk aversion coefficient in (3.2) satisfies:

(A5) Γ : R �→ (0,∞) is bounded, decreasing, Lipschitz continuous and C2(R).

The motivation for considering the wealth-dependent risk aversion in the optimiza-
tion problem (3.2) is the following. At different points in time, the insurer is likely to
have different exponential utilities which are characterized with different risk aversion
coefficients. We expect that the insurer’s risk aversion coefficient should change in
time and the dynamics of the risk aversion coefficient should be modelled with an
adapted process related to some observable factors. It is very reasonable to assume
that the risk aversion coefficient and the willingness to take the financial risk depend
the financial position of the investor. We assume that the value of the insurer’s risk
aversion coefficient at time t depends on the current insurer’s net asset value. If the
assets are above the liabilities, then the insurer is less risk averse and is willing to
implement more risky investment strategies. If the assets are below the liabilities, the
insurer is more risk averse and switches to more conservative investment strategies.
Hence, the risk aversion coefficient Γ should be a decreasing function of the net asset
value.

Let us introduce the set of admissible investment strategies for (3.2).

Definition 3.1 A strategy π = (π(t), 0 ≤ t ≤ T ) is called admissible, π ∈ A, if it
satisfies the following conditions:

1. π : [0, T ]×Ω → R is an F-predictable process determined with a measurable
mapping Π : [0, T ] × R × (0,∞) × {0, . . . , n} �→ R such that π(t) =
Π(t, Xπ (t−), P(t), J (t−)),
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2. The process
( ∫ t

0 π(s)dW (s), 0 ≤ t ≤ T
)
is a B M O(F)-martingale,

3. The stochastic differential equation (3.1) has a unique solution Xπ on [0, T ],
4. E

[
e−Γ (r)

(
Xπ (T )−J (T )η(P(T ))

)

|Ft

]
< ∞ for all t ∈ [0, T ] and all r ∈ R.

The above definition of admissible investment strategies is standard for exponential
utility maximization problems, see e.g. Hu et al. (2005) and Jeanblanc et al. (2015),
except for point 4 where we require that the expected utility of the terminal wealth
exists for all risk aversion coefficients defined by Γ . However, this requirement is
clear since we aim at solving an exponential utility optimization problem with risk
aversion coefficient which changes in time. Let us remark that points 2, 4 and bound-
edness of η imply that the family {e−Γ (r)Xπ (T ), T is an F − stopping time} is
uniformly integrable for π ∈ A and r ∈ R, which is often used in the definition of
an admissible strategy instead of points 2 and 4, see Remark 8 in Hu et al. (2005).
From financial point of view, points 2 and 4 of Definition 2.1 or the uniform inte-
grability of {e−Γ (r)Xπ (T ), T is an F− stopping time} exclude arbitrage investment
strategies from considerations, see Remark 2 in Hu et al. (2005). The assumption of
uniform integrability is slightly weaker than the other common assumption that the
wealth process should be bounded from below, which is used to introduce so-called
tame arbitrage-free strategies as admissible strategies, see Definition 3 in Levental and
Skorohod (1995). Tame strategies limit borrowing and prevent doubling strategies.

The optimization problem (3.2) is an exponential utility maximization problem
for an investor with wealth-dependent risk aversion coefficient Γ . We can define the
objective function for (3.2):

vk,π (t, x, p) = E

[
− e−Γ

(
x−k F(t,p)

)(
Xπ (T )−J (T )η(P(T ))

)

|X(t) = x, P(t) = p, J (t) = k
]
,

(t, x, p, k) ∈ [0, T ] × R × (0,∞) × {0, 1, . . . , n}, π ∈ A. (3.3)

The objective function (3.3) is well-defined for any π ∈ A by point 4 of Definition
2.1. However, the optimization problem (3.2) is time-inconsistent and the Bellman’s
principle of optimality cannot be used to find the optimal strategy and the optimal value
defined by supπ∈A vk,π (t, x, p). We use the game-theoretic approach developed by
Ekeland and Lazrak (2006), Ekeland and Pirvu (2008), Björk et al. (2017) and Björk
and Murgoci (2014). In order to find the solution to (3.2), we consider a game played
by a continuum of players with different utilities where the player at time t has its
own risk aversion coefficient and only chooses the strategy at time t . We look for the
sub-game perfect Nash equilibrium in the game with the reward given by (3.3).

Definition 3.2 Let us consider an admissible strategy π∗ ∈ A. Fix an arbitrary point
(t, x, p, k) ∈ [0, T )×R×R×{0, 1, . . . , n} and choose an admissible strategyπ ∈ A.
For δ > 0 we define a new admissible strategy

πδ(s) =
{

π(s), t ≤ s ≤ t + δ,

π∗(s), t + δ < s ≤ T .
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If

lim in f δ→0
vk,π∗

(t, x, p) − vk,πδ (t, x, p)

δ
≥ 0,

for all (t, x, p, k) ∈ [0, T ) × R × R × {0, 1, . . . , n} and π ∈ A, then π∗ is called an
equilibrium strategy and vk,π∗

is called the equilibrium value function corresponding
to the equilibrium strategy π∗.

In order to characterize the equilibrium value function and the equilibrium strategy
with an HJB equation, we need to introduce the second function:

wk,π (t, x, p, r) = E
[ − e−Γ (r)

(
Xπ (T )−J (T )η(P(T ))

)

|X(t) = x, P(t) = p, J (t) = k, R(t) = r ],
(t, x, p, r , k) ∈ [0, T ] × R × (0,∞) × R × {0, 1, . . . , n}, π ∈ A. (3.4)

The functionwk gives the value of the objective (3.3) for the optimization problemwith
the risk aversion depending on an auxiliary parameter r . The functionwk describes the
time-consistent part of the time-inconsistent optimization problem. Under the game-
theoretic approach, the agent at time t forms a coalition for an infinitesimal time
period and solves a time-consistent exponential utility maximization problem with a
constant risk aversion coefficient over the infinitesimal time period, see Remark 2.3 in
Björk and Murgoci (2014). The value function for this optimization problem at time
t is determined by wk(t, x, p, r) where r = x − k F(t, p). However, the evolution
of wk(t, x, p, r) cannot characterize the dynamics of the value function of the time-
inconsistent optimization problem with time-varying risk aversion since the variable r
is held fixed in the definition of wk . Hence, we need the function vk and its dynamics
to fully characterize the equilibrium strategy and the equilibrium value function of the
exponential utility maximization problem with time-varying risk aversion.

We finish with section by presenting the HJB equation and a verification theorem
for our time-inconsistent optimization problem (3.2). First, we introduce operators
associated with the continuous parts of (Xπ , P, R).

Definition 3.3 Let Lπ
k and Mπ

k denote second order differential operators given by

Lπ
k φ(t, x, p) = φx (t, x, p)

(
πμ − kα(p)

) + 1

2
φxx (t, x, p)π2σ 2

+ φpx (t, x, p)πbpσρ + φp(t, x, p)ap + 1

2
φpp(t, x, p)b2 p2,

Mπ
k φ(t, x, p, r) = Lπ

k φ(t, x, p, r)

+ φr (t, x, p, r)
(
πμ − kα(p)−k Ft (t, p) − k Fp(t, p)ap − 1

2
k Fpp(t, p)b2 p2

)

+ 1

2
φrr (t, x, p, r)

(
π2σ 2 + (k Fp(t, p))2b2 p2 − 2πk Fp(t, p)bpσρ

)

+ φr p(t, x, p, r)
(
πbpσρ − k Fp(t, p)b2 p2

)

+ φr x (t, x, p, r)
(
π2σ 2 − πk Fp(t, p)bpσρ

)
.
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The operators Lπ
k and Mπ

k are defined, respectively, for φ ∈ C1,2,2([0, T ] × R ×
(0,∞)) and φ ∈ C1,2,2,2([0, T ] × R × (0,∞) × R). The operator Lπ

k φ(t, x, p, r)

only acts on (t, x, p) and r is kept as a constant.

Theorem 3.1 Let (A1)–(A5) hold. Assume there exist functions (vk)n
k=0 ∈ C([0, T ] ×

R× (0,∞))∩C1,2,2([0, T )×R× (0,∞)), (wk)n
k=0 ∈ C([0, T ]×R× (0,∞)×R)∩

C1,2,2,2([0, T ) × R × (0,∞) × R) and an admissible strategy π∗ = (πk,∗)n
k=0 ∈ A

which solve the system of HJB equations:

vk
t (t, x, p) + sup

π

{
Lπ

k vk(t, x, p) − Mπ
k wk(t, x, p, x − k F(t, p))

+Lπ
k wk(t, x, p, x − k F(t, p))

}
+

(
vk−1(t, x − β(p), p) − vk(t, x, p)

)
kλ

+
(
wk−1(t, x − β(p), p, x − k F(t, p))

−wk−1(t, x − β(p), p, x − β(p) − (k − 1)F(t, p))
)

kλ = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞),

vk(T , x, p) = −e−Γ (x−kη(p))(x−kη(p)), (x, p) ∈ R × (0,∞),

πk,∗ = arg supπ

{
Lπ

k vk(t, x, p) − Mπ
k wk(t, x, p, x − k F(t, p))

+Lπ
k wk(t, x, p, x − k F(t, p))

}
,

(t, x, p) ∈ [0, T ] × R × (0,∞), (3.5)

and

wk
t (t, x, p, r) + Lπk,∗

k wk(t, x, p, r) +
(
wk−1(t, x − β(p), p, r) − wk(t, x, p, r)

)
kλ = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞), r ∈ R,

wk(T , x, p, r) = −e−Γ (r)(x−kη(p)), (x, p) ∈ R × (0,∞), r ∈ R, (3.6)

for k ∈ {0, 1, . . . , n}. In addition, assume that the families

{
vk(T , Xπ (T ), P(T )), T is an F

W ,B − stopping time, T ∈ [0, T ]
}
,

{
wk(T , Xπ (T ), P(T ), R(T )), T is an F

W ,B − stopping time, T ∈ [0, T ]
}
,

{
wk(T , Xπ (T ), P(T ), r), T is an F

W ,B − stopping time, T ∈ [0, T ]
}
, r ∈ R,

are uniformly integrable for any π ∈ A and k ∈ {0, 1, . . . , n}. The strategy π∗ =
(πk,∗)n

k=0 is an equilibrium strategy for the time-inconsistent optimization problem
(3.2) with wealth-dependent risk aversion coefficient and vk(t, x, p) = vk,π∗

(t, x, p)

is the value function corresponding to the equilibrium strategy π∗.
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4 Perturbation theory and first-order approximations

It is known that it is hard to solve HJB equations for time-inconsistent optimization
problems, see Ekeland and Lazrak (2006), Ekeland and Pirvu (2008), Björk et al.
(2017), Ekeland et al. (2012) and Dong and Sircar (2014). In particular, we are not
able to solve our HJB equations (3.5)–(3.6) since standard separation methods cannot
be applied and we cannot split the variables in vk and wk . We use perturbation theory
to approximate the solutions to the HJB equations (3.5)–(3.6).

Perturbation theory deals with finding an approximate solution to a problem by
starting from the exact solution of a related, simpler problem. Perturbation theory
can be applied if our problem can be formulated by adding a small term to some
parameter of the exactly solvable problem. The solution to the main problem is next
expanded in powers of this small parameter. The zeroth-order term in the expansion is
the exact solution to the simpler problem and the higher order terms in the expansion
describe deviations in the solution to themain problem from the solution of the simpler
problem. Since the perturbation technique is based on adding a small parameter, we
can truncate the series expansion of the solution to the main problem and keep the
first two terms of the expansion as the first-order approximate solution. In financial
applications, perturbation theory was developed by Fouque et al. (2011, 2014, 2017)
and Fouque and Hu (2017).

It is clear that our exponential utility maximization problemwith wealth-dependent
risk aversion can be related to a simpler exponential utility maximization problem
with constant risk aversion. In order to apply the perturbation theory to solve the
optimization problem (3.2), we consider a special structure of the wealth-dependent
risk aversion coefficient Γ . We choose

Γ (r) = γ0 + γ1(r)ε, r ∈ R. (4.1)

We now assume that the insurer’s risk aversion coefficient Γ consists of a constant
risk aversion γ0 > 0 and a small amount ε > 0 of wealth-dependent risk aversion γ1.
We impose the technical condition:

(A6) The function γ1 : R �→ R is bounded, decreasing, Lipschitz continuous and
C2(R). Moreover, γ1(0) = 0.

The assumption that γ1(0) = 0 is a normalizing assumption for the risk aversion
coefficient. We note that if r > 0 then Γ (r) < γ0, if r > 0 then Γ (r) > γ0.

Since our risk aversion coefficient (4.1) consists of a constant risk aversion and a
small amount of wealth-dependent risk aversion, we expect that the solution to the
exponential utility maximization problem with the wealth-dependent risk aversion
Γ (r) = γ0 + γ1(r)ε should be expanded around the solution to the exponential
utility maximization problem with the constant risk aversion γ0. In particular, the
zeroth-order approximation to the equilibrium value function and the equilibrium
strategy for the time-inconsistent exponential utility maximization problem (3.2) with
the wealth-dependent risk aversion (4.1) should coincide with the value function and
the optimal strategy for the time-consistent exponential utility maximization problem
with the constant risk aversion γ0. Hence, in the next sectionwe start with investigating
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the optimization problem (3.2) with Γ (r) = γ0 = γ . In Sect. 5 we study some
properties of the zeroth-order solutionwhich allowsus inSect. 6 to derive thefirst-order
correction resulting from adding a small amount of wealth-dependent risk aversion to
constant risk aversion.

