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Abstract
We consider an economic agent (a household or an insurance company) modelling
its surplus process by a deterministic process or by a Brownian motion with drift.
The goal is to maximise the expected discounted spending/dividend payments under
a discounting factor given by an exponential CIR process. In the deterministic case,
we are able to find explicit expressions for the optimal strategy and the value function.
For the Brownian motion case, we are able to show that for a special parameter choice
the optimal strategy is a constant-barrier strategy.

Keywords Hamilton–Jacobi–Bellman equation · Cox–Ingersoll–Ross process ·
Dividends · Brownian risk model · Consumption

Mathematics Subject Classification Primary 93E20; Secondary 91B42 · 91B30 ·
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1 Introduction

1.1 General introduction

An insurance company’s credit rating indicates its ability to pay customer’s claims.
A bad credit rating can affect a company’s business plan, growth potential or even
survival chances if new finance is needed to fulfil the capital requirements prescribed
by Solvency II. The rating process run by a credit rating agency includes quantitative
and qualitative analysis,where cashflow is one of themost important factors. Particular
attention is paid to dividend payments, which are commonly believed to indicate a
company’s financial health.
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Searching for the optimal strategy which maximises the value of expected dis-
counted dividends under different constraints and in different setups has been a popular
problem in actuarial mathematics for a long time. The papers by Shreve et al. (1984),
Asmussen and Taksar (1997), Azcue and Muler (2005) are just some examples. For
a detailed review we refer for instance to the survey by Albrecher and Thonhauser
(2009). The papers mentioned above assume the discounting rate to remain constant
up to the considered time horizon, often chosen to be infinite. Following the recent
crisis with ultra low interest rates in Europe, the question arises whether the discount-
ing of cash flows by a constant discounting rate could be considered as an admissible
assumption. A stochastic discounting factor increases the dimension of the considered
problem along with the complexity. Nevertheless, in recent years stochastic discount-
ing has become a topical question in dividend maximisation problems. For instance
Jiang and Pistorius (2012) model the interest rate by a positive deterministic function
of the current state of a given Markov chain. If the drift of the underlying surplus pro-
cess is positive in each state, they prove that it is optimal to adopt a regime-dependent
barrier strategy; if the drift is small and negative in one state, the optimal strategy has
a different form, which is explicitly identified for the two regimes case.

Akyildirim et al. (2014) consider two macroeconomic factors: the interest rates
and the issuance costs. Both factors are assumed to be governed by an exogenous
Markov chain. The optimal dividend policy is characterised by dependence on these
two factors: all things being equal, firms distribute more dividends when interest rates
are high and less when issuing costs are high.

Where Jiang and Pistorius (2012) use the fixed point theorem in order to obtain their
results, Akyildirim et al. (2014) apply the direct approach by solving the corresponding
ODEs, a method we will use in our paper.

In the present paper, we take into account the time-varying interest by introducing
a discounting factor given by an exponential Cox–Ingersoll–Ross (CIR) process. A
CIR process is a squared diffusion process, which can attain non-negative values and
hit zero for special parameters. Here, we would like to emphasise that in contrast to
the usual financial setup, we are modelling the compound interest and not the short
rate. Negative interest rates have governed the markets in the last several years, keep-
ing insurance companies under pressure. Therefore, assuming a market interest rate
to be given by a non-negative CIR process would not be realistic. The case of con-
sumption maximisation with an Ornstein–Uhlenbeck process describing the interest
rates has been considered in Eisenberg (2018). The logic behind the choice of a CIR
process is that we would rather look at the preferences of the insurer than at the real
market-given interest. The non-negativity of CIR processes describing the compound
preference implies that for the insurer money today is preferable to money tomor-
row. This idea conforms to the work of the famous Austrian economist Böhm-Bawerk
claiming an always positive preference interest, see Von Böhm-Bawerk (1890). On the
website of theMises Institute (TheLudwig vonMises Institute forAustrianEconomics
1999), named after the most famous student of Böhm-Bawerk economist Ludwig von
Mises, one finds plenty of essays defending the thesis of Böhm-Bawerk and exam-
ining counterarguments. A detailed discussion of the topic certainly goes beyond
the scope of the present paper. Hence, we refer for instance to an essay by Polleit
(2015) and give below a digest of the theory that serves as an economic basis for the
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mathematical model presented in the following chapters. The theory of positive time
preference distinguishes between the market and the originary interest rate. While the
first is the interest rate observed on deposit or loan markets, the originary interest rate
measures consumption today compared to consumption tomorrow, i.e. the time prefer-
ence. According to Böhm-Bawerk and his student vonMises the originary interest rate
and consequently the (compound) time preference are always positive. Some modern
economists, for instance Alchian (2018), even call a positive time preference the “prin-
ciple of rationality”. However, an insurance company cannot ignore negative market
interest rates governing the European markets in the recent years. With this in mind,
the oscillations of a CIR process can be interpreted as the dependence of the insurer’s
preferences on the movements of the market interest rate: if the compound preference
goes down the market rate is supposed to be negative and vice versa, whereas the
compound preference always stays positive. Usually, when modelling interest rates
in financially motivated problems one assumes CIR to be mean-reverting. However,
under this assumption our problem would be ill-posed on the one hand, and would
contradict the thesis in Von Böhm-Bawerk (1890), that the value of goods decreases
by postponing the consumption, on the other hand. Therefore, we require the CIR
process to be non-mean-reverting, implying the almost sure convergence to infinity,
shown in Sect. 1.2.

We assume that the underlying income process is a linear function of time without
a random component. Our target is to maximise the expected discounted consump-
tion. This structure yields a two-dimensional problem where the optimal consumption
strategy depends on the parameters of the underlying CIR process. For instance, for
a highly volatile discounting factor, it might be optimal to wait with the consumption
until the discounting process approaches some relatively small positive level, taking
into account that the waiting period could last forever. In the low volatility case, we
prove that the optimal strategy will always be to spend the maximal possible amount
independent of the discounting factor.

Additionally, we consider an insurance company whose surplus is described by
a Brownian motion with drift independent of the CIR. Here, we again have a two-
dimensional problem. However, the problem formulation puts an emphasis on the
ruin time of the underlying surplus process. We are able to reduce the problem to the
classical setup with a constant discounting rate for some special parameters of the CIR
process.

To the best of our knowledge, this paper is the first to study an exponential CIR as
a discounting factor in the context of consumption/dividend maximisation problems.
Despite the fact that the value function depends on two variables—the surplus and the
discounting process—we are able to find explicit expressions for the optimal strategy
and the value function in the deterministic income case and (under some restrictions
on the underlying CIR) in the case of Brownian risk model.