Thegoal of this paper is to establish thefirst-order approximations to the equilibrium
value function and the equilibrium strategy for the optimization problem (3.2) in the
case of risk aversionΓ (r) = γ0+γ1(r)ε with small ε > 0. Formally, we are interested
in finding functions (vk

0)
n
k=0, (v

k
1)

n
k=0, (π

∗,k
0 )n

k=0, (π
∗,k
1 )n

k=0 such that

vk(t, x, p) = vk
0(t, x, p) + vk

1(t, x, p)ε + O(ε2), ε → 0, (4.2)

π∗,k(t, x, p) = π
∗,k
0 (t, x, p) + π

∗,k
1 (t, x, p)ε + O(ε2), ε → 0, (4.3)

where (vk, π∗,k)n
k=0 solve the system of the HJB equations (3.5)–(3.6) with the risk

aversion Γ (r) = γ0 + γ1(r)ε. The formulas (4.2)–(4.3) denote that

vk
0(t, x, p) + vk

1(t, x, p)ε and π
∗,k
0 (t, x, p) + π

∗,k
1 (t, x, p)ε, (4.4)

are the first-order approximations to vk(t, x, p) and π∗,k(t, x, p) for small ε. More
precisely, the functions (4.4) which satisfy (4.2)–(4.3) are called the asymptotic first-
order approximations to vk(t, x, p) and π∗,k(t, x, p) as ε → 0. The error of the
approximation in (4.2), or (4.3), is of a higher order than the approximating function
and it is controlled with a function of order O(ε2), see Definitions 1.1 and 2.1 in
Holmes (2013). Let us recall that

zε(x) ∼ O(εδ) as ε → 0 i f |zε(x)| ≤ K εδ, 0 ≤ ε ≤ ε0,

for some ε0 > 0, where K is independent of ε but may depend on (x, ε0).
For details on perturbation theory we refer e.g. to Holmes (2013). In order to clarify

the idea behind finding the asymptotic first-order approximation to a solution of an
equation, we present a simple example from Chapter 1.5 in Holmes (2013). Let use
consider the equation

x2 + 2εx − 1 = 0. (4.5)

We postulate that the solution to (4.5) has the asymptotic expansion

x = x0 + x1ε + O(ε2), ε → 0.

We substitute the expansion to (4.5) and collect the terms of orderO(1),O(ε),O(ε2):

x20 − 1 + 2
(
x0 + x0x1

)
ε + O(ε2) = 0.

We choose x0 and x1 so that the terms of orders O(1),O(ε) are zero. We find

x0 = ±1, x1 = −1.
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The solution x̃ = ±1 − ε is the first-order approximation to the true solution x =
±√

ε2 + 1−ε of Eq. (4.5) with small ε, or the asymptotic first-order approximation as
ε → 0, since (4.2) hold. In other words, the error of approximating x = ±√

ε2 + 1−ε

with x̃ = ±1 − ε is a function of order O(ε2) as ε → 0. We can note that the first-
order approximation to the solution to (4.5) results from expanding the true solution
around the exact solution to (4.5) with ε = 0. We will use the same reasoning in
Sect. 6 where we postulate the asymptotic first-order approximation to the solution
to our optimization problem (3.2) with the risk aversion coefficient (4.1). We remark
that, by construction of the approximate solution inspired by perturbation theory, we
only consider the wealth-dependent risk aversion coefficient Γ (r) = γ0+γ1(r)ε with
small ε > 0.

5 The optimization problemwith constant risk aversion coefficient

Since we expect that the zeroth-order approximation to the solutions to the HJB equa-
tions (3.5)–(3.6) are given with the solution to the exponential utility maximization
problemwith constant risk aversion, we start with investigating the optimization prob-
lem (3.2) with Γ

(
x − k F(t, p)

) = γ .
First, let us introduce some spaces and their norms. Let G be some fil-

tration and q ≥ 1. Let Rq(G) denote the space of G-adapted processes X
such that ||X ||Rq = (

E
[
supt∈[0,T ] |X (t)|q]) 1

q < ∞. By R∞(G) we denote
the space of bounded G-adapted processes equipped with the norm ||X ||R∞ =
supt∈[0,T ] |X (t)|. Let Hq(G) denote the space of G-predictable processes X such

that ||X ||Hq = (
E

[( ∫ T
0 |X (t)|2dt

)q/2]) 1
q < ∞. Finally, let B M Oq(G) denote

the space of uniformly integrable G-martingales X such that ||X ||B M Oq =
supG−stopping time τ

(
E

[|X (T ) − X (τ )|q |Fτ

]) 1
q < ∞. B M Oq1 -norm is equivalent

to B M Oq2 -norm, and we will use B M O2-norm, see Corollary 2.1 in Kaza-
maki (1997). For a martingale X (t) = ∫ t

0 Z(t)dW (t) we have ||X ||B M O2 =
supG−stopping time τ

(
E

[ ∫ T
τ

|Z(t)|2ds|Fτ

]) 1
2 . If Z ∈ H2(G), we will abuse the nota-

tion and set ||Z||B M O2 = || ∫ ·
0 Z(t)dW (t)||B M O2 = supG−stopping time τ

(
E

[ ∫ T
τ

|
Z(t)|2ds|Fτ

]) 1
2 . Moreover, the norm || · ||B M O2 will be simply denoted by || · ||B M O .

We define the objective function and the value function for the exponential utility
maximization problem with constant risk aversion:

V k,π (t, x, p) = E

[
− e−γ

(
Xπ (T )−J (T )η(P(T ))

)∣
∣X(t) = x, P(t) = p, J (t) = k

]
,

(t, x, p, k) ∈ [0, T ] × R × (0,∞) × {0, 1, . . . , n}, π ∈ A, (5.1)

V k(t, x, p) = sup
π∈A

V k,π (t, x, p),

(t, x, p, k) ∈ [0, T ] × R × (0,∞) × {0, 1, . . . , n}. (5.2)

It is known that the solution to the optimization problem (5.2) can be characterized
with solutions to BSDEs or PDEs.
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Let us study the system of BSDEs:

Y k(t) = kη(P(T )) −
∫ T

t

( μ2

2σ 2γ
− kα(P(s)) + μ

σ
Zk
1(s) − 1

2
γ (Zk

2(s))
2

−eγ (β(P(s))+Y k−1(s)−Y k (s)) − 1

γ
kλ

)
ds

−
∫ T

t
Zk
1(s)dW (s) −

∫ T

t
Zk
2(s)d B(s), 0 ≤ t ≤ T , k ∈ {0, 1, . . . , n},

(5.3)

Proposition 5.1 Let (A1)–(A3) hold.

(i) There exist unique solutions (Y k, Zk
1, Zk

2)
n
k=0 ∈ R2(FW ,B) × H2(FW ,B) ×

H2(FW ,B) to the system of BSDEs (5.3) such that, for each k = {0, 1, . . . , n},
the process Y k is bounded and

( ∫ t
0 Zk

1(s)dW (s), 0 ≤ t ≤ T
)
,

( ∫ t
0 Zk

2(s)d B(s), 0 ≤ t ≤ T
)

are B M O(FW ,B)-martingales.

(ii) The norms ||Y k,γ ||R∞, ||Zk,γ
1 ||B M O , ||Zk,γ

2 ||B M O are bounded uniformly in
k ∈ {0, . . . , n} and γ ∈ (γ0 − ε, γ0 + ε) for ε < γ0.

(iii) Let (Y k,t,p)n
k=0 denote the solutions to the BSDEs (5.3) with the forward equa-

tion (2.3) with the initial condition P(t) = p. For each k = {0, 1, . . . , n}, we
have

E

[
sup

s∈[0,T ]
∣
∣Y k,t,p(s) − Y k,t,p′

(s)
∣
∣2q

]
≤ K |p − p′|2q , q > 1, (5.4)

for any (t, p), (t, p′) ∈ [0, T ] × (0,∞), where the constant K is independent
of (k, t, p, p′).

Alternatively, we can consider the system of PDEs:

hk
t (t, p) +

(
a − μbρ

σ

)
phk

p(t, p) + 1

2
b2 p2hk

pp(t, p) + kα(p) − μ2

2σ 2γ
− kλ

γ

+eγβ(p)eγ hk−1(t,p)

γ
kλe−γ hk (t,p)

+1

2
γ (1 − ρ2)b2 p2(hk

p(t, p))2 = 0, (t, p) ∈ [0, T ) × (0,∞),

hk(T , p) = kη(p), p ∈ (0,∞), k ∈ {0, . . . , n}. (5.5)

Proposition 5.2 Let (A1)–(A3) hold.

(i) There exist unique solutions (hk)n
k=0 ∈ C([0, T ] × (0,∞)) ∩ C1,2([0, T ) ×

(0,∞)) to the system of PDEs (5.5).
(ii) We have
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Y k(t) = hk(t, P(t)), Zk
1(t) = hk

p(t, P(t))bP(t)ρ,

Zk
2(t) = hk

p(t, P(t))bP(t)
√
1 − ρ2, 0 ≤ t ≤ T , k ∈ {0, . . . , n}, (5.6)

where (Y k, Zk
1, Zk

2)
n
k=0 are defined in point (i) of Proposition 5.1.

The optimal solution to (5.2) is characterized in the following theorem.

Theorem 5.1 Let (A1)–(A3) hold. The strategy

π∗(t) =
n∑

k=0

πk,∗(t)1{J (t−) = k}, 0 ≤ t ≤ T ,

πk,∗(t) = μ

σ 2γ
+ Zk

1(t)

σ
, 0 ≤ t ≤ T , (5.7)

is the optimal admissible investment strategy for the optimization problem (5.1)–(5.2)
and V k(t, x, p) = V k,π∗

(t, x, p) = −e−γ x eγ Y k (t)|P(t)=p is the value function cor-
responding to the strategy π∗. Alternatively, we can characterize the optimal strategy
(5.7) with the functions (hk)n

k=0 from Proposition 5.2.

Expansions in perturbation theory are often justified by recalling Taylor’s theorem
and expanding the function in powers of small parameter ε. This implies that the term
of order O(ε) in the expansion is related to the first derivative of the function with
respect to the parameter which is perturbated by adding ε. The value function from
Theorem 5.1 depends on the risk aversion coefficient γ , in particular the solutions
(Y k)n

k=0 and (hk)n
k=0 depend on γ . Consequently, our next step is to investigate the

derivative of the process Y k , and the derivative of the function hk , with respect to
risk aversion coefficient γ . The following propositions are crucial for establishing the
first-order correction in the expansion of the equilibrium value function.

Let us introduce the system of BSDEs:

Yk,γ (t) = −
∫ T

t

(
− μ2

2σ 2γ 2 − 1

2
(Zk,γ

2 (s))2

−
eγ (β(P(s))+Y k−1,γ (s)−Y k,γ (s))

(
γ
(
β(P(s)) + Y k−1,γ (s) − Y k,γ (s)

)
− 1

)
+ 1

γ 2 kλ

− eγ
(
β(P(s))+Y k−1,γ (s)−Y k,γ (s)

)

kλYk−1,γ (s)

+ eγ
(
β(P(s))+Y k−1,γ (s)−Y k,γ (s)

)

kλYk,γ (s) + μ

σ
Zk,γ
1 (s) − γ Zk,γ

2 (t)Zk,γ
2 (t)

)
ds

−
∫ T

t
Zk,γ
1 (t)dW (t) −

∫ T

t
Zk,γ
2 (t)d B(t), 0 ≤ t ≤ T , k ∈ {0, . . . , n}, (5.8)

Proposition 5.3 Let (A1)–(A3) hold. Consider the processes (Y k,γ , Zk,γ
1 , Zk,γ

2 )n
k=0

which solve the BSDEs (5.3).

(i) The processes (Y k,γ , Zk,γ
1 , Zk,γ

2 )n
k=0 are differentiable with respect to the

risk aversion coefficient γ in R2(FW ,B) × H2(FW ,B) × H2(FW ,B) and
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the derivatives Yk,γ (t) = d
dγ

Y k,γ (t), Zk,γ
1 (t) = d

dγ
Zk,γ
1 (t), Zk,γ

2 (t) =
d

dγ
Zk,γ
2 (t)solve the system of the BSDEs (5.8).

(ii) For each k = {0, 1, . . . , n}, the process Yk,γ is F
W ,B-adapted, (Zk,γ

1 ,Zk,γ
2 )

are F
W ,B-predictable, Yk,γ is bounded and

( ∫ t
0 Z

k,γ
1 (s)dW (s), 0 ≤ t ≤

T
)
,
( ∫ t

0 Z
k,γ
2 (s)d B(s), 0 ≤ t ≤ T

)
are B M O(FW ,B)-martingales.

(iii) The norms ||Yk,γ ||R∞, ||Zk,γ
1 ||B M O , ||Zk,γ

2 ||B M O are bounded uniformly in
k ∈ {0, . . . , n} and γ ∈ (γ0 − ε, γ0 + ε) for ε < γ0.

(iv) For each k = {0, 1, . . . , n}, the solution to the BSDE (5.8) is unique in
R2(FW ,B) × H2(FW ,B) × H2(FW ,B).

(v) Let (Yk,t,p)n
k=0 denote the solutions to the BSDEs (5.8) with the forward equa-

tion (2.3) with the initial condition P(t) = p. For each k = {0, 1, . . . , n}, we
have

E

[
sup

s∈[0,T ]
∣
∣Yk,t,p(s) − Yk,t,p′

(s)
∣
∣2q

]
≤ K |p − p′|2q , q > 1, (5.9)

for any (t, p), (t, p′) ∈ [0, T ] × (0,∞), where the constant K is independent
of (k, t, p, p′).

The last result of this section establishes the relation between the solutions to the
BSDEs (5.8) and solutions to PDEs. We investigate the system of PDEs:

gk
t (t, p) +

(
a − μbρ

σ
+ γ (1 − ρ2)b2 phk

p(t, p)
)

pgk
p(t, p) + 1

2
b2 p2gk

pp(t, p)

− eγ
(
β(p)+hk−1(t,p)−hk (t,p)

)

kλgk(t, p)

+ μ2

2σ 2γ 2 + 1

2
(1 − ρ2)b2 p2

(
hk

p(t, p)
)2

+
eγ

(
β(p)+hk−1(t,p)−hk (t,p)

)(
γ
(
β(p) + hk−1(t, p) − hk(t, p)

)
− 1

)
+ 1

γ 2 kλ

+ eγ
(
β(p)+hk−1(t,p)−hk (t,p)

)

kλgk−1(t, p) = 0, (t, p) ∈ [0, T ) × (0,∞),

gk(T , p) = 0, p ∈ (0,∞), k ∈ {0, . . . , n}, (5.10)

where (hk)n
k=0 are defined in Proposition 5.2.We need to impose an additional smooth-

ness condition for the functions (hk)n
k=0 in order to guarantee smooth solutions (gk)n

k=0
to (5.10). We assume that

(A7) There exist mixed derivatives (hk
tp)

n
k=0 ∈ C([0, T ) × (0,∞)).

Assumption (A7) is not needed if ρ2 = 1, e.g. when the benefits α, β, η are contingent
on the tradeable risky asset S.

Proposition 5.4 Let (A1)–(A3) and (A7) hold.

(i) There exist unique solutions (gk)n
k=0 ∈ C([0, T ] × (0,∞)) ∩ C1,2([0, T ) ×

(0,∞)) to the system of PDEs (5.10).
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(ii) We have

Yk(t) = gk(t, P(t)), Zk
1 (t) = gk

p(t, P(t))bP(t)ρ,

Zk
2 (t) = gk

p(t, P(t))bP(t)
√
1 − ρ2, 0 ≤ t ≤ T , k ∈ {0, . . . , n},

(5.11)

where (Yk,Zk
1 ,Zk

2 )n
k=0 are defined in Proposition 5.3.

6 The optimization problemwith wealth-dependent risk aversion
coefficient

In the view of the discussion from Sect. 4, we postulate the following first-order
expansions:

vk(t, x, p) = vk
0(t, x, p) + vk

1(t, x, p)ε + O(ε2), ε → 0, (6.1)

wk(t, x, p, r) = wk
0(t, x, p) + wk

1(t, x, p, r)ε + O(ε2), ε → 0, (6.2)

πk,∗(t, x, p) = π
k,∗
0 (t, x, p) + π

k,∗
1 (t, x, p)ε + O(ε2), ε → 0. (6.3)

We also assume that derivatives of (vk)n
k=0, (w

k)n
k=0 satisfy the first-order expansions

of the same form (6.1)–(6.2), see Chapter 1.4.3 in Holmes (2013).
From Eq. (3.5) we deduce that the true equilibrium strategy takes the form

πk,∗(t, x, p)

= −
(
vk

x (t, x, p) − wk
r (t, x, p, x − k F(t, p))

)
μ

(
vk

xx (t, x, p) − wk
rr (t, x, p, x − k F(t, p)) − 2wk

xr (t, x, p, x − k F(t, p))
)
σ 2

−
(
vk

px (t, x, p) − wk
pr (t, x, p, x − k F(t, p))

)
bpσρ

(
vk

xx (t, x, p) − wk
rr (t, x, p, x − k F(t, p)) − 2wk

xr (t, x, p, x − k F(t, p))
)
σ 2

−
(
wk

rr (t, x, p, x − k F(t, p)) + wk
r x (t, x, p, x − k F(t, p))

)
k Fp(t, p)bpσρ

(
vk

xx (t, x, p) − wk
rr (t, x, p, x − k F(t, p)) − 2wk

xr (t, x, p, x − k F(t, p))
)
σ 2

,

(t, x, p, k) ∈ [0, T ] × R × (0,∞) × {0, . . . , n}. (6.4)

We remark thatwr in (6.4) denotes derivative ofw with respect to r valued at r = x −
k F(t, p). If the first-order expansions (6.1)–(6.2) for the functions (vk)n

k=0, (wk)n
k=0

and their derivatives are substituted into the equilibrium strategy (6.4), then we can
confirm the first-order expansion for the equilibrium strategy (6.3). In the expansion
(6.3) we have to use

123



Optimal investment with wealth-dependent risk aversion… 89

π
k,∗
0 (t, x, p) = −vk

0,x (t, x, p)μ + vk
0,px (t, x, p)bpσρ

vk
0,xx (t, x, p)σ 2

,

π
k,∗
1 (t, x, p) = vk

0,x (t, x, p)μ + vk
0,px (t, x, p)bpσρ

(vk
0,xx (t, x, p))2σ 2

×
(
vk
1,xx (t, x, p) − wk

1,rr (t, x, p, x − k F(t, p)) − 2wk
1,xr (t, x, p, x − k F(t, p))

)

−
(
vk
1,x (t, x, p) − wk

1,r (t, x, p, x − k F(t, p))
)
μ

vk
0,xx (t, x, p)σ 2

−
(
vk
1,px (t, x, p) − wk

1,pr (t, x, p, x − k F(t, p))
)

bpσρ

vk
0,xx (t, x, p)σ 2

−
(
wk
1,rr (t, x, p, x − k F(t, p)) + wk

1,xr (t, x, p, x − k F(t, p))
)

k Fp(t, p)bpσρ

vk
0,xx (t, x, p)σ 2

.

We now substitute the expansions (6.1)–(6.3) for (vk)n
k=0, (wk)n

k=0 and (πk,∗)n
k=0

into the system of HJB equations (3.5)–(3.6). We collect the terms of order
O(1),O(ε),O(ε2) and set them to zero, see Sect. 4. After some calculations, we
can derive the system of PDEs:

vk
0,t (t, x, p) + Lπ

k,∗
0

k vk
0(t, x, p) +

(
vk−1
0 (t, x − β(p), p) − vk

0(t, x, p)
)

kλ = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞),

vk
0(T , x, p) = −e−γ0(x−kη(p)), (x, p) ∈ R × (0,∞), (6.5)

vk
1,t (t, x, p) + Lπ

k,∗
0

k vk
1(t, x, p) − Mπ

k,∗
0

k wk
1(t, x, p, x − k F(t, p))

+Lπ
k,∗
0

k wk
1(t, x, p, x − k F(t, p)) +

(
vk−1
1 (t, x − β(p), p) − vk

1(t, x, p)
)

kλ

+
(
wk−1
1 (t, x − β(p), p, x − k F(t, p))

− wk−1
1 (t, x − β(p), p, x − β(p) − (k − 1)F(t, p))

)
kλ = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞),

vk
1(T , x, p) = γ1(x − kη(p))(x − kη(p))e−γ0(x−kη(p)), (x, p) ∈ R × (0,∞), (6.6)

wk
0,t (t, x, p) + Lπ

k,∗
0

k wk
0(t, x, p) +

(
wk−1
0 (t, x − β(p), p) − wk

0(t, x, p)
)

kλ = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞),

wk
0(T , x, p) = −e−γ0(x−kη(p)), (x, p) ∈ R × (0,∞), (6.7)

wk
1,t (t, x, p, r) + Lπ

k,∗
0

k wk
1(t, x, p, r) +

(
wk−1
1 (t, x − β(p), p, r) − wk

1(t, x, p, r)
)

kλ = 0

(t, x, p) ∈ [0, T ) × R × (0,∞), r ∈ R,

wk
1(T , x, p, r) = γ1(r)(x − kη(p))e−γ0(x−kη(p)), (x, p) ∈ R × (0,∞), r ∈ R, (6.8)

for k = 0, 1, . . . , n.
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Recalling the discussion from Sect. 4, we expect that

vk
0(t, x, p) = V k,γ0(t, x, p) = −e−γ0x eγ0hk,γ0 (t,p), (6.9)

wk
0(t, x, p) = V k,γ0(t, x, p) = −e−γ0x eγ0hk,γ0 (t,p), (6.10)

where (hk)n
k=0 are defined in Proposition 5.2. If (6.9)–(6.10) indeed hold, then

π
k,∗
0 (t, p) = μ

σ 2γ0
+ hk,γ0

p (t, p)bpρ

σ
. (6.11)

Our choices (6.9)–(6.11) can be verified by direct substitution into (6.5)–(6.6). We can
also expect that

vk
1(t, x, p) = γ1(x − k F(t, p))

d

dγ
V k,γ (t, x, p)|γ=γ0

= γ1(x − k F(t, p))
(

x − hk,γ0 (t, p) − γ0gk,γ0 (t, p)
)

e−γ0x eγ0hk,γ0 (t,p), (6.12)

wk
1(t, x, p, r) = γ1(r)

d

dγ
V k,γ (t, x, p)|γ=γ0

= γ1(r)
(

x − hk,γ0 (t, p) − γ0gk,γ0 (t, p)
)

e−γ0x eγ0hk,γ0 (t,p), (6.13)

where (gk)n
k=0 are defined in Proposition 5.4. Our guesses can again be confirmed by

direct substitution into (6.7)–(6.8). We now get

π
k,∗
1 (t, x, p) = −μγ1(x − k F(t, p))

σ 2γ 2
0

+ gk,γ0
p (t, p)γ1(x − k F(t, p))bpρ

σ
.

(6.14)

By Propositions 5.2 and 5.4 , our solutions (vk
0, v

k
1, w

k
0)

n
k=0 ∈ C([0, T ]×R×(0,∞))∩

C1,2,2([0, T )×R×(0,∞)) and (wk
1)

n
k=0 ∈ C([0, T ]×R×(0,∞)×R)∩C1,2,2([0, T )×

R × (0,∞) × R). Hence, we have found smooth solutions to the PDEs (6.5)–(6.8).
These solutions allow us to define the first-order approximations (6.1)–(6.3) to the
true equilibrium investment strategy and the true equilibrium value function of our
optimization problem with small amount ε of wealth-dependent risk aversion.

We can now state our main result.

Theorem 6.1 Let (A1)–(A7) hold. Consider the BSDEs (5.3) and (5.8). For a suffi-
ciently small ε > 0, the strategy

π̂∗(t) =
n∑

k=0

π̂k,∗(t)1{J (t−) = k}, 0 ≤ t ≤ T ,

π̂k,∗(t) = μ

σ 2γ0
+ Zk,γ0

1 (t)

σ
+

(
− μ

σ 2γ 2
0

+ Zk,γ0
1 (t)

σ

)
γ1

(
X π̂∗

(t−) − k F(t, P(t))
)
ε,

0 ≤ t ≤ T , (6.15)
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is admissible, i.e. π̂∗ = (π̂k,∗)n
k=0 ∈ A. The investment strategy (6.15) is a candidate

asymptotic first-order approximation to the equilibrium investment strategy for the
optimization problem (3.2)with the wealth-dependent risk aversion coefficient Γ (r) =
γ0+γ1(r)ε as ε → 0. Alternatively, we can characterize the investment strategy (6.15)
with the functions (hk)n

k=0, (g
k)n

k=0 from Propositions 5.2, 5.4, see (6.11) and (6.14).

Remark In this paper we have not formally confirmed the order of the approxima-
tion error in (6.1)–(6.3), see Sect. 4 for the definition of the asymptotic first-order
approximation. Hence, the strategy (6.15) is only a candidate asymptotic first-order
approximation to the equilibrium investment strategy.We remark that only the order of
the approximation error have not been proved, whereas the first-order approximations
have been justified and formally derived on the grounds of perturbation theory, the
discussion in Sect. 4 and the calculations in this section. In Delong (2018b) we study
an asymptotic optimality of our investment strategy and we formally show that (6.15)
performs better than any strategy in the class π0(t) + π1(t)ε up to the second order
O(ε2) in the asymptotic expansion of the value function as ε → 0.We refer the reader
to Delong (2018b). ��

Our investment strategy (6.15) agrees with intuition. The zeroth-order strategy,
i.e. the first term in (6.15), is the optimal investment strategy for the insurer with
constant risk aversion γ0 who aims at maximizing the expected exponential utility of
the terminal wealth. The zeroth-order strategy consists of the constant Merton strategy
and the hedging strategy for the claims, which are optimal if the constant risk aversion
γ0 is used over the whole investment period. Since the insurer uses the risk aversion
coefficient Γ consisting of the constant risk aversion γ0 and the wealth-dependent
risk aversion γ1, the insurer should adjust the strategy and allow for the time-varying
risk aversion. The first-order correction, the second term in (6.15), describes the first-
order change in the zeroth-order strategy if the constant risk aversion coefficient γ0 is
modifiedbyadding a small amount of thewealth-dependent componentγ1. TheMerton
strategy and the hedging strategy, which are optimal for the constant risk aversion γ0,
are both adjusted in (6.15) to reflect changes in the risk aversion coefficient and they
now take into account the new value of the insurer’s wealth-dependent risk aversion
Γ at a given time.