It will be of major importance for the understanding of the paper to remind the
reader on some properties and results connected to CIR processes. Accordingly, we
organise the paper as follows: in the next subsection we give an overview of CIR
processes. For the convenience of reading, we postpone the technical proofs to the
“Appendix”.
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In Sect. 2, we consider the case of a deterministic, linear in time income process,
which can be interpreted as the income of an individual or household. There, we
will distinguish between two different cases concerning the parameters of the consid-
ered CIR process and give explicit expressions for the optimal strategy and the value
function. In Sect. 2.4, we solve the problem of dividend maximisation for special
parameters of the underlying CIR process. Conclusion at the end of Sect. 2 gives an
overview of the possible future research directions. Some technical proofs are given
in the “Appendix”, Sect. 1.

1.2 Preliminaries

For the sake of clarity of presentation,we postponemost of the proofs of this subsection
to the “Appendix”, Sect. 1. In the following sections, we use the common notation:
P[ · |Y0 = y] = Py[ · ] and E[ · |Y0 = y] = Ey[ · ] for any stochastic process {Yt }.
In the remainder of the paper we let r = {rt } be a Cox–Ingersoll–Ross (CIR) process

drt = (art + b) dt + δ
√
rt dWt , (1)

where a, b and δ are positive constants andW = {Wt } is a standard Brownian motion.
Due, for example, to Ethier and Kurtz (1986), CIR processes have the strong Markov
property. We define

M(r , t) := Er [e−rt ].

Due to Cox et al. (1985), we know that the density function of rt with initial value r
is given by

f (y) := c(t)e−u(t,r)−v(t,y)
(

v(t, y)

u(t, r)

)q/2

Iq
(
2
√
u(t, r)v(t, y)

)
, (2)

where Iq(x) = ∑∞
m=0

1
m!�(m+q+1)

(
x
2

)2m+q
is the modified Bessel function of the

first kind and

c(t) := 2a

(eat − 1)δ2
, q := 2b

δ2
− 1,

u(t, r) := c(t)reat , v(t, y) := c(t)y.

Also, one has that

M(r , t) = Er [e−rt ] = e− 2ab
δ2

t
β(t)

2b
δ2 · e−rβ(t), (3)

where β(t) := 1
δ2
2a +

(
1− δ2

2a

)
e−at

.
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Lemma 1.1 In the case δ2

2 ≤ a, the function M(r , t) is strictly decreasing in t and the
process {e−rt } is a supermartingale.

Proof Using that β ′(t) = a
(
1 − δ2

2a

)
e−atβ(t)2 > 0, we obtain

Mt (r , t) = M(r , t)

{
−bβ(t) − rae−at

(
1 − δ2

2a

)
β(t)2

}
< 0

for all r ∈ R+. The supermartingale property follows immediately due to the Markov
property and the structure of M . ��
Lemma 1.2 Due to Revuz and Yor (1999, p. 282), the function M(r , t) solves the
partial differential equation

(ar + b)Mr (r , t) + δ2r

2
Mrr (r , t) − Mt (r , t) = 0.

The below lemma ensures thewell-posedness of the problemswe are going to consider.

Lemma 1.3 If a > 0 then the CIR process {rt } fulfils lim
t→∞ rt = ∞ a.s.

For the proof refer to the “Appendix”, Sect. 1.
The usual method for proving a verification theorem is to apply Ito’s formula, and

to prove the stochastic integral to be a martingale. Later, we will see that the following
result provides the necessary martingale argument for the verification theorem.

Lemma 1.4 For 2b < δ2 let q be given as in (2), then it holds that

∫ ∞

0
y− 2b

δ2 e− 2a
δ2

y dy < ∞,

∫ s

0
Er

[
r−2q−1
t

]
dt < ∞ for all s ∈ R+.

Proof Since 2b < δ2 it holds that −1 < q < 0 and

∫ ∞

0
y− 2b

δ2 e− 2a
δ2

y dy =
∫ ∞

0
y

(
1− 2b

δ2

)
−1

e− 2a
δ2

y dy = �(−q)

(
2a

δ2

)q

< ∞.

Further, using (2) and the bounded convergence theorem, we get:

Er
[
r−2q−1
t

] =
∞∑

m=0

c(t)q+1+2me−c(t)reat

m!�(m + q + 1)

∫ ∞

0
ym− 2b

δ2 e− 4a
δ2

ye−c(t)y dy

=
∞∑

m=0

c(t)q+1+2me−c(t)reat

m!�(m + q + 1)
· �(m − q)(

4a
δ2

+ c(t)
)m−q .
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As lim
t→0

c(t)q+1+2me−c(t)reat = 0, the above power series is integrable over (0, s) for

every s ∈ R+. ��

Throughout this paper we will use the following notation: for a fixed r∗ ∈ R+, we
define

τ := inf{t ≥ 0 : rt = r∗}. (4)

Further, we let

ψ1(r) := Er

[∫ τ

0
e−rs ds

]
, for r ≤ r∗, (5)

φ1(r) := Er

[
1[τ<∞]

]
, for r ≥ r∗, (6)

φ2(r) := Er

[
1[τ<∞]τ

]
for r ≥ r∗. (7)

Since lim
t→∞ rt = ∞ a.s., we know τ < ∞ a.s.

Lemma 1.5 The functions ψ1(r), φ1(r) and φ2(r) solve the differential equations

e−r + (ar + b)g′(r) + δ2r

2
g′′(r) = 0, (8)

(ar + b)g′(r) + δ2r

2
g′′(r) = 0, (9)

(ar + b)g′(r) + δ2r

2
g′′(r) + φ1(r) = 0, (10)

respectively with boundary conditions

ψ1(r
∗) = 0 and ψ ′

1(0) = −1

b
,

φ1(r
∗) = 1 and φ1(∞) = 0,

φ2(r
∗) = 0 and φ2(∞) = 0.

For the proof, following the method described in Shreve et al. (1984, p. 57), refer to
the “Appendix”, Sect. 1.

2 Main results

Before considering an insurance company with surplus process following a Brownian
motion, we look at the problem of consumption maximisation for an individual with a
deterministic income. The discounting factor is assumed to be given by an exponential
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CIR process, {e−rt }. The filtration {Ft } is generated by {rt }. Let the income process
of the considered individual or household be given by

Xt = x + μt, μ > 0.

Let C denote the accumulated consumption process up to time t and the ex-
consumption income be given by

XC
t = x + μt − Ct .

We call a strategy C admissible if it is adapted to the filtration {Ft }, is non-decreasing
and fulfils C0 ≥ 0, XC

t ≥ 0 for all t ∈ R+, meaning in particular that Ct ≤ x + μt .
In the following, we denote the set of all admissible strategies by A. The following
notation will be used throughout this section:

VC (r , x) := E(r ,x)

[∫ ∞

0
e−rs dCs

]
,

V (r , x) := sup
C∈A

VC (r , x).