7 Examples

In this section we illustrate Theorem 6.1 with examples. We investigate the BSDEs
(5.3), (5.8) and the investment strategy (6.15) in some special cases relevant for insur-
ance and financial applications.

Example 1 Let us assume that the insurer is not exposed to insurance risk and has no
liability. Hence, in this example we consider a pure investment problem for an investor
with the wealth-dependent risk aversion (4.1). We expect that the equilibrium strategy
is related to the Merton strategy. It is easy to see that we can set Zγ

1 (t) = 0 and
Zγ
1 (t) = 0 in (5.3), (5.8). The first-order approximation to the equilibrium strategy is
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π̂∗(t) = μ

σ 2γ0
− μ

σ 2γ 2
0

γ1
(
X π̂∗

(t))
)
ε. (7.1)

We end upwith theMerton strategywith the constant risk aversion γ0 which is adjusted
with a wealth-dependent termwhen the insurer’s wealth-dependent risk aversion devi-
ates from γ0.

One may wonder if

π̃∗(t) = μ

σ 2Γ
(
X π̂∗

(t)
) , (7.2)

is the true equilibrium strategy for our time-inconsistent pure investment problem,
since

π̃∗(t) = μ

σ 2
(
γ0 + γ1

(
X π̂∗

(t)
)
ε
) = μ

σ 2γ0
− μ

σ 2γ 2
0

γ1
(
X π̂∗

(t))
)
ε + O(ε2).

The answer is no. The strategy (7.2) is called a naive strategy. For simplicity of presen-
tation, let us slightly move away from the model considered in this paper and assume
that Γ (r) = γ0/r . The wealth process (3.1) under the strategy (7.2) takes the form

d X π̃∗
(t) = μ

σ 2γ0
X π̃∗

(t)
(
μdt + σdW (t)

)
. (7.3)

From (3.3)–(3.4) and (7.3), we can conclude that

wπ̃∗
(t, x, r) = E

[
− e− γ0x

r ξt,T
]
, vπ̃∗

(t, x) = E

[
− e−γ0ξt,T

]
, (7.4)

where ξt,T is a random variable with log-normal law. If the strategy (7.2) were the true
equilibrium strategy, then (7.4) would be the functions which satisfy the HJB equation
(3.5). In particular, from (6.4) we could recalculate the equilibrium strategy. We get

π̃∗(t) = μ

σ 2γ0
X π̂∗

(t)
E

[
e−γ0ξt,T ξt,T

]

E

[
− e−γ0ξt,T ξ2t,T

] , (7.5)

which does not coincide with the strategy assumed in (7.2). Summing up, the first-
order approximation (7.1) to the equilibrium strategy agrees with our intuition, but
the naive strategy (7.2) is not the equilibrium strategy for our investment problem.
A numerical comparison of the true equilibrium strategy and the naive strategy is
presented in Delong (2018a). ��
Example 2 Let us assume that the insurer is not exposed to insurance risk but has a
terminal liability η. Clearly, theMerton strategymust be complementedwith a hedging
strategy for η. We assume that the market is complete, i.e the liability η is contingent
on the index P which coincides with the tradeable index S. We can set Zγ

1 (t) = 0
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in (5.8), but we cannot set Zγ
1 (t) = 0 in (5.3). Fortunately, we can set Zγ

2 (t) = 0 in
(5.3), and we end up with the linear BSDE:

Y γ (t) = η(P(T )) −
∫ T

t

( μ2

2σ 2γ
+ μ

σ
Zγ
1 (s)

)
ds −

∫ T

t
Zγ
1 (s)dW (s). (7.6)

The solution to (7.6) can be derived by classical techniques, see e.g. Proposition 3.3.1
in Delong (2013). The solution Zγ

1 to (7.6) gives us the hedging strategy for η which
should be applied by the insurer with the constant risk aversion γ . However, the
process Zγ

1 does not depend on the risk aversion coefficient γ . The independence of
the hedging strategy of the risk aversion is due to market completeness as the liability
η can be perfectly hedged. Consequently, the insurer does not have to modify the
hedging strategy when his risk aversion changes. The first-order approximation to the
equilibrium strategy is

π̂∗(t) = μ

σ 2γ0
+ Zγ0

1 (t)

σ
− μ

σ 2γ 2
0

γ1
(
X π̂∗

(t) − F(t, P(t))ε.

The strategy consists of theMerton strategy and the hedging strategy for η, but only the
Merton strategy with the constant risk aversion γ0 is adjusted with a wealth-dependent
term as the insurer’s wealth-dependent risk aversion varies in time.

Example 3 In this example we assume that the insurer is exposed to a terminal liability
ηwhich is paid if the policyholder survives.We assume that the liability η is contingent
on the index P which coincides with the tradeable index S. Since the market is incom-
plete due to insurance risk, the hedging strategy for η now depends on the insurer’s
risk aversion coefficient and should be updated when the risk aversion changes. In this
example we have to solve both (5.3) and (5.8). We can set Zγ

2 (t) = 0 and Zγ
2 (t) = 0.

We deal with two BSDEs:

Y 1,γ (t) = η(P(T )) −
∫ T

t

( μ2

2σ 2γ
+ μ

σ
Z1,γ
1 (s) − eγ

(
Y 0,γ (s)−Y 1,γ (s)

)

− 1

γ
λ
)

ds

−
∫ T

t
Z1,γ
1 (s)dW (s), (7.7)

Y1,γ (t) = −
∫ T

t

(
− μ2

2σ 2γ 2 −
eγ

(
Y 0,γ (s)−Y 1,γ (s)

)(
γ
(

Y 0,γ (s) − Y 1,γ (s)
)

− 1
)

+ 1

γ 2 λ

− eγ
(
Y 0,γ (s)−Y 1,γ (s)

)

λY0,γ (s) + eγ
(
Y 0,γ (s)−Y 1,γ (s)

)

λY1,γ (s) + μ

σ
Z1,γ
1 (s)

)
ds

−
∫ T

t
Z1,γ
1 (t)dW (t), (7.8)
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where Y 0,γ (t) = − μ2

2σ 2γ
(T − t) and Y0,γ (t) = μ2

2σ 2γ 2 (T − t). The first-order approx-
imation to the equilibrium strategy, applied if the policyholder lives, is

π̂1,∗(t) = μ

σ 2γ0
+ Z1,γ0

1 (t)

σ

+
(

− μ

σ 2γ 2
0

+ Z1,γ0
1 (t)

σ

)
γ1

(
X π̂∗

(t−) − F(t, P(t))
)
ε. (7.9)

TheMerton strategy and the hedging strategy for η, which are optimal for the constant
risk aversion γ0, are both adjusted with wealth-dependent and liability-dependent
terms as the insurer’s wealth-dependent risk aversion varies in time. If the policyholder
dies, then the strategy from Example 2 is applied. The BSDE (7.8) is a linear equation
and we can give a probabilistic representation of the solution, see Proposition 3.3.1 in
Delong (2013). The solution to the BSDE (7.7) is investigated in Moore and Young
(2003) and Ankirchner et al. (2010) in the context of different optimization problems.

��
Example 4 Finally, let us assume that the insurer is not exposed to insurance risk but
has a terminal liability η which is contingent on the non-tradeable index P correlated
with the tradeable index S. The market is incomplete due to non-hedgeable financial
risk. As in the previous example, the hedging strategy for η depends on the insurer’s
risk aversion coefficient. We have to solve both (5.3) and (5.8), and we cannot set
Zγ
2 (t) = 0, Zγ

2 (t) = 0. We consider two BSDEs:

Y γ (t) = η(P(T )) −
∫ T

t

( μ2

2σ 2γ
+ μ

σ
Zγ
1 (s) − 1

2
γ (Zγ

2 (t))2
)

ds

−
∫ T

t
Zγ
1 (s)dW (s) −

∫ T

t
Zγ
2 (s)d B(s), (7.10)

Yγ (t) = −
∫ T

t

(
− μ2

2σ 2γ 2 − 1

2
(Zγ

2 (t))2 + μ

σ
Zγ
1 (s) − γ Zγ

2 (t)Zγ
2 (t)

)
ds

−
∫ T

t
Zγ
1 (t)dW (t) −

∫ T

t
Zγ
2 (t)d B(t), (7.11)

and the first-order approximation to the equilibrium strategy takes the form

π̂∗(t) = μ

σ 2γ0
+ Zγ0

1 (t)

σ

+
(

− μ

σ 2γ 2
0

+ Zγ0
1 (t)

σ

)
γ1

(
X π̂∗

(t) − F(t, P(t))
)
ε. (7.12)

Again, the Merton strategy and the hedging strategy for η, which are optimal for
the constant risk aversion γ0, are both adjusted with wealth-dependent and liability-
dependent terms as the insurer’s wealth-dependent risk aversion varies in time. ��
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8 Proofs

Proof of Theorem 3.1 The proof is standard and we refer to the proof of Theorem 5.2
from Björk et al. (2017). ��
Proof of Proposition 5.1 Assertion (i): Let k = 0. By direct substitution, we can check
that the processes

Y 0(t) = − μ2

2σ 2γ
(T − t), Z0

1(t) = Z0
2(t) = 0, 0 ≤ t ≤ T , (8.1)

satisfy the BSDE (5.3) with k = 0. The uniqueness of solution to (5.3) for k = 0
follows from Lemma 4.11 in Jeanblanc et al. (2015). The properties of the solution
(8.1) are obvious. Next, we fix k ∈ {1, . . . , n} and Y k−1 is given. Assume that Y k−1 is
bounded, which is the case for Y 0. The assertion (i) for the BSDE (5.3) follows from
Lemma 4.11 in Jeanblanc et al. (2015), as the assumptions of this lemma are satisfied
for our BSDE with k fixed.
Assertion (ii): The bounds for ||Y k ||R∞, ||Zk

1 ||B M O , ||Zk
2 ||B M O can be deduced from

Lemma 4.11 in Jeanblanc et al. (2015) (Steps 2 and 3 in their proof). Let us consider
the generator of the BSDE (5.3):

qk(t, ω, y, z1, z2) = μ2

2σ 2γ
− kα(ω) + μ

σ
z1 − 1

2
γ |z2|2. (8.2)

Let Mk,γ = K (1 + γ + k + 1
γ
) where K is a constant independent of (k, γ ). The

generator (8.2) satisfies the following conditions [Assumption 4.8 from Jeanblanc
et al. (2015)]:

|qk(t, ω, 0, 0)| ≤ Mk,γ ,

|qk(t, ω, y, z1, z2)| ≤ Mk,γ

(
1 + |z1|2 + |z2|2

)
,

|qk(t, ω, y, z1, z2) − qk(t, y′, z1, z2)| = 0,

|qk(t, ω, y, z1, z2) − qk(t, ω, y, z′
1, z′

2)| ≤ Mk,γ (1 + |z2| + |z′
2|)

√
|z1 − z′

1|2 + |z2 − z′
2|.

By Lemma 4.11 from Jeanblanc et al. (2015), we can directly establish the bounds for
the solution to (5.3):

||Y k,γ ||R∞ ≤ K eT Mk,γ
(
k + Mk,γ + ||Y k−1,γ ||R∞ + 1

) := Kk,γ ,

||Zk,γ
1 ||2B M O + ||Zk,γ

2 ||2B M O ≤ K e6Mk,γ Kk,γ

(
1 + Mk,γ (1 + Kk,γ )

+Mk,γ

1 + eγ (K+||Y k−1,γ ||R∞+Kk,γ )

γ
(n − k)

) 1

M2
k,γ

, (8.3)

where K denotes another constant independent of (k, γ ). Since we have a finite
sequence of (Y k, Zk

1, Zk
2)

n
k=0 and (Y 0, Z0

1, Z0
2)

n
k=0 is given by (8.1), the assertion

(ii) holds.
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Assertion (iii): Similarly to (8.3), we can deduce that

||Y k,t,p||R∞ + ||Zk,t,p
1 ||2B M O + ||Zk,t,p

2 ||2B M O ≤ K , (8.4)

where the constant K is independent of (k, t, p). Let us introduce the function

ψk,t,p(s, Y (s), Z1(s)) = μ2

2σ 2γ
− kα(Pt,p(s)) + μ

σ
Z1(s)

−eγ (β(Pt,p(s))+Y k−1,t,p(s)−Y (s)) − 1

γ
kλ.

We remark that parameter p in ψk,t,p also affects the process Y k−1,t,p. We fix k ∈
{1, . . . , n} and Y k−1 is given. We apply Theorem 5.1 from Ankirchner et al. (2007).
For any q > 1, we have the following estimate for the solutions to the BSDE (5.3):

E

[
sup

s∈[0,T ]
∣
∣Y k,t,p(s) − Y k,t,p′

(s)
∣
∣2q

+
( ∫ T

0

∣
∣Zk,t,p

1 (s) − Zk,t,p′
1 (s)

∣
∣2ds +

∫ T

0

∣
∣Zk,t,p

2 (s) − Zk,t,p′
2 (s)

∣
∣2ds

)q]

≤ K
(
E

[∣
∣
∣k|η(Pt,p(T )) − η(Pt,p′

(T ))
∣
∣
∣
∣
∣
2qr2

+
( ∫ T

0

∣
∣ψk,t,p(s, Y k,t,p(s), Zk,t,p

1 (s))

−ψk,t,p′
(s, Y k,t,p(s), Zk,t,p

1 (s))
∣
∣ds

)2qr2]) 1
r2 , (8.5)

where the constant K depends on q, T , the Lipschitz constant of (y, z1) �→
ψk,t,p(s, y, z1) and ||Zk,t,p

2 + Zk,t,p′
2 ||B M O . The constant r is also related to

||Zk,t,p
2 + Zk,t,p′

2 ||B M O by Theorem 5.1 from Ankirchner et al. (2007) and Theo-
rem 3.1 from Kazamaki (1997). By (A3) and the assertion (ii), the Lipschitz constant
of (y, z1) �→ ψk,t,p(s, y, z1) is independent of (k, t, p). Moreover, by (8.4), the
norm ||Zk,t,p

2 ||B M O can be bounded by a constant independent of (k, t, p) [see
(8.4)]. Consequently, we can choose universal constants r > 1 and K in (8.5) for
all (t, p), (t, p′) ∈ [0, T ] × (0,∞) and k ∈ {1, . . . , n}. Since (Y k)n

k=0 is uniformly
bounded in (t, p, k), the functions α, β, η are bounded and Lipschitz continuous, and

E

[
sup

s∈[0,T ]
∣
∣Pt,p(s) − Pt,p′

(s)
∣
∣q

]
≤ K |p − p′|q , q ≥ 2,

we can deduce that
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E

[
sup

s∈[0,T ]
∣
∣Y k,t,p(s) − Y k,t,p′

(s)
∣
∣2q

+
( ∫ T

0

∣
∣Zk,t,p

1 (s) − Zk,t,p′
1 (s)

∣
∣2ds +

∫ T

0

∣
∣Zk,t,p

2 (s) − Zk,t,p′
2 (s)

∣
∣2ds

)q]

≤ K
(
|p − p′|2qr2 + E

[
sup

s∈[0,T ]
∣
∣Y k−1,t,p(s) − Y k−1,t,p′

(s)
∣
∣2qr2

]) 1
r2 . (8.6)

The result (5.4) can be proved if we iterate (8.6) starting with (8.1). ��
Proof of Proposition 5.2 Assertion (i): If |ρ| = 1, then we deal with the PDEs:

hk
t (t, p) + (

a − μb

σ

)
phk

p(t, p) + 1

2
b2 p2h pp(t, p) + kα(p) − μ2

2σ 2γ
− kλ

γ

+eγβ(p)eγ hk−1(t,p)

γ
kλe−γ hk (t,p) = 0, (t, p) ∈ [0, T ) × (0,∞),

hk(T , p) = kη(p), p ∈ (0,∞). (8.7)

If |ρ| < 1, then we introduce h̃k(t, p) = e(1−ρ2)γ hk(t,p) and we deal with the PDEs:

h̃k
t (t, p) + (

a − μbρ

σ

)
ph̃k

p(t, p) + 1

2
b2 p2h̃k

pp(t, p)

+ (
γ kα(p) − μ2

2σ 2 − kλ
)
(1 − ρ2)h̃k(t, p)

+ eγβ(p)(1 − ρ2)(h̃k−1(t, p))
1

1−ρ2 kλ(h̃k(t, p))
− ρ2

1−ρ2 = 0, (t, p) ∈ [0, T ) × (0,∞),

h̃k(T , p) = e(1−ρ2)γ kη(p), p ∈ (0,∞). (8.8)

For k = 0 we immediately get h0(t, p) = − μ2

2σ 2γ
(T − t) and uniqueness of solution

follows from Proposition 2.3 from Becherer (2005).
Equation (8.7): The result follows from Propositions 2.1 and 2.3 from Becherer

(2005), which should be applied iteratively to the PDEs (8.7) starting with k = 1 and
h0. Fix k ∈ {1, . . . , n} and hk−1 is given. Assume that hk−1 is uniformly bounded on
[0, T ]× (0,∞) and hk−1 ∈ C([0, T ]× (0,∞))∩ C1,2([0, T )× (0,∞)), which is the
case for h0. We define an operator based on Feynman-Kac formula and Proposition
2.1 from Becherer (2005):

(Aφ)(t, p) = E
Q
[
kη(P(T )) +

∫ T

t

(
kα(P(s)) − μ2

2σ 2γ
− kλ

γ

+ eγβ(P(s))eγ hk−1(s,P(s))

γ
kλe−γφ(s,P(s))

)
ds|P(t) = p

]
, (t, p) ∈ [0, T ] × (0,∞),

where

d P(t)

P(t)
= (

a − μbρ

σ

)
dt + b

(
ρdWQ(t) +

√
1 − ρ2d BQ(t)

)
, 0 ≤ t ≤ T .
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Let us consider a sequence (hk
m)∞m=0 defined with hk

m+1(t, p) = (Ahk
m)(t, p). We

can observe that if hk
m(t, p) ≥ −(

μ2

2σ 2γ
+ kλ

γ
)T , then hk

m+1(t, p) ≥ −(
μ2

2σ 2γ
+ kλ

γ
)T .

Since hk
m(t, p) is uniformly bounded from below in (t, p, m), it is also easy to see that

hk
m+1(t, p) is uniformly bounded from above in (t, p, m). Hence, the assumptions of

Proposition 2.1 from Becherer (2005) are satisfied. We conclude that there exists a
unique fixed point of the operatorA and a unique solution hk to the equation hk(t, p) =
(Ahk)(t, p), which can be derived from (hk

m)∞m=0. Next, we use Proposition 2.3 from
Becherer (2005) to show that the fixed point hk is a smooth function and satisfies
the PDE (8.7). We investigate smoothness properties of the successive elements in
the sequence hk

m+1(t, p) = (Ahk
m)(t, p). Assumptions (2.9)–(2.12) from Becherer

(2005) are satisfied, but (2.13) is not clear. However, a closer look at the proof [see
(2.16)] shows that it is sufficient to require that

(t, p, φ) �→ kα(p) − μ2

2σ 2γ
− kλ

γ
+ eγβ(p)eγ hk−1(t,p)

γ
kλe−γφ,

is uniformly Hölder continuous on [0, T − ε] × D̄ × [Kl , Ku], where ε > 0, D is
a bounded subset of (0,∞) such that D̄ ⊂ (0,∞), and Kl , Ku denotes the lower
and upper bounds for the sequence (hk

m)∞m=0. Since hk−1 ∈ C([0, T ] × (0,∞)) ∩
C1,2([0, T ) × (0,∞)), this assumption holds in our case. Hence, from Proposition
2.3 in Becherer (2005) we can conclude that the sequence (hk

m)∞m=0 is in C([0, T ] ×
(0,∞)) ∩ C1,2([0, T ) × (0,∞)). Moreover, the PDE (8.7) has a unique solution in
C([0, T ] × (0,∞)) ∩ C1,2([0, T ) × (0,∞)), uniformly bounded on [0, T ] × (0,∞),
which is determined by the fixed point of the operator A and the sequence (hk

m)∞m=0.
Equation (8.8): The proof is analogous. This time we assume that h̃k−1 is uniformly
bounded on [0, T ] × (0,∞), positive and uniformly bounded away from zero on
[0, T ]× (0,∞) and h̃k−1 ∈ C([0, T ]× (0,∞))∩ C1,2([0, T )× (0,∞)), which is the
case for h̃0. We introduce the appropriate operatorA based on Feynman-Kac formula.

We note that if h̃k
m(t, p) ≥ e−(

μ2

2σ2
+kλ)(1−ρ2)T

> 0, then h̃k
m+1(t, p) = (Ah̃k

m)(t, p) ≥
e−(

μ2

2σ2
+kλ)(1−ρ2)T

> 0. Since h̃k
m(t, p) is positive and uniformly bounded away from

zero in (t, p, m), it is also easy to see that h̃k
m+1(t, p) = (Ah̃k

m)(t, p) is uniformly
bounded from above in (t, p, m). Hence, the assumptions of Propositions 2.1 and 2.3
from Becherer (2005) are satisfied.
Assertion (ii): The case with k = 0 is trivial - just compare the explicit solutions
to the BSDE and the PDE for k = 0. Fix k ∈ {1, . . . , n}. Assume that Y k−1(t) =
hk−1(t, P(t)), which is the case for k = 0. Since we have a sequence of smooth
functions (hk)n

k=0, we can apply Itô’s formula to derive the dynamics of hk(t, P(t))
on [0, T − ε] and compare the resulting dynamics with the dynamics of Y k given by
(5.3) [this step is standard, see e.g. Proposition 4.3 in El Karoui et al. (1997)]. We can
deduce candidate solutions for (Y k, Zk

1, Zk
2) on [0, T ]. Next, we have to prove that

the candidate solutions (5.6) are in the appropriate class of processes. The candidate
solution for Y k is bounded by point (i). We prove the BMO property for the candidate
solutions for (Zk

1, Zk
2). Let us choose a localizing sequence of stopping times (τm)∞m=1
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for the process P and a stopping time τ ∈ [0, T ]. Applying Itô’s formula to hk ,
changing the measure to Q ∼ P with the exponential martingale E

( − ∫ ·
0

μ
σ

dW (s)
)

and using the PDE (5.5), we can derive

hk((T − ε) ∧ τm ∧ τ, P((T − ε) ∧ τm ∧ τ)) = hk(τ, P(τ ))

+
∫ (T −ε)∧τm∧τ

τ

( μ2

2σ 2γ
− kα(P(s)) − 1

2
γ
(

hk
p(s, P(s))bP(s)

√
1 − ρ2

)2

−eγ (β(P(s))+hk−1(s,P(s))−hk (s,P(s))) − 1

γ
kλ

)
ds

+
∫ (T −ε)∧τm∧τ

τ

hk
p(s, P(s))bP(s)ρdWQ(s)

+
∫ (T −ε)∧τm∧τ

τ

hk
p(s, P(s))bP(s)

√
1 − ρ2d BQ(s). (8.9)

If |ρ| = 1, we take the square on both sides of (8.9) and the expected value. If |ρ| < 1,
we just take the expected value. In both cases, by boundedness of (hk)n

k=0, α, β, we
can establish the inequality

E
Q
[ ∫ (T −ε)∧τm∧τ

τ

(
hk

p(s, P(s))P(s)
)2

ds|FW ,B
τ

]
≤ K .

Taking m → ∞, ε → 0, by monotone convergence theorem we deduce that( ∫ t
0 hk

p(s, P(s))P(s)dWQ(s), 0 ≤ t ≤ T ) is a B M O(Q,FW ,B)-martingale, and also
a B M O(P,FW ,B)-martingale [see Theorem 3.6 in Kazamaki (1997)]. By uniqueness
of solution to the BSDE (5.3), we have characterized (Y k, Zk

1, Zk
2) with hk . ��

Proof of Theorem 5.1 Step 1: Let us assume there exists a unique solution (Y , Z1,

Z2, Q) ∈ R2(F) × H2(F) × H2(F) × H2(F) to the BSDE

Y (t) = J (T )η(P(T )) −
∫ T

t

( μ2

2σ 2γ
− J (s−)α(P(s)) + μ

σ
Z1(s) − 1

2
γ (Z2(s))

2

−eγ (β(P(s))+Q(s)) − 1

γ
J (s−)λ

)
ds

−
∫ T

t
Z1(s)dW (s) −

∫ T

t
Z2(s)d B(s) −

∫ T

t
Q(s)d N (s), 0 ≤ t ≤ T ,

(8.10)

such that (Y , Q) are bounded and
( ∫ t

0 Z1(s)dW (s), 0 ≤ t ≤ T
)
,
( ∫ t

0 Z2(s)
d B(s), 0 ≤ t ≤ T

)
are B M O(F)-martingales. Using standard techniques from opti-

mal control, see e.g. Hu et al. (2005) or Chapter 11 in Delong (2013), we can prove
that the strategy

π∗(t) = μ

σ 2γ
+ Z1(t)

σ
, 0 ≤ t ≤ T , (8.11)
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is the optimal admissible investment strategy for the optimization problem (3.2) and
V k(t, x, p) = V k,π∗

(t, x, p) = −e−γ x eγ Y (t)|P(t)=p,J (t)=k is the value function cor-
responding to the strategy π∗. Moreover,

e−γ (Xπ∗
(t)−Y (t)) = e−γ (x−Y (0)) × E

(
−

∫ t

0

μ

σ
dW (s) +

∫ t

0
γ Z2d B(s)

)

×E
( ∫ t

0

(
eγ (β(P(s))+Q(s)) − 1

)
(d N (s) − (n − N (s−))λds)

)
,

(8.12)

where E(M) denotes the stochastic exponential of the martingale M . Since
∫ t
0 Z2(s)

d B(s) is a B M O-martingale, β and Q are bounded and the process N only jumps
finitely many times upward, we can conclude that the product of the stochastic expo-
nentials of martingales in (8.12) is a true martingale, see Lemma 1 in Morlais (2010)
and Theorem 2.3 in Kazamaki (1997).
Step 2: We prove that there exists a solution to the BSDE (8.10), which we assume
in Step 1. The BSDE (8.10) is a quadratic-exponential BSDE with jumps. Jeanblanc
et al. (2015), Kharroubi et al. (2013) and Jiao et al. (2013) showed how to transform
a quadratic-exponential BSDE with a finite number of jumps into a system of BSDEs
without jumps. We apply their methods. Let τn = 0, τk = inf{t > τk+1 : J (t) <

J (τk+1)} ∧ T , k = n − 1, . . . , 0. For k ∈ {0, . . . , n}, let us write the BSDE (8.10) on
τk ≤ t ≤ τk−1, where we assume that τ−1 = T . We get the equation:

Y (t) = Y (τk−1) −
∫ τk−1

t

( μ2

2σ 2γ
− kα(P(s)) + μ

σ
Zk
1(s) − 1

2
γ (Zk

2(s))
2

−eγ (β(P(s))+Qk (s)) − 1

γ
kλ

)
ds −

∫ τk−1

t
Zk
1(s)dW (s)

−
∫ τk−1

t
Zk
2(s)d B(s) −

∫ τk−1

t
Qk(s)d N (s), τk ≤ t ≤ τk−1. (8.13)

The Fτk−1 -measurable random variable Y (τk−1) has the decomposition:

Y (τk−1) = kη(P(T ))1{τk−1 = T } + Ỹ (τk−1)1{τk−1 < T },
k = 1, . . . , n, (8.14)

where Ỹ is an F
W ,B-adapted process. In order to match the terminal condition of the

BSDE (8.13), given by (8.14), at the jump time τk−1 < T , we set

Qk(t) = Ỹ (τk−1) − Y (t), τk ≤ t ≤ τk−1, k = 1, . . . , n.