WecallVC (r , x) the performance function corresponding to the strategyC andV (r , x)
the value function. Our target is to find an optimal consumption strategy, such that the
expected discounted consumption

E(r ,x)

[∫ ∞

0
e−rs dCs

]

is maximised, i.e. to find the value function V (r , x) and an admissible strategyC∗ such
that V (r , x) = VC∗

(r , x). Note that the problem we are looking at is well-defined
because we assume rt to be non-mean-reverting. Indeed, because Xt ≥ Ct for every
admissible strategy C , using Lemmata 1.1, 1.3 and Tonelli’s theorem we have

VC (r , x) = E(r ,x)

[∫ ∞
0

e−rs dCs

]
≤ E(r ,x)

[∫ ∞
0

e−rs Cs ds

]
≤ E(r ,x)

[∫ ∞
0

e−rs Xs ds

]

=
∫ ∞
0

M(r , s)Xs ds ≤ max

(
1,

2a

δ2

) ∫ ∞
0

e
− 2ab

δ2
s
(x + μs) ds < ∞,

as 0 < β(t) ≤ max
(
1, 2a

δ2

)
.

TheHamilton–Jacobi–Bellman (HJB) equation can bemotivated using the standard
methods from stochastic control theory, we therefore omit the detailed derivation
and refer the reader to Schmidli (2008, pp. 98,103) and references therein. The HJB
equation consists of two partial differential equations with linear coefficients:

max

{
μVx + (ar + b)Vr + δ2r

2
Vrr , e

−r − Vx

}
= 0. (11)

123



292 J. Eisenberg, Y. Mishura

Theorem 2.5 below illustrates that the HJB equation corresponds to the problem we
consider.

To simplify our considerations we introduce the following notation

L( f )(r , x) = μ fx (r , x) + (ar + b) fr (r , x) + δ2r

2
frr (r , x)

for any appropriate function f : R2+ → R.
In order to get an idea of how the value function and the optimal strategy look,

we first consider the performance function corresponding to the strategy “maximal
spending”, i.e. Cmax

t = x + μt . Using Fubini’s theorem, this performance function is
given by

H(r , x) := xe−r + μEr

[∫ ∞

0
e−rs ds

]
= xe−r + μ

∫ ∞

0
M(r , s) ds, (12)

with M(r , t) = Er [e−rt ]. The function M fulfils M ∈ C2,1(R2+) and solves the
differential equation

(ar + b)Mr (r , t) + δ2r

2
Mrr (r , t) − Mt (r , t) = 0.

refer to the “Appendix”, Sect. 1. In particular thismeans, that using the Leibniz integral
rule, we have

Hr (r , x) = −xe−r + μ

∫ ∞
0

Mr (r , s) ds and Hrr (r , x) = xe−r + μ

∫ ∞
0

Mrr (r , s) ds.

Inserting H(r , x) into the HJB equation yields e−r − Hx (r , x) = 0 on the one hand
and on the other hand

μHx + (ar + b)Hr + δ2r

2
Hrr = μe−r + xe−r

(
−ar − b + δ2r

2

)
+ μ

∫ ∞
0

(ar + b)Mr (r , s) + δ2r

2
Mrr (r , s) ds

= μe−r + xe−r

(
−ar − b + δ2r

2

)
+ μ

∫ ∞
0

Ms(r , s) ds

= μe−r + xe−r

(
−ar − b + δ2r

2

)
− μe−r

= xe−r

(
−ar − b + δ2r

2

)
,

using
∫ ∞
0 Ms(r , s) ds = M(r , s)

∣∣∣∞
0

= −e−r and the differential equation for M .
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Note that the sign of the above expression does not depend on x and we define

R := b
δ2

2 − a
. (13)

for δ2

2 > a.
In the following section we consider different combinations of the parameters a, b

and δ, influencing the solution to the HJB equation (11).

2.1 The case ı2

2 ≤ a

In this case it clearly holds that

−ar − b + δ2r

2
< 0

independently of b and r , which in turn means H(r , x) solves the HJB equation (11).
The inequality δ2

2 ≤ a can be interpreted in the following way. The volatility of the
CIR process compared to the speed of drifting towards infinity is relatively small,
so that the probability of downward excursions becomes negligible. Therefore, it is
always better to consume the maximal possible amount available right now, because
the expected preference factor M(r , t) will be decreasing in t for every value of r .

We can now formulate the following verification theorem:

Theorem 2.1 The function H(r , x) is the value function and the strategy Cmax
t :=

x + μt “� to always spend the maximal possible amount independent of r and x” is
the optimal strategy. This means V (r , x) = H(r , x) = VCmax

(r , x).

We skip the proof, since it is similar to the proof of the verification theorem in the next
subsection.

2.2 The case a < ı2

2

If a < δ2

2 , the volatility of the CIR process is high enough to produce downwards
excursions with a sufficient probability. This means that, depending on the initial
value r , it may be better to abandon the immediate consumption in favour of a later
consumption with a higher compound preference. In this case, H(r , x) defined in (12)
does not solve the HJB equation (11) for r > R.

In Schmidli (2008, p. 27) for instance, one finds that there are two methods for
solving an optimisation problem: to show directly that the value function solves the
HJB equation or to guess the optimal strategy and to prove that the corresponding
return function solves the HJB equation. Here, we will follow the second method.

We conjecture that the optimal strategy is of a barrier type in the following sense:
there is a positive constant r̄ ∈ R+ such that it is optimal to wait with the consumption
if r > r̄ and to immediately spend everything if r ≤ r̄ . Since we do not know what the
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optimal preference barrier should look like, we let r̄ ∈ R+ be arbitrary but fixed and
follow the barrier strategy with the barrier r̄ as described above. With a slight abuse
of notation, in the following we use the stopping time τ defined in (4) with r̄ instead
of r∗. The return function corresponding to the above barrier strategy consists of two
parts:

F(r , x) := xe−r + μEr

[∫ τ

0
e−rs ds

]
+ F̃, r ≤ r̄

and

G(r , x) := Er

[(
x + μτ

)
1[τ<∞]

]
e−r̄ + F̃Er

[
1[τ<∞]

]
, r > r̄ ,

where F̃ is some positive constant whose value should be determined later. This
means that F describes the spending if the initial value r0 = r ≤ r̄ , and G describes
the spending after the waiting time until rt approaches r̄ or ∞.

By construction, G(r̄ , x) = F(r̄ , x) and Gx (r̄ , x) = Fx (r̄ , x) for all x ∈ R+.
The question iswhetherG and F given above solve theHJB equation (11) on [r̄ ,∞)

and on [0, r̄ ] respectively and fulfil Gr (r̄ , x) = Fr (r̄ , x) and Grr (r̄ , x) = Frr (r̄ , x)
for all x ∈ R+ with bounded derivatives Fr and Gr .