Consequently, the problem of solving the BSDE (8.10) can be replaced with the
problem of solving the system ofBSDEs (5.3). The existence of solutions to the system
of BSDEs (5.3) is established in Proposition 5.1. Gluing the solutions to the BSDEs
(5.3), we can derive the solution to the BSDE (8.10). For details of the construction,

123



Optimal investment with wealth-dependent risk aversion… 101

we refer to Proposition 4.4, Lemma 4.11, Theorems 4.12 and 4.17 in Jeanblanc et al.
(2015). We set

Y (t) =
n∑

k=0

Y k(t)1{J (t) = k}, 0 ≤ t ≤ T ,

Z1(t) =
n∑

k=0

Zk
1(t)1{J (t−) = k}, 0 ≤ t ≤ T ,

Z2(t) =
n∑

k=0

Zk
2(t)1{J (t−) = k}, 0 ≤ t ≤ T ,

Q(t) =
n∑

k=0

(
Y k−1(t) − Y k(t)

)
1{J (t−) = k}, 0 ≤ t ≤ T . (8.15)

The optimal strategy (5.7) follows from (8.11) and (8.15).
Step 3: We investigate properties of the solution (8.15). By uniqueness of solutions
to the BSDEs (5.3) and the arguments from Step 2, there exists a unique solution
(Y , Z1, Z2, Q) ∈ R2(F) × H2(F) × H2(F) × H2(F) to the BSDE (8.10) given by
(8.15). We notice that

sup
F−stopping times T

E

[ ∫ T

T
|Zi (t)|2dt

∣
∣FT

]

≤ (n + 1)
n∑

k=0

sup
F−stopping times T

E

[ ∫ T

T
|Zk

i (t)|2dt
∣
∣FT

]
< ∞, i = 1, 2,

by the B M O(F) property of
∫ t
0 Zk

1dW (s),
∫ t
0 Zk

2d B(s) which solve (8.13) [see point
(i) in Proposition 5.1]. Consequently, the processes

( ∫ t
0 Z1(s)dW (s), 0 ≤ t ≤

T
)
,
( ∫ t

0 Z2(s)d B(s), 0 ≤ t ≤ T
)
are B M O(F) martingales. By point (ii) of Proposi-

tion 5.1 and (8.15), the processes (Y , Q) are bounded. ��
Proof of Proposition 5.3 Step 1: We will apply the a priori estimates from Ankirchner
et al. (2007) which we adapt to our setting. We will often use the properties of the
solutions to the BSDEs (5.3) which we specify in points (i)–(ii) in Proposition 5.1
(without recalling them).Wewill also use the energy inequality [see p. 29 in Kazamaki
(1997)], which says that for a B M O(G)-martingale X (t) = ∫ t

0 Z(s)dW (s) and G-
stopping time, we have the inequality

E

[( ∫ T

τ

|Z(s)|2ds
)κ |Gτ

]
≤ κ!||Z||2κB M O , κ = 1, 2, . . . . (8.16)

We fix q > 1.We can deduce that (Y k,γ , Zk,γ
1 , Zk,γ

2 )n
k=0 ∈ Rq(FW ,B)×Hq(FW ,B)×

Hq(FW ,B). We choose (ε, ε′) ∈ [−ε0, ε0] and 0 < ε0 < γ .
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Step 2: We claim that the mapping γ �→ (Y k,γ , Zk,γ
1 , Zk,γ

2 ) is continuous as a
mapping (0,∞) �→ Rq(FW ,B) × Hq(FW ,B) × Hq(FW ,B). The explicit solution
(Y 0,γ , Z0,γ

1 , Z0,γ
2 ) can be directly investigated and the assertion holds for k = 0. We

fix k ∈ {1, . . . , n} and we assume that the assertion holds for k − 1. We prove that the
assertion holds for k. Let us introduce the function

ψk,γ (t, Y (t), Z1(t)) = μ2

2σ 2γ
− kα(P(t)) + μ

σ
Z1(t)

−eγ (β(P(t))+Y k−1,γ (t)−Y (t)) − 1

γ
kλ.

We remark that parameter γ in ψk,γ also affects the process Y k−1,γ . The assumptions
of Theorem 5.1 and Lemma 5.2 from Ankirchner et al. (2007) are satisfied. However,
the quadratic term in our Eq. (5.3) is of the form γ (Zk,γ

2 )2 and both terms γ and

Zk,γ
2 (t) are perturbated when we add ε to γ . If we write

(γ + ε)
(
Zk,γ+ε
2 (t)

)2 − γ
(
Zk,γ
2 (t)

)2

= (γ + ε)
(
Zk,γ+ε
2 (t) + Zk,γ

2 (t)
)(

Zk,γ+ε
2 (t) − Zk,γ

2 (t)
) + ε(Zk,γ

2 (t))2,

then we can observe that we have one additional term compared to Ankirchner et al.
(2007). Adapting the proofs of Theorem 5.1 and Lemma 5.2 from Ankirchner et al.
(2007) to our setting, we can derive the estimate

E

[
sup

0≤t≤T

∣
∣Y k,γ (t) − Y k,γ+ε(t)

∣
∣2q

+
( ∫ T

0

∣
∣Zk,γ

1 (t) − Zk,γ+ε
1 (t)

∣
∣2dt +

∫ T

0

∣
∣Zk,γ

2 (t) − Zk,γ+ε
2 (t)

∣
∣2dt

)q]

≤ K
(
E

[( ∫ T

0

∣
∣ψk,γ (t, Y k,γ (t), Zk,γ

1 (t)) − ψk,γ+ε(t, Y k,γ (t), Zk,γ
1 (t))

+ |ε|(Zk,γ
2 (t)

)2∣∣dt
)2qr2]) 1

r2 , (8.17)

where the constant K depends on q, T , the Lipschitz constant of (y, z1) �→
ψk,γ (t, y, z1) and ||(γ + ε)

(
Zk,γ+ε
2 + Zk,γ

2

)||B M O . The constant r is also related

to ||(γ + ε)
(
Zk,γ+ε
2 + Zk,γ

2

)||B M O by Theorem 5.1 from Ankirchner et al. (2007) and

Theorem 3.1 fromKazamaki (1997). Since ||Zk,γ
2 ||B M O can be bounded by a constant

independent of γ ∈ [γ −ε0, γ +ε0], we can choose universal constants r > 1 and K in
(8.17) for all ε ∈ [−ε0, ε0]. Since we assume that Y k−1,γ+ε → Y k−1,γ inRq(FW ,B)

as ε → 0, then limε→0 ψk,γ+ε(t, Y k,γ (t), Zk,γ
1 (t)) = ψk,γ (t, Y k,γ (t), Zk,γ

1 (t)),
a.s. for a.a. t ∈ [0, T ]. Taking ε → 0 and using the dominated convergence
theorem, we can prove that the right hand side of (8.17) converges to zero. The
convergence in R2q(FW ,B) × H2q(FW ,B) × H2q(FW ,B) implies the convergence
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in Rq(FW ,B) × Hq(FW ,B) × Hq(FW ,B). Consequently, the assertion of Step 2 is
proved.
Step 3: Let k = 0. We can easily see that (Y 0,γ , Z0,γ

1 , Z0,γ
2 ), given by (8.1), is

differentiable with respect to γ and the derivativesY0,γ (t) = μ2

2σ 2γ 2 (T −t),Z0,γ
1 (t) =

Z0,γ
2 (t) = 0 satisfy the BSDE (5.8). The properties of (Y0,γ ,Z0,γ

1 ,Z0,γ
2 ) are obvious.

Hence, the result of this proposition holds for k = 0. Fix k ∈ {1, . . . , n} and assume
that the result holds for k − 1. We prove that the result holds for k. For ε �= 0, we
introduce

Uk,ε(t) = Y k,γ+ε(t) − Y k,γ (t)

ε
, Vk,ε

1 (t) = Zk,γ+ε
1 (t) − Zk,γ

1 (t)

ε
,

Vk,ε
2 (t) = Zk,γ+ε

2 (t) − Zk,γ
2 (t)

ε
, 0 ≤ t ≤ T ,

and we investigate the BSDE

Uk,ε(t) = −
∫ T

t

(
Ak,ε(s) + ϕk,ε(s,Uk,ε(s),Vk,ε

1 (s)) + Hk,ε(s)Vk,ε
2 (t)

)
ds

−
∫ T

t
Vk,ε
1 (t)dW (t) −

∫ T

t
Vk,ε
2 (t)d B(t), 0 ≤ t ≤ T , (8.18)

where

Ak,ε (t) = − 1

2

(
Zk,γ+ε
2 (t)

)2 +
∫ 1

0

(
− μ2

2σ 2((θ(γ + ε) + (1 − θ)γ )2

− e(θ(γ+ε)+(1−θ)γ )(β(P(t))+Y k−1,γ+ε (t)−Y k,γ+ε (t))(β(P(t)) + Y k−1,γ+ε(t) − Y k,γ+ε(t)
)

θ(γ + ε) + (1 − θ)γ
kλ

− e(θ(γ+ε)+(1−θ)γ )(β(P(t))+Y k−1,γ+ε (t)−Y k,γ+ε (t)) − 1

(θ(γ + ε) + (1 − θ)γ )2
kλ

)
dθ

−
( ∫ 1

0
eγ (β(P(t))+θY k−1,γ+ε (t)+(1−θ)Y k−1,γ (t)−Y k,γ+ε (t))kλdθ

)
Uk−1,ε (t),

ϕk,ε (t,U(t),V1(t))

=
( ∫ 1

0
eγ (β(P(t))+Y k−1,γ (t)−θY k,γ+ε (t)−(1−θ)Y k,γ (t))kλdθ

)
U(t) + μ

σ
V1(t),

Hk,ε (t) = − 1

2
γ
(
Zk,γ+ε
2 (t) + Zk,γ

2 (t)
)
. (8.19)

By the assumption made for Step 3, the sequence (Uk−1,ε,Vk−1,ε
1 ,Vk−1,ε

2 ), for
ε ∈ [−ε0, ε0]\{0}, converges in Rq(FW ,B) × Hq(FW ,B) × Hq(FW ,B) as ε →
0. We also have (Uk−1,0,Vk−1,0

1 ,Vk−1,0
2 ) = (Yk−1,γ ,Zk−1,γ

1 ,Zk−1,γ
2 ) where

(Uk−1,0,Vk−1,0
1 ,Vk−1,0

2 ) is interpreted as the limit of the sequence (Uk−1,ε,Vk−1,ε
1 ,

Vk−1,ε
2 ) as ε → 0.