2.2.1 Properties of F and G

In this subsection, we investigate the properties of functions F and G. Using notation
(5), we can rewrite F as follows

F(r , x) = xe−r + μψ1(r) + F̃ .

That is, inserting the function F into the HJB equation (11) we obtain on the one hand
e−r − Fx = 0 and on the other hand, using Lemma 1.5:

L(F)(r , x) = μe−r + xe−r
(

−ar − b + δ2r

2

)
+ μ(ar + b)ψ ′

1 + μ
δ2r

2
ψ ′′
1 (r)

= xe−r
(

−ar − b + δ2r

2

)
.

Thus, F solves the HJB equation (11) on the set [0, r̄ ] × R+, if r̄ ≤ R, for R defined
in (13).

Consider now the function G. Using Definitions (6) and (7), G can be rewritten
such that

G(r , x) = xφ1(r)e
−r̄ + μφ2(r)e

−r̄ + F̃φ1(r).
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Wenowfind the conditions under whichG solves theHJB equation (11) on the interval
[r̄ ,∞). Lemma 1.5 yields

L(G)(r , x) = μφ1(r)e
−r̄ + (

xe−r̄ + F̃
) {

(ar + b)φ′
1(r) + δ2r

2
φ′′
1 (r)

}

+ μe−r̄
{
(ar + b)φ′

2(r) + δ2r

2
φ′′
2 (r)

}

= μφ1(r)e
−r̄ − μφ1(r)e

−r̄ = 0.

We therefore consider e−r −Gx (r , x) and search for conditions satisfying the relation
e−r − Gx (r , x) ≤ 0 on [r̄ ,∞) × R+. First, we prove the following auxiliary result:

Lemma 2.2 The function φ1(r) is decreasing, and there is a unique r∗ ∈ [0, R] such
that

φ1(r
∗) = −φ′

1(r
∗) = 1 and φ1(r) > −φ′

1(r) for r > r∗.

Proof For the proof consult the “Appendix”, Sect. 1. ��
The following Lemma considers the expression e−r − Gx (r , x) when the barrier is
given by r∗ defined above.

Lemma 2.3 Let r̄ = r∗, defined in Lemma 2.2. Then, for all r > r∗ the following
inequality holds true:

Gx (r , x) = φ1(r)e
−r∗

> e−r .

Proof Deriving erφ1(r) yields
(
erφ1(r)

)′ = erφ1(r)
(
1 + φ′

1(r)
φ1(r)

)
> 0, using

Lemma 2.2. Then,

e−r − Gx (r , x) = e−r e−r∗(
er

∗ − erφ1(r)
)

< e−r e−r∗(
er

∗ − er
∗
φ1(r

∗)
)

= 0

for r > r∗. ��
We can therefore conclude that G solves the HJB (11) on [r∗,∞) if r̄ = r∗.

2.2.2 The optimal strategy and verification theorem

From now on we assume r̄ = r∗, i.e. φ′
1(r

∗)
φ1(r∗) = −1.

Due to Lemma 2.2, both functions F and G solve the HJB equation (11) on [0, r∗]
and on [r∗,∞) respectively. Next, we consider the derivatives Gr (r∗, x), Fr (r∗, x)
and Grr (r∗, x), Frr (r∗, x) in order to guarantee a smooth value function. It holds that

Gr (r
∗, x) = xe−r∗

φ′
1(r

∗) + μφ′
2(r

∗)e−r∗ + F̃φ′
1(r

∗)
= −xe−r∗ + μφ′

2(r
∗)e−r∗ − F̃,
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Fr (r
∗, x) = −xe−r∗ + μψ ′

1(r
∗)

and

Grr (r
∗, x) = xe−r∗

φ′′
1 (r

∗) + μφ′′
2 (r

∗)e−r∗ + F̃φ′′
1 (r

∗),
Frr (r

∗, x) = xe−r∗ + μψ ′′
1 (r∗).

Remark 2.4 Selecting

F(r∗, 0) = F̃ = μφ′
2(r

∗)e−r∗ − μψ ′
1(r

∗) (14)

yields Gr (r∗, x) = Fr (r∗, x) for all x ∈ R+. Note, it holds that F̃ ≥ 0 due to the
proof of Lemma 1.5, consult “Appendix”, Sect. 1.

Consider the differential equations (8) multiplied by (−μ); (9) multiplied by F̃ and
(10) multiplied by μe−r∗

at r∗ such that

− μe−r∗ − (ar∗ + b)μψ ′
1(r

∗) − δ2r∗

2
μψ ′′

1 (r∗) = 0,

(ar∗ + b)F̃φ′
1(r

∗) + δ2r∗

2
F̃φ′′

1 (r
∗) = 0,

e−r∗
(ar∗ + b)μφ′

2(r
∗) + μe−r∗ δ2r∗

2
φ′′
2 (r

∗) + μe−r∗
φ1(r

∗) = 0.

Using φ1(r∗) = −φ′
1(r

∗) = 1 and summing the above equations yields

(ar∗ + b)
{
μφ′

2(r
∗)e−r∗ − μψ ′

1(r
∗) − F̃

}

= −δ2r∗

2

{
μφ′′

2 (r
∗)e−r∗ + F̃φ′′

1 (r
∗) − μψ ′′

1 (r∗)
}
.

Note that by definition of F̃ , the lhs of the above equation equals zero, meaning
Grr (r∗, 0) = Frr (r∗, 0). However, in general it does not hold that φ′′

1 (r
∗) = 1. For

this reason Grr (r∗, x) �= Frr (r∗, x) if x �= 0.

We formulate the following verification theorem.

Theorem 2.5 The optimal strategy C∗ is to immediately spend any available amount
bigger than zero if r ≤ r∗, i.e. C∗

t = (
x+μλtr∗

)
1[λtr∗>0], where λtr∗ := sup{s ∈ [0, t) :

rs ≤ r∗} with sup{∅} = 0. The value function V (r , x) solves the HJB equation (11)
and fulfils V (r , x) = v(r , x) where

v(r , x) =
{
F(r , x) if (r , x) ∈ [0, r∗] × R+,

G(r , x) if (r , x) ∈ [r∗,∞) × R+,

with F(r∗, 0) = F̃ as given in (14).
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Proof Note, it holds that

{λtr∗ ≤ u} = {
sup{s ∈ [0, t) : rs ≤ r∗} ≤ u

} =
{

inf
u<s≤t

rs > r∗
}

.

Since the running infimum above is Ft -measurable, we can conclude that the strategy
C∗ is an admissible strategy.

Since F ∈ C1,2((0, r∗) × R+), G ∈ C1,2((r∗,∞) × R+), F(r∗, x) = G(r∗, x),
Fr (r∗, x) = Gr (r∗, x) and 1[rt=r∗] = 1 a.s., by Peskir (2005) we can apply the
change-of-variable formula. Let C be an arbitrary admissible strategy and X̂ the ex-
consumption process under C . Then

v(rt , X̂t ) = v(r , x) +
∫ t

0
L(v)(rs , X̂s) ds +

∫ t

0
δ
√
rs vr (rs , X̂s) dWs −

∫ t

0
vx (rs , X̂s) dCs .