Step 3.1: Let us assume that ||Uk−1,ε ||R∞ , ||Vk−1,ε
1 ||B M O , ||Vk−1,ε

2 ||B M O are uni-
formly bounded in ε ∈ [−ε0, ε0]. Our assumption clearly holds for k = 0. We prove
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that ||Uk,ε ||R∞, ||Vk,ε
1 ||B M O , ||Vk,ε

2 ||B M O are finite for any ε ∈ [−ε0, ε0]\{0} and the
upper bound does not depend on ε. The assumptions of Theorem 4.1 and Lemma 4.2
from Ankirchner et al. (2007) are satisfied. Let τ ∈ [0, T ] denote an F

W ,B-stopping
time. Using the conditional version of the a priori estimate from Lemma 4.2 from
Ankirchner et al. (2007), see (20)–(22), we can derive the estimate

∣
∣Uk,ε(τ )

∣
∣2q + E

[( ∫ T

τ

∣
∣Vk,ε

1 (s)
∣
∣2ds +

∫ T

τ

∣
∣Vk,ε

2 (s)
∣
∣2ds

)q ∣
∣FW ,B

τ

]

≤ K
{
E

[( ∫ T

τ

∣
∣Ak,ε(s)

∣
∣ds

)2q |FW ,B
τ

]

+
(
E

[( ∫ T

τ
|Ak,ε(s)|ds

)2q |FW ,B
τ

]) 1
2 ×

(
E

[( ∫ T

τ
|Hk,ε(s)|2ds

)2q |FW ,B
τ

]) 1
2
}
,

(8.20)

where the constant K depends on q, T and the Lipschitz constant of (u, v1) �→
ϕk,ε(t, u, v1). We remark that we simply use Q = P in Lemma 4.2 from Ankirchner
et al. (2007). Moreover, by the energy inequality (8.16) we can deduce

E

[( ∫ T

τ
|Hk,ε(s)|2ds

)2q |FW ,B
τ

]
≤ K

(
1 + ||Zk,γ

2 ||2[2q]+2
B M O + |Zk,γ+ε

2 ||2[2q]+2
B M O

)
≤ K ,

E

[( ∫ T

τ
|Ak,ε(s)|ds

)2q |FW ,B
τ

]
≤ K

(
1 + ||Zk,γ+ε

2 ||2[2q]+2
B M O + ||Uk−1,ε ||2q

R∞
)

≤ K ,

(8.21)

where the final constant K can be chosen uniformly for all ε ∈ [−ε0, ε0]. Hence, the
upper bound in (8.20) is independent of τ and ε. The assertion of Step 3.1 is proved.
The case for ε = 0 will be resolved in Step 3.3.
Step 3.2: We prove that (Uk,ε,Zk,ε

1 ,Zk,ε
2 ) converges in Rq(FW ,B) × Hq(FW ,B) ×

Hq(FW ,B) as ε → 0. Theorem 4.1 from Ankirchner et al. (2007) gives us the key
estimate:

E

[
sup

0≤t≤T

∣
∣Uk,ε(t) − Uk,ε′

(t)
∣
∣2q

+
( ∫ T

0

∣
∣Vk,ε

1 (t) − Vk,ε′
1 (t)

∣
∣2dt +

∫ T

0

∣
∣Vk,ε

2 (t) − Vk,ε′
2 (t)

∣
∣2dt

)q]

≤ K
{(

E

[( ∫ T

0

∣
∣ϕk,ε(t,Uk,ε′

(t),Vk,ε′
1 (t)) − ϕk,ε′

(t,Uk,ε′
(t),Vk,ε′

1 (t))
∣
∣dt

)2qr2

+
( ∫ T

0

∣
∣Ak,ε(t) − Ak,ε′

(t)
∣
∣dt

)2qr2]) 1
r2

+
(
E

[( ∫ T

0
|Ak,ε(t)|dt

)2qr2]) 1
2r2

×
(
E

[( ∫ T

0
|Hk,ε(t) − Hk,ε′

(t)|2dt
)2qr2]) 1

2r2
}
, (8.22)
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where the constant K depends on q, T , the Lipschitz constant of (u, v1) �→
ϕk,ε(t, u, v1) and ||Zk,γ+ε

2 + Zk,γ
2 ||B M O . The constant r is also related to ||Zk,γ+ε

2 +
Zk,γ
2 ||B M O by Theorem 4.1 from Ankirchner et al. (2007) and Theorem 3.1 from

Kazamaki (1997). As in Step 2, we can choose universal constants r > 1 and K in
(8.22) for all ε ∈ [−ε0, ε0].

We prove the convergence for each term on the right hand side of (8.22). Using the
bound (8.21), the estimate (8.17) and the result from Step 2, we conclude that the last
term in (8.22) converges to zero as (ε, ε′) → 0. Next, we derive

∣
∣ϕk,ε(t,Uk,ε′

(t),Vk,ε′
1 (t)) − ϕk,ε′

(t,Uk,ε′
(t),Vk,ε′

1 (t))
∣
∣

≤ K
( ∫ 1

0

∣
∣e−γ (θY k,γ+ε (t)+(1−θ)Y k,γ (t))

−e−γ (θY k,γ+ε′ (t)+(1−θ)Y k,γ (t))
∣
∣dθ

)
||Uk,ε′ ||R∞ . (8.23)

By (8.20)–(8.21) and Step 3.1, the norm ||Uk,ε′ ||R∞ can be bounded by a constant inde-
pendent of ε′. Since γ �→ Y k,γ is continuous inRq(FW ,B) by Step 2, we deduce that
the right hand side of (8.23) converges to zero a.s. for a.a. t ∈ [0, T ], as (ε, ε′) → 0.
Consequently, by the dominated convergence theorem, the first term after the inequal-
ity in (8.22) converges to zero as (ε, ε′) → 0.We are left with one more term in (8.22).
We have the estimate

E

[( ∫ T

0

∣
∣Ak,ε(t) − Ak,ε′

(t)
∣
∣dt

)2qr2]

≤ KE

[( ∫ T

0

∣
∣|Zk,γ+ε

2 (t)|2 − |Zk,γ+ε′
2 (t)|2∣∣dt

)2qr2

+
( ∫ T

0

∣
∣Gk,γ+ε

1 (t) − Gk,γ+ε′
1 (t)

∣
∣dt

)2qr2

+
( ∫ T

0

∣
∣Gk,γ+ε

2 (t)Uk−1,ε(t) − Gk,γ+ε′
2 (t)Uk−1,ε′

(t)
∣
∣dt

)2qr2]
, (8.24)

where Gk,γ+ε
1 , Gk,γ+ε

2 can be deduced from the definition of Ak,ε . We can see that

E

[( ∫ T

0

∣
∣|Zk,γ+ε

2 (t)|2 − |Zk,γ+ε′
2 (t)|2∣∣dt

)2qr2]

≤
(
E

[( ∫ T

0
|Zk,γ+ε

2 (t) + Zk,γ+ε′
2 (t)|2dt

)2qr2]) 1
2

×
(
E

[( ∫ T

0
|Zk,γ+ε

2 (t) − Zk,γ+ε′
2 (t)|2dt

)2qr2]) 1
2

≤ K
(
E

[( ∫ T

0
|Zk,γ+ε

2 (t) − Zk,γ+ε′
2 (t)|2dt

)2qr2]) 1
2
, (8.25)
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where K depends on ||Zk,γ+ε
2 ||B M O [by the energy inequality (8.16)] and is uni-

versal for all ε ∈ [−ε0, ε0]. By the result of Step 2, we know that γ �→ Zk,γ
2 is

continuous in Hq(FW ,B), for any q > 1. Consequently, the first term on the right
hand side of (8.24) converges to zero as (ε, ε′) → 0. We observe that the norms
||Gk,γ+ε

1 ||R∞, ||Gk,γ+ε
2 ||R∞, ||Uk−1,ε ||R∞ are bounded in ε ∈ [−ε0, ε0] (in partic-

ular by the assumption made for Step 3.1). Moreover, limε→0 Gk,γ+ε
1 (t) = Gk,γ

1 (t),

a.s. for a.a. t ∈ [0, T ], and the same limits hold for Gk,γ+ε
2 and Uk−1,ε (by the result

of Step 2 and the assumption made for Step 3 which guarantee a.s. convergence of
Y k−1,γ+ε(t), Y k,γ+ε(t),Uk−1,ε(t) for a.a. t ∈ [0, T ] as ε → 0). By the dominated
convergence theorem, the remaining two term on the right hand side of (8.24) converge
to zero as (ε, ε′) → 0. Collecting our results and the estimate (8.22), we can conclude
that (Uk,ε,Vk,ε

1 ,Vk,ε
2 ), for ε ∈ [−ε0, ε0]\{0} is a Cauchy sequence which converges to

a unique triple (Uk,0,Vk,0
1 ,Vk,0

2 ) inRq(FW ,B) ×Hq(FW ,B) ×Hq(FW ,B) as ε → 0.

Step 3.3: We start with the BSDE (8.18) and its solution (Uk,ε,Vk,ε
1 ,Vk,ε

2 ). As above,
we can prove the convergence for each term in the BSDE (8.18) - for the pro-
cess Uk,ε , the generator and the stochastic integrals. We can conclude that the limit
(Uk,0,Vk,0

1 ,Vk,0
2 ) satisfies the BSDE (5.8). Hence, the assertion of Step 3 is proved.

We now investigate the BSDE (5.8) and its solution (Yk,γ ,Zk,γ
1 ,Zk,γ

2 ). We can

derive similar bounds (8.20)–(8.21) for (Yk,γ ,Zk,γ
1 ,Yk,γ

2 ). We can deduce that Yk,γ

is bounded and
( ∫ t

0 Z
k,γ
1 (s)dW (s), 0 ≤ t ≤ T

)
,
( ∫ t

0 Z
k,γ
2 (s)d B(s), 0 ≤ t ≤ T

)
are

B M O(FW ,B)-martingales. From (8.20)–(8.21) for (Yk,γ ,Zk,γ
1 ,Zk,γ

2 ), we can also

deduce that the norms ||Yk,γ ||R∞, ||Zk,γ
1 ||B M O , ||Zk,γ

2 ||B M O are boundeduniformly
in k ∈ {0, . . . , n} and γ ∈ (γ0 − ε, γ0 + ε) for ε < γ0.

Let us now investigate the BSDE (5.8) with the forward equation (2.3) with the ini-
tial condition P(t) = p. The solution to (5.8) is nowdenotedby (Yk,t,p,Zk,t,p

1 ,Zk,t,p
2 ).

Let

Ak,t,p(s) = −1

2
(Zk,t,p

2 (s))2 − μ2

2σ 2γ 2

−
eγ (β(Pt,p(s))+Y k−1,t,p(s)−Y k,t,p(s))

(
γ
(
β(Pt,p(s)) + Y k−1,t,p(s) − Y k,t,p(s)

)
− 1

)
+ 1

γ 2 kλ

−eγ
(
β(Pt,p(s))+Y k−1,t,p(s)−Y k,t,p(s)

)

kλYk−1,t,p(s),

ϕk,t,p(s,Y(s),Z(s)) = eγ
(
β(Pt,p(s))+Y k−1,t,p(s)−Y k,t,p(s)

)

kλY(s) + μ

σ
Z1(s),

Hk,t,p(s) = −γ Zk,t,p
2 (s). (8.26)

Similarly to (8.22), we state the estimate

E

[
sup

s∈[0,T ]
∣
∣Yk,t,p(s) − Yk,t,p′

(s)
∣
∣2q

]

≤ K
{(

E

[( ∫ T

0

∣
∣ϕk,t,p(s,Yk,t,p′

(s),Zk,t,p′
1 (s)) − ϕk,t,p′

(s,Yk,t,p′
(s),Zk,t,p′

1 (s))
∣
∣ds

)2qr2
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+
( ∫ T

0

∣
∣Ak,t,p(s) − Ak,t,p′

(s)
∣
∣ds

)2qr2]) 1
r2

+
(
E

[( ∫ T

0
|Ak,t,p(s)|ds

)2qr2]) 1
2r2

×
(
E

[( ∫ T

0
|Hk,t,p(s) − Hk,t,p′

(s)|2ds
)2qr2]) 1

2r2
}
, (8.27)

Using the assertion (iii), the arguments from Step 3.2 with (8.23)–(8.25) and the
arguments leading to (5.4), (8.4), (8.6), we can deduce the estimate

E

[
sup

s∈[0,T ]
∣
∣Yk,t,p(s) − Yk,t,p′

(s)
∣
∣2q

]

≤ K
{(

|p − p′|2qr2 + E

[
sup

s∈[0,T ]
∣
∣Yk−1,t,p(s) − Yk−1,t,p′

(s)
∣
∣2qr2

]) 1
r2

+ |p − p′|2q
}
, (8.28)

where the constant K is independent of (k, t, p, p′). The result (5.9) can be derived
if we iterate (8.28) starting with the explicit solution Y0,t,p.
Step 4: Wefinally prove that the BSDE (5.8) has a unique solution. Fix k ∈ {0, . . . , n}.
By Step 3.3 there exists at least one solution to theBSDE (5.8). Let us assume that there
exist two solutions (Yk,γ ,Zk,γ

1 ,Zk,γ
2 ) ∈ Rq(FW ,B) × Hq(FW ,B) × Hq(FW ,B) and

(Ỹk,γ , Z̃k,γ
1 , Z̃k,γ

2 ) ∈ Rq(FW ,B) ×Hq(FW ,B) ×Hq(FW ,B). Changing the measure,
we get the BSDE

Yk,γ (t) − Ỹk,γ (t) = −
∫ T

t
eγ (β(P(s))+Y k−1,γ (s)+Y k,γ (s))kλ(Yk,γ (s) − Ỹk,γ (s))ds

−
∫ T

t
(Zk,γ

1 (s) − Z̃k,γ
1 (s))dWQ(s)

−
∫ T

t
(Zk,γ

1 (s) − Z̃k,γ
1 (s))d BQ(s), 0 ≤ t ≤ T , (8.29)

where Q denotes an equivalent probability measure Q ∼ P. By Theorem 5.1 from El
Karoui et al. (1997) theBSDE (8.29) has a unique solution inRq(FW ,B)×Hq(FW ,B)×
Hq(FW ,B) under Q, for any q > 1. This solution is (0, 0, 0). Since the martingale
E(

∫ ·
0

μ
σ

dWQ(s) − ∫ ·
0 γ Zk,γ

2 (s)d BQ(s)), which is used to change the measure from
Q to P, is r -integrable under Q for some r > 1, see e.g. Theorems 3.1 and 3.6 in
Kazamaki (1997), we deduce that the BSDE (5.8) has a unique solution in Rq(R) ×
Hq(R) × Hq(R) under P. ��
Proof of Proposition 5.4 The assertions (i)–(ii) hold for k = 0 - just compare the
explicit solutions to the BSDE and the PDE for k = 0. Uniqueness of solution to
the PDE (5.10) for k = 0 follows from Proposition 2.3 in Becherer (2005). Fix
k ∈ {1, . . . , n} and assume that the assertions (i)–(ii) hold for k − 1. In particular,
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gk−1 ∈ C([0, T ] × (0,∞)) ∩ C1,2([0, T ) × (0,∞)) and Yk−1(t) = gk−1(t, P(t)).
We prove that the assertions (i)–(ii) hold for k.
Step 1: By (5.9), the mapping p �→ Yk,t,p(t) is continuous on (0,∞) for any fixed t ∈
[0, T ].We prove that themapping (t, p) �→ Yk,t,p(t) is continuous on [0, T ]×(0,∞).
We introduce the parametrized dynamics:

Pt,p(s)

Pt,p(s)
= adt + b(ρdW (t) +

√
1 − ρ2d B(t)), t ≤ s ≤ T ,

Pt,p(t) = p.