Furthermore, we know v solves the HJB equation (11) meaning L(v)(r , x) ≤ 0 and
e−r − vx (r , x) ≤ 0 for all (r , x) ∈ R

2+. Therefore,

v(rt , X̂t ) ≤ v(r , x) +
∫ t

0
δ
√
rs vr (rs, X̂s) dWs −

∫ t

0
e−rs dCs .

The stochastic integral above is a martingale with expectation zero, consult the proof
of Lemma 1.5 in Sect. 1. Taking expectations on both sides of the above equality, one
obtains

E(r ,x)
[
v(rt , X̂t )

] ≤ v(r , x) − E(r ,x)

[∫ t

0
e−rs dCs

]
.

As lim
r→∞ v(r , x) = 0 and v(r , x) is bounded, by dominated convergence we can

interchange limit and integration to obtain

v(r , x) ≥ E(r ,x)

[∫ ∞

0
e−rs dCs

]

Taking the strategy C∗ yields equality. ��
Thus, the barrier strategy with barrier given by r∗, defined in Lemma 2.2, is optimal.
The corresponding return function is the value function and solves the HJB equation
(11).

We can calculate the value function explicitly such that

ψ1(r) = 2

δ2

∫ r∗

x
y− 2b

δ2 e− 2a
δ2

y
∫ y

0
e−z z

2b
δ2

−1e
2a
δ2

z dz dy,

φ1(r) = 1∫ ∞
r∗ y− 2b

δ2 e− 2a
δ2

y dy

∫ ∞

r
y− 2b

δ2 e− 2a
δ2

y dy,
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Fig. 1 LHS: the value function V (r , x), consisting of F(r , x) (black) andG(r , x) (grey). RHS: dependence
of the barrier r∗ on δ2

φ2(r) = 2

δ2

∫ ∞
r∗ y− 2b

δ2 e− 2a
δ2

y ∫ y
r∗ φ1(z)z

2b
δ2

−1e
2a
δ2

z dz dy∫ ∞
r∗ y− 2b

δ2 e− 2a
δ2

y dy

∫ r

r∗
y− 2b

δ2 e− 2a
δ2

y dy

− 2

δ2

∫ r

r∗
y− 2b

δ2 e− 2a
δ2

y
∫ y

r∗
φ1(z)z

2b
δ2

−1e
2a
δ2

z dz dy.

For well-definiteness of φ1 and φ2 refer to the proof of Lemma 1.5 in the “Appendix”,
Sect. 1.

Example 2.6 Let a = 0.001, b = 0.002, δ = 0.07 and μ = 0.5. Both functions, F
and G are illustrated in Fig. 1.

2.3 The 0-barrier strategy

In the following,wewill discuss a very specific strategy for the case 2b < δ2: “spending
only if the underlying CIR hits zero”. In fact, we know from Cox et al. (1985) that
if 2b < δ2, a CIR process can attain zero with a positive probability. With growing
volatility, the probability to “dive” and touch zero increases.

In Sect. 2.2, we showed that the value function solves theHJB equation (11) and that
the optimal strategy is a barrier strategy with a constant barrier r∗ fulfilling r∗ ≤ R,
with R given in (13). By the structure of R, it holds that R → 0 as δ → ∞. This
brings up the question whether the optimal barrier could be equal to zero for some
large values of δ.

Let δ < ∞ be fixed such that δ2 > 2max{a, b}, meaning the probability {rt } hits
zero is positive. By Sect. 2.1 the function H defined in (12) is not the value function.

Consider the strategy C0 with C0
t := (

x + μλt0

)
1[λt0>0], where λt0 = sup{s ∈

[0, t) : rs = 0} with sup{∅} = 0 “� to spend the maximal possible amount only if
rt = 0”.
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Letting

ρ0 := inf{t ≥ 0 : rt = 0},

we define φ̂1(r) := Er [1[ρ0<∞]] and φ̂2(r) := Er [ρ01[ρ0<∞]] for r ≥ 0.

Lemma 2.7 Functions φ̂1(r) and φ̂2(r) solve the differential equations (9) and (10)
respectively on (0,∞). The function φ2(r) is finite on (0,∞) and it holds that

φ̂1(r) = 1∫ ∞
0 y− 2b

δ2 e− 2a
δ2

y dy

∫ ∞

r
y− 2b

δ2 e− 2a
δ2

y dy

and

φ̂2(r) = 2

δ2

∫ ∞
0 y− 2b

δ2 e− 2a
δ2

y ∫ y
0 φ1(z)z

2b
δ2

−1e
2a
δ2

z dz dy∫ ∞
0 y− 2b

δ2 e− 2a
δ2

y dy

∫ r

0
y− 2b

δ2 e− 2a
δ2

y dy

− 2

δ2

∫ r

0
y− 2b

δ2 e− 2a
δ2

y
∫ y

0
φ1(z)z

2b
δ2

−1e
2a
δ2

z dz dy.

Proof Lemma1.4yields
∫ ∞
0 y− 2b

δ2 e− 2a
δ2

y dy < ∞. The functions φ̂1(r) = Er [1[ρ0<∞]]
and φ̂2(r) = Er [ρ01[ρ0<∞]] solve the differential equations (9) and (10) respectively
on (0,∞) and the function φ̂2 is finite due to Lemma 1.5. ��
Define further

λ0 := sup{t ≥ 0 : rt = 0},

i.e. λ0 is the last exit time from zero before {rt } approaches ∞. It is clear that under
C0, when r0 = 0 one spends everything immediately, saves money until {rt } again
approaches zero and spends everything there. The game ends at time λ0 defined above.

Lemma 2.8 Let δ2

2 > b, then

λ0 < ∞ a.s. and E0[λ0] =
∫ ∞

0
t

(
eat − 1

)− 2b
δ2

∫ ∞
0

(
eaz − 1

)− 2b
δ2 dz

dt < ∞.

Proof For the proof refer to the “Appendix”, Sect. 1. ��
We can now write the return function corresponding to the strategy C0:

V 0(r , x) := Er
[(
x + μρ0 + Ṽ 0)1[ρ0<∞]

] = (x + Ṽ 0)φ̂1(r) + μφ̂2(r),

where Ṽ 0 = V 0(0, 0) = μE0[λ0].
Proposition 2.9 The strategy C0 cannot be optimal for any δ < ∞.
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Proof Recall that the function φ̂1(r) is given by

φ̂1(r) = 1∫ ∞
0 y− 2b

δ2 e− 2a
δ2

y dy

∫ ∞

r
y− 2b

δ2 e− 2a
δ2

y dy.

In particular, this means that φ̂1(0) = 1 and lim
r→0

φ̂′
1(r) = −∞ giving

e−r − V 0
x (r , x) = e−r − φ̂1(r) > 0

for r ∈ (0, ε) and some ε > 0. Therefore, V 0 does not solve the HJB (11) on
(0, ε) × R+. Since in the previous subsection we have shown that the value function
solves the HJB, we can conclude C0 will never be optimal. ��

2.4 The Brownian risk model

In this subsection,we add complexity to ourmodel by assuming that the underlying sur-
plus (previously called income) process is given by aBrownianmotionwith drift. Since
it is unrealistic to assume strong random fluctuations in the income of an individual
or household, we change the economic interpretation from maximising the consump-
tion of an individual to the maximising of dividends of an insurance company. The
difference to the previous case appears also in the fact that we stop our considerations
when the surplus becomes negative (ruins). Taking the ruin time into consideration,
destroys the linear dependence of the value function on the surplus. In general, the
return function corresponding to a constant barrier strategy will have a representation
as a power series with non-linear functions as summands. Therefore—using the chess
terminology—in order to keep the problem in check, we assume δ2 = 2a for this
subsection. This assumption simplifies calculations, as the exponential CIR process
e−rt fulfils

Er [e−rt ] = e−r e−bt ,

in this case, see (3). Thus, the dependence of Er [e−rt ] on r and t can be separated,
which is crucial for the optimal strategy to be a constant barrier. For δ2 �= 2a, the
exponent of Er [e−rt ] depends on the variables r and t in a highly non-linear way,
suggesting that the optimal strategy in this case would depend on the CIR process.

Technically, we consider an insurance company whose surplus is given by a Brow-
nian motion with drift Xt = x +μt +σ Bt , where {Bt } is a standard Brownian motion
and μ, σ > 0 are positive constants. The considered insurance company is allowed
to pay out dividends, where the accumulated dividends until time t are given by Ct ,
yielding for the ex-dividend surplus XC :

XC
t = x + μt + σ Bt − Ct .

The consideration will be stopped at the ruin time τC of XC . Let {Wt }, the Brownian
motion driving the discounting CIR process (1), be independent of {Bt }, and the
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underlying filtration {Ft } be the filtration generated by the pair {Wt , Bt }. We call a
strategy C admissible if Ct is adapted to {Ft }, C0 ≥ 0 and XC

t ≥ 0 for all t ≥ 0, the
set of admissible strategies will be denoted by B.

As a risk measure we consider the value of expected discounted dividends, where
the dividends are discounted by a CIR process (1).

We define the return function corresponding to some admissible strategy C to be

VC (r , x) = E(r ,x)

[ ∫ τC

0 e−rs dCs

]
and let

V (r , x) = sup
C∈B

VC (r , x).

The HJB equation corresponding to the problem can be derived in a similar way to
Schmidli (2008, pp. 98, 103):

max

{
μVx + σ 2

2
Vxx + (ar + b)Vr + arVrr , e

−r − Vx

}
= 0. (15)

In this setup we conjecture that the optimal strategy will be of barrier type with a
constant barrier for the surplus process. This means we pay any capital larger than the
barrier, independent of {rt }. Define now the following auxiliary quantities:

θ := −μ +
√

μ2 + 2σ 2b

σ 2 , ζ := −μ −
√

μ2 + 2σ 2b

σ 2 , � := ln
(
b − μζ

) − ln
(
b − μθ

)
θ − ζ

.

Lemma 2.10 The return function V �(r , x) corresponding to the constant barrier strat-
egy � is given by

V �(r , x) =
{
F(r , x) : x ≥ �

G(r , x) : x ≤ �,

where

F(r , x) := (
x − � + μ

b

)
e−r , if x ≥ �

G(r , x) := e−r eθx − eζ x

θeθ� − ζeζ�
, if x ≤ �.

The functions F and G fulfil:

• F(r , �) = G(r , �), Fr (r , �) = Gr (r , �), Frr (r , �) = Grr (r , �);
• Fx (r , �) = e−r = Gx (r , �) and Fxx (r , �) = 0 = Gxx (r , �) for all r ∈ R+;
• G(r , x) solves the partial differential equation

μ fx + σ 2

2
fxx + (ar + b) fr + ar frr = 0

and fulfils Gx (r , x) ≥ e−r for all r ∈ R+ and x ∈ [0, �];
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Proof For the proof see Shreve et al. (1984) and Lemma 1.5.
Note, the method we are referring to in Shreve et al. (1984) is based on the

application of Ito’s formula and can be used also for the two-dimensional process
(r ,W ) and a sufficiently smooth function. Since θ , ζ and � are defined such that
V �(r , x) ∈ C(∞,2)(R2+), Ito’s formula can be applied and the one-dimensional result
from Shreve et al. can be transferred to the problem considered in this subsection. ��
Proposition 2.11 The optimal dividend strategy C∗ is to pay any capital larger than
�, i.e.

C∗
t = max

{
sup

0≤s≤τ∗∧t
(x + μs + σWs) − �; 0

}
,

where τ ∗ is the ruin time. The value function V (r , x) is given by F on [�,∞), by G
on [0, �] and solves the HJB equation (15).

Proof Using Lemma 2.10, the proof follows the proof in Asmussen and Taksar (1997)
closely, see also Schmidli (2008, p. 104). ��
Thus, if δ2 = 2a, i.e. ebt e−rt is a martingale [see Lemma 1.1 and Definition (3)], the
optimisation problem can be reduced to the classical dividend optimisation problem
with a constant discounting rate, described in Asmussen and Taksar (1997).

2.5 Conclusion

For deterministic income we considered two different cases, differing due to the rela-
tion between parameters δ2 and a. In both cases, the optimal strategy is of a barrier
type, i.e. it is optimal to spend all available money only if the process {rt } is below a
certain level, otherwise it is optimal to wait.

If the volatility coefficient δ is relatively small, i.e. δ2 ≤ 2a, the paths go “nearly
deterministically” to infinity, meaning e−rt is a supermartingale. The optimal barrier
therefore lies at infinity, and it is always optimal to spend themaximal possible amount.

If 2a < δ2, the process {rt }, moving δ2 away from 2a shifts the optimal barrier from
∞ to 0, see Fig. 1. This means the higher the volatility the more likely the process will
hit a lower level. It makes sense to wait until the discounting process attains “small”
values, and spend the saved amount there.

Finally, we showed that the strategy “spending only if rt = 0” is never optimal, i.e.
the optimal barrier is always greater than zero.

Note that the above results strongly differ from the case of integrated Ornstein–
Uhlenbeck (OU) discounting. There, see Eisenberg (2018), it is optimal to wait if the
interest rate is below a certain level and to start consuming otherwise. The reason for
the swapping of the paying behaviour in the case of a CIR discounting is rooted in the
fact that in Eisenberg (2018), an OU process represents the short rate, whereas in our
model the CIR process describes the compound interest/preference.