We can observe that (t, p) �→ Pt,p(s) is continuous on [0, T ] × (0,∞), for any
s ∈ [t, T ]. Let t ′ ≤ t . Recalling (8.5), (8.27) and Theorems 4.1, 5.1 from Ankirchner
et al. (2007), we can deduce the following estimates:

|Yk,t,p(t) − Yk,t ′,p′
(t ′)|2q = |Yk,t,p(0) − Yk,t ′,p′

(0)|2q

≤ E

[
sups∈[0,T ]|Yk,t,p(s) − Yk,t ′,p′

(s)|2q
]

≤ K
{(

E

[( ∫ T

t

∣
∣ϕk,t,p(s,Yk,t ′,p′

(s),Zk,t ′,p′
1 (s)) − ϕk,t ′,p′

(s,Yk,t ′,p′
(s),Zk,t ′,p′

1 (s))
∣
∣ds

+
∫ t

t ′

∣
∣ϕk,t ′,p′

(s,Yk,t ′,p′
(s),Zk,t ′,p′

1 (s))
∣
∣ds

)2qr2

+
( ∫ T

t

∣
∣Ak,t,p(s) − Ak,t ′,p′

(s)
∣
∣ds +

∫ t

t ′

∣
∣Ak,t ′,p′

(s)
∣
∣ds

)2qr2]) 1
r2

+
(
E

[( ∫ T

t
|Ak,t,p(s)|ds

)2qr2]) 1
2r2

×
(
E

[( ∫ T

t
|Hk,t,p(s) − Hk,t ′,p′

(s)|2ds +
∫ t

t ′
|Hk,t ′,p′

(s)|2ds
)2qr2]) 1

2r2
}
,

and

E

[( ∫ T

0

∣
∣Zk,t,p′

2 (s) − Zk,t ′,p′
2 (s)

∣
∣2ds

)q]

≤ K
(
E

[∣
∣kη(Pt,p(T )) − kη(Pt ′,p′

(T ))
∣
∣2qr2

]

+E

[( ∫ T

t

∣
∣ψk,t,p(s, Y k,t ′,p′

(s), Zk,t ′,p′
1 (s)) − ψk,t ′,p′

(t, Y k,t ′,p′
(s), Zk,t ′,p′

1 (s))
∣
∣ds

+
∫ t

t ′
∣
∣ψk,t ′,p′

(t, Y k,t ′,p′
(s), Zk,t ′,p′

1 (s))
∣
∣ds

)2qr2]) 1
r2 .

Using similar arguments as in the proof of Proposition 5.3 (Steps 3.2–3.3) and the
results of Proposition 5.2 (in particular the properties that Y k(t) = hk(t, P(t)) and
hk ∈ C([0, T ]× (0,∞))), we can show that lim(t,p)→(t ′,p′) |Yk,t,p(t)−Yk,t ′,p′

(t ′)| =
0. Consequently, the assertion is proved.
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Step 2: We derive a representation for Yk . Let us change the measure to Q ∼ P with
the exponential martingale E(− ∫ ·

0
μ
σ

dW (s) + ∫ ·
0 γ Zk,γ

2 (s)d B(s)). The BSDE (5.8)
and the price process (2.3) take the form

dYk,t,p(s) =
(
Υ (s, Pt,p(s))

−Ψ (s, Pt,p(s))gk−1(s, Pt,p(s)) + Ψ (s, Pt,p(s))Yk,t,p(s)
)

ds

+Zk,t,p
1 (s)dWQ(s) + Zk,t,p

2 (s)d BQ(s), t ≤ s ≤ T ,

Pt,p(s)

Pt,p(s)
=

(
a − μbρ

σ
+ γ (1 − ρ2)b2Pt,p(s)hk

p(s, Pt,p(s))
)

ds

+ b
(
ρdWQ(s) +

√
1 − ρ2d BQ(s)

)
, t ≤ s ≤ T , (8.30)

where

Υ (s, p) = − μ2

2σ 2γ 2 − 1

2
(1 − ρ2)b2 p2

(
hk

p(s, p)
)2

−eγ (β(p)+hk−1(s,p)−hk (s,p))
(
γ
(
β(p) + hk−1(s, p) − hk(s, p)

) − 1
) + 1

γ 2 kλ

Ψ (s, p) = eγ (β(p)+hk−1(s,p)−hk (s,p))kλ.

The stochastic integrals in (8.30) areQ-martingales, see e.g. Theorem 3.6 inKazamaki
(1997). Taking the expected value in (8.30), we derive that

Yk,t,p(t)

= E
Q

[
−

∫ T

t
e− ∫ s

t Ψ (u,Pt,p(u))ds
(
Υ (s, Pt,p(s)) − Ψ (s, Pt,p(s))gk−1(s, Pt,p(s))

)
ds

]
,

(t, p) ∈ [0, T ] × (0, ∞), k ∈ {0, . . . , n}.

Step 3: Using (A7), Steps 1-2, Theorem 1 from Heath and Schweizer (2001), we can
conclude that Yk,t,p(t) = gk(t, p) where gk ∈ C([0, T ] × (0,∞)) ∩ C1,2([0, T −
ε)× (0,∞)) and gk satisfies the PDE (5.10) for (t, p) ∈ [0, T − ε)× (0,∞) with the
terminal condition Yk,T −ε,p(T − ε), for any ε > 0. Moreover, the solution to such a
PDE unique. Since ε > 0 is arbitrary, the result is proved.
Step 4: The formulas for Z1 and Z2 can be proved as in Proposition 5.2. ��

Proof of Theorem 6.1 From the calculations in Sect. 6 we conclude that the first-order
expansion to the equilibrium strategy is given by (6.3) with (6.11) and (6.14). If we use
the relations between (hk)n

k=0, (g
k)n

k=0 and (Y k, Zk
1)

n
k=0, (Yk,Zk

1 )n
k=0 established in

Propositions 5.2 and 5.4 , we get the strategy (6.15). We now confirm that our strategy
(6.15) is admissible, i.e. it satisfies all points of Definition 3.1.

Point 1: The strategy π̂∗ is F-predictable and is determined with a measurable
mapping.
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Point 2: By Propositions 5.1 and 5.3, the processes
( ∫ t

0 Zk,γ0
1 (s)dW (s), 0 ≤ t ≤

T
)
,
( ∫ t

0 Z
k,γ0
1 (s)dW (s), 0 ≤ t ≤ T

)
are B M O(FW ,B) martingales, for each k ∈

{0, . . . , n}. Since γ1 is bounded, we can deduce that
( ∫ t

0 π̂∗(t)(s)dW (s), 0 ≤ t ≤ T
)

is a B M O(F) martingale.
Point 3: The dynamics of the insurer’s wealth process (3.1) under the strategy π̂∗

is given by the equation

d X π̂∗
(t) = π̂ J (t−),∗(t, X π̂∗

(t), P(t))
(
μdt + σdW (t)

)

−J (t−)α(P(t))dt + β(P(t))d J (t), 0 ≤ t ≤ T . (8.31)

By Lipschitz continuity of γ1 and the formula (5.11) for Zk
1 , we have

|π̂k,∗(t, x, p) − π̂k,∗(t, x ′, p)| ≤ K |gk
p(t, p)p||x − x ′|,

for any (t, x, p), (t, x ′, p) ∈ [0, T ] × R × (0,∞) and k ∈ {0, . . . , n}. By Propo-
sitions 5.3 and 5.4, the mapping p �→ gk(t, p) is Lipschitz continuous on (0,∞)

uniformly in t ∈ [0, T ] and gk ∈ C([0, T ] × (0,∞)) ∩ C1,2([0, T ) × (0,∞)).
Consequently, the derivative (t, p) �→ gk

p(t, p) is uniformly bounded and contin-
uous on [0, T ) × (0,∞). In the definition of the investment strategy (6.15) we can
choose gk

p(T , p) = limt �→T − gk
p(t, p) and we have a continuous, finite mapping

t �→ gk
p(t, P(t, ω))P(t, ω) on [0, T ] for a.a ω. We can conclude that the SDE (8.31)

is a SDE with a process Lipschitz coefficient, see Chapter V in Protter (2005). Hence,
by Theorem V.7 in Protter (2005), there exists a unique solution to (8.31).

Point 4: We use the decomposition: π̂∗(t) = π̂∗
0 (t) + π̂∗

1 (t)ε. We choose r ∈ R

and set γ1 := γ1(r). We fix t ∈ [0, T ]. We have to study the expected value:

E

[
e−Γ (r)

(
X π̂∗

(T )−J (T )η(P(T ))
)

|Ft

]
= E

[
e−(γ0+γ1ε)

(
X π̂∗

(T )−J (T )η(P(T ))
)

|Ft

]

= e−(γ0+γ1ε)X π̂∗
(t)+γ0Y (t)

E

[
e−γ0

(
X π̂∗

0 (T )−X π̂∗
0 (t)−(Y (T )−Y (t))

)

×e−ε
( ∫ T

t π̃∗(s)μds+∫ T
t π̃∗(s)σdW (s)

)

eγ1ε
( ∫ T

t J (s)α(P(s))ds−∫ T
t β(P(s))d J (s)+J (T )η(P(T ))

)]
,

where Y solves the BSDE (8.10), and we introduce π̃∗(s) = γ1π̂
∗
0 (s) + (γ0 +

γ1ε)π̂
∗
1 (s). We have the property:

||π̃∗||B M O ≤ |γ1|||π̂∗
0 ||B M O + (γ0 + |γ1|ε)||π̂∗

1 ||B M O < ∞. (8.32)

The process (M1(s), t ≤ s ≤ T ) given by

M1(s) = e−γ0

(
X π̂∗

0 (s)−X π̂∗
0 (t)−(Y (s)−Y (t))

)

,

is an exponential martingale generated by a B M O-martingale, see (8.12). By Hölder
inequality and reverse Hölder inequality (see Theorem 3.1 in Kazamaki (1997)), we
can derive
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E
[
e−Γ (r)

(
X π̂∗

(T )−J (T )η(P(T ))
)

|Ft

]

≤ e−(γ0+γ1ε)X π̂∗
(t)+γ0Y (t)(E

[|M1(T )|q1 |Ft
]) 1

q1

×
(
E

[
e−q∗

1 ε
( ∫ T

t π̃∗(s)μds+∫ T
t π̃∗(s)σdW (s)

)

eq∗
1 γ1ε

( ∫ T
t J (s)α(P(s))ds−∫ T

t β(P(s))d J (s)+J (T )η(P(T ))
)

|Ft

]) 1
q∗
1

≤ K e−(γ0+γ1ε)X π̂∗
(t)+γ0Y (t)

×
(
E

[
e− ∫ T

t q∗
1 επ̃∗(s)σdW (s)− 1

2

∫ T
t |q∗

1 επ̃∗(s)σ |2dse
1
2

∫ T
t |q∗

1 επ̃∗(s)σ |2ds−∫ T
t q∗

1 επ̃∗(s)μds |Ft

]) 1
q∗
1 ,

for some sufficiently small q1 > 1 and its conjugate q∗
1 . The process (M2(s), t ≤ s ≤

T ) given by M2(s) = e− ∫ s
t q∗

1 επ̃∗(u)σdW (u)− 1
2

∫ s
t |q∗

1 επ̃∗(u)σ |2du is also an exponential
martingale generated by a B M O-martingale. Applying again Hölder inequality and
reverse Hölder inequality, we get

E

[
e−Γ (r)

(
X π̂∗

(T )−J (T )η(P(T ))
)

|Ft

]

≤ K e−(γ0+γ1ε)X π̂∗
(t)+γ0Y (t)

×
(
E

[
e
1
2

∫ T
t q∗

2 |q∗
1 επ̃∗(s)σ |2ds−∫ T

t q∗
2q∗

1 επ̃∗(s)μds |Ft

]) 1
q∗
1 q∗

2 , (8.33)

for some sufficiently small q2 > 1 and its conjugate q∗
2 . Finally, for a sufficiently

small ε > 0, we have the inequality

E

[
e
1
2

∫ T
t q∗

2 |q∗
1 επ̃∗(s)σ |2ds−∫ T

t q∗
2q∗

1 επ̃∗(s)μds |Ft

]

≤ KE

[
eK ε2

∫ T
t |π̃∗(s)|2ds |Ft

]
≤ K

1 − K ε2||π̃∗||2B M O

< ∞, (8.34)

by (8.32) and John–Nirenberg inequality, see Theorem 2.2 in Kazamaki (1997). Col-
lecting (8.33) and (8.34), we can conclude that our strategy π̂∗ satisfies point 4. ��
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