In the Brownian risk model, the case 2a �= δ2 has not been considered and is a
subject for future research. We conjecture that the optimal strategy there will be of
barrier type with a non-constant barrier depending on the underlying CIR process.

123



Optimising dividends and consumption under an exponential… 303

Acknowledgements Open access funding provided by Austrian Science Fund (FWF). The research of the
first author was funded by the Austrian Science Fund (FWF), Project Number V 603-N35. Also, the first
author would like to thank the University of Liverpool for support and cooperation.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Proof of Lemma 1.3

Assume there exists a set A ∈ F with P[A] > 0 and lim inf
t→∞ rt = B < ∞ on A. Then,

there is a sequence tn → ∞ as n → ∞ such that lim
n→∞ rtn = B on A. By Lebesgue’s

dominated convergence theorem and using lim
t→∞E[e−rt ] = lim

t→∞ M(r , t) = 0, see (3)

for definition of M , we obtain

0 = lim
n→∞Er [e−rtn ] ≥ lim

n→∞E[e−rtn1A] = e−B
P[A] > 0.

The last inequality is a contradiction, proving our claim. ��

Proof of Lemma 1.5

Part I Due to Walter (1998, p. 127), the differential equation

e−r + (ar + b)g′(r) + δ2r

2
g′′(r) = 0

has twice continuously differentiable solutions on [0, r∗]. A general solution to the
above differential equation is given by

g′(r) =
(−2

δ2

∫
y

−δ2+2 b
δ2 e

(
2a
δ2

−1
)
y
dy + C

)
e− 2a

δ2
r r− 2b

δ2 .

Therefore, in order to have g′(0) > −∞ we must define

g′(r) =
(

− 2

δ2

∫ r

0
y

(
2b
δ2

−1
)
e

(
2a
δ2

−1
)
y
dy

)
r− 2b

δ2 e− 2a
δ2
r
.
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Now, letting r → 0 and using L’Hospital’s rule:

lim
r→0

g′(r) = −1

b
.

Let ψ̃1(r) denote the unique solution with boundary conditions ψ̃1(r∗) = 0 and
ψ̃ ′
1(0) = − 1

b . In this case it holds that

lim
r→∞ rψ̃ ′′

1 (r) = 0,

whichmeans ψ̃ ′′
1 (r) ∈ o( 1r ) for r → ∞. Thus, we can apply Ito’s formula on ψ̃1(rτ∧t ):

ψ̃1(rτ∧t ) = ψ̃1(r) +
∫ τ∧t

0
(ars + b)ψ̃ ′

1(rs) + δ2rs
2

ψ̃ ′′
1 (rs) ds +

∫ τ∧t

0
δ
√
rsψ̃

′
1(rs) dWs .

Since ψ̃ ′
1 is bounded, the stochastic integral is a martingale with expectation zero.

Therefore, taking expectations on both sides and letting t → ∞ (the interchanging
of expectations and limits is possible due to the bounded convergence theorem) we
obtain

ψ̃1(r) = Er

[∫ τ

0
e−rs ds

]
= ψ1(r).

Part II It is clear that if 2b ≥ δ2 and r∗ = 0, we have φ1(r) = 1{0}. Therefore, we only
need to consider the remaining cases. Differential equation (9) has a unique solution
on (r∗,∞), say φ̃1(r), with boundary conditions φ̃1(r∗) = 1 and φ̃1(∞) = 0:

φ̃1(r) = 1∫ ∞
r∗ y− 2b

δ2 e− 2a
δ2

y dy

∫ ∞

r
y− 2b

δ2 e− 2a
δ2

y dy.

Applying Ito’s formula on φ̃1 yields

φ̃1(rτ∧t ) = φ̃1(r) +
∫ τ∧t

0
(ar + b)φ̃′

1(rs) + δ2r

2
φ̃′′
1 (rs) ds +

∫ τ∧t

0
δ
√
rs φ̃

′
1(rs) dWs .

(16)

If r∗ > 0, then
√
rτ∧s φ̃′

1(rτ∧s) is bounded and the stochastic integral is a martingale
with expectation zero.

If r∗ = 0 and 2b < δ2 then:

(√
rs φ̃

′
1(rs)

)2 = r
1− 4b

δ2
s e− 4a

δ2
rs 1(∫ ∞

0 y− 2b
δ2 e− 2a

δ2
y dy

)2 .
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Note that
∫ ∞
0 y− 2b

δ2 e− 2a
δ2

y dy < ∞ and

∫ t

0
E

[(√
rs φ̃

′
1(rs)

)2]
ds < ∞

for all t ∈ R+ due to Lemma 1.4. Then due to Revuz and Yor (1999, p. 130, Corollary
1.25), the stochastic integral in (16) is a martingale with expectation zero. Applying
expectations and letting t go to infinity in (16), one obtains

φ̃1(r) = E

[
1[τ<∞]

]
= φ1(r).

Part III If r∗ = 0 and 2b ≥ δ2 then clearly φ2(r) ≡ 0. Consider now the remaining
cases. Differential equation (10) has a unique solution

φ̃2(r) = 2

δ2

∫ ∞
r∗ y− 2b

δ2 e− 2a
δ2

y ∫ y
r∗ φ1(z)z

2b
δ2

−1e
2a
δ2

z dz dy∫ ∞
r∗ y− 2b

δ2 e− 2a
δ2

y dy

∫ r

r∗
y− 2b

δ2 e− 2a
δ2

y dy

− 2

δ2

∫ r

r∗
y− 2b

δ2 e− 2a
δ2

y
∫ y

r∗
φ1(z)z

2b
δ2

−1e
2a
δ2

z dz dy

with boundary conditions φ̃2(r∗) = 0 = φ̃2(∞). Note that for r∗ > 0 it holds due to
the structure of φ1 given above that

∫ ∞

r∗
y− 2b

δ2 e− 2a
δ2

y
∫ y

r∗
φ1(z)z

2b
δ2

−1e
2a
δ2

z dz dy ≤ 1

r∗ φ1(r
∗) < ∞.

Now let r∗ = 0 and 2b < δ2. Then, applying partial integration for the inner integral
and using the fact that the negative part is smaller than zero, we get

∫ ∞

0
y− 2b

δ2 e− 2a
δ2

y
∫ y

0
φ1(z)z

2b
δ2

−1e
2a
δ2

z dz dy

≤ δ2

2b

∫ ∞

0
y− 2b

δ2 e− 2a
δ2

[
y

2b
δ2 e

2a
δ2 φ1(y) + y

]
dy < ∞.

The finiteness of the integral above follows from the properties of the Gamma distri-
bution. Furthermore, it is easy to see that φ̃′

2(r
∗) > 0. Since φ̃2 solves the differential

equation (10), it follows immediately that φ̃′′
2 (r) < 0 if φ̃′

2(r) = 0. This means in par-
ticular that after becoming negative, the derivative φ̃′

2(r) remains negative. Therefore
φ̃2(∞) = 0 implies φ̃2(r) ≥ 0.

For the function φ̃2(r) it holds that

φ̃2(rτ∧t ) = φ̃2(r) +
∫ τ∧t

0
(ars + b)φ̃′

2(rs) + δ2rs
2

φ̃′′
2 (rs) ds +

∫ τ∧t

0
δ
√
rs φ̃

′
2(rs) dWs .
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Similarly to Part II, using Lemma 1.4 and Revuz and Yor (1999, p. 130, Corollary
1.25) one can show that the stochastic integral above is a martingale with expectation
zero. Applying expectations yields

E

[
φ̃2(rτ∧t )

]
= φ̃2(r) − E

[∫ ρ∧t

0
φ1(rs) ds

]
.

Note that applying Fubini’s theorem on the expectation on the rhs, one obtains

E

[∫ τ∧t
0

φ1(rs) ds

]
=

∫ ∞
0

E

[
1[0≤s≤τ∧t]φ1(rs)

]
ds =

∫ ∞
0

E

[
1[0≤s≤τ∧t]P[τ < ∞|rs ]

]
ds

=
∫ ∞
0

E

[
1[0≤s≤τ∧t]E[1[τ<∞]|Fs ]

]
ds

=
∫ ∞
0

E

[
E

[
1[0≤s≤τ∧t]1[τ<∞]|Fs

]]
ds

= E

[∫ τ∧t
0

1[τ<∞] ds
]

= E

[
1[τ<∞]τ ∧ t

]
.

Letting t → ∞, yields

φ̃2(r) = E

[
1[τ<∞]τ

]
= φ2(r).

Note that ψ ′
1(r) < 0 and φ′

2(r
∗) ≥ 0.

Since φ2(r∗) = 0 and φ2(r) ≥ 0 it must hold that φ′
2(r

∗) ≥ 0. On the other hand,
if r̃ := inf{r ≥ 0 : ψ ′

1(r) ≥ 0} ≤ r∗ it must hold that ψ ′′
1 (r̃) < 0 in order to ensure

ψ1 solves the differential equation (8). Since, it is a contradiction we can conclude
ψ ′
1(r) < 0 for all r ∈ [0, r∗]. �

Proof of Lemma 2.2

First note, it clearly holds that φ′
1 < 0. We can solve the differential equation (9)

explicitly to obtain

φ′
1(r) = − r− 2b

δ2 e− 2a
δ2
r

∫ ∞
r∗ y− 2b

δ2 e− 2a
δ2

y dy
. (17)

Consider now

φ′
1(r)

φ1(r)
= − r− 2b

δ2 e− 2a
δ2
r

∫ ∞
r y− 2b

δ2 e− 2a
δ2

y dy
.
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Deriving
φ′
1(r)

φ1(r)
with respect to r yields

(
φ′
1(r)

φ1(r)

)′ = −φ′
1(r)

φ1(r)

{
− φ′′

1 (r)
φ′
1(r)

+ φ′
1(r)

φ1(r)

}
. Using

(17) we obtain

φ′′
1 (r)

φ′
1(r)

= −2a

δ2
− 2b

δ2r
,

For simplicity let h(r) := φ′
1(r)

φ1(r)
. Then

h′(r) = −h(r)

{
2a

δ2
+ 2b

δ2r
+ h(r)

}
= −h(r)

{
1 + h(r)

}
− h(r)

{
2a

δ2
+ 2b

δ2r
− 1

}
.

Note that −h(r) > 0 and 2a
δ2

+ 2b
δ2r

− 1 < 0 for r > R. That is, if for some r̂ > R it
holds that h(r̂) = −1 then h′(r̂) < 0, meaning that h(r) < −1 for all r > r̂ . However,
this is a contradiction to

lim
r→∞ h(r) = lim

r→∞
φ′′
1 (r)

φ′
1(r)

= −2a

δ2
> −1.

Therefore, it must hold h(r) > −1 for r > R.
Since lim

r→0
h(r) = −∞, by the intermediate value theorem there must be an r∗ ∈

(0, R] such that h(r∗) = −1.
Note that for all r < R it holds 2a

δ2
+ 2b

δ2r
− 1 > 0. This implies immediately

h′(r∗) > 0 and h′(r) > 0 for all r ∈ (r∗, R). Therefore, we can conclude that
h(r) > −1 for r ∈ (r∗, R). �

Proof of Lemma 2.8

Note that λy is not a stopping time, because {λy ≤ t} /∈ Ft .
Furthermore, we know from Lemma 1.3 and Borodin and Salminen (1998, p. 27)

that λy < ∞ a.s. with

Pr [0 < λy ≤ t] =
∫ t

0

p(u; r , y)
G0(y, y)

du

where p(t; r , y) is the transition density of {rt } with respect to the speed measure m
of {rt }with densitym′ [for the exact formula form andm′ see Ethier and Kurtz (1986,
p. 366) formula (1.4); the differential equation for m′ can be found in Borodin and
Salminen (1998, p. 18)] and Gα(r , y) is the Green function with

G0(y, y) =
∫ ∞

0
p(t; y, y) dt .

Let g(t; r , y) be the density of {rt } with respect to the Lebesgue measure. Then

g(t; y, y) = p(t; y, y)m′(y).
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Therefore, using the above formula for G0(y, y):

Py[0 < λy ≤ t] =
∫ t

0

g(u; y, y)∫ ∞
0 g(z; y, y) dz du.

According to (2) the density g(t; y, y) is given by

g(t; y, y) = c(t)e−u(t,y)−v(t,y)
(

v(t, y)

u(t, y)

)q/2

Iq(2
√
u(t, y)v(t, y)),

and Iq is the modified Bessel function of the first kind of order q. Using this explicit

representation and Iq(2c(t)yeat/2) = (c(t)eat/2)q yq
∞∑

m=0

(c(t)yeat/2)2m

m!�(m+q+1) , we obtain

g(t; y, y)∫ ∞
0 g(z; y, y) dz = c(t)e−c(t)y(eat+1)e−aqt/2 Iq

(
2c(t)yeat/2

)
∫ ∞
0 c(z)e−c(z)y(eaz+1)e−aqz/2 Iq

(
2c(z)yeaz/2

)
dz

=
c(t)e−c(t)y(eat+1)e−aqt/2(c(t)eat/2)q

∞∑
m=0

(c(t)yeat/2)2m

m!�(m+q+1)

∫ ∞
0 c(z)e−c(z)y(eaz+1)e−aqz/2(c(z)eaz/2)q

∞∑
m=0

(c(z)yeaz/2)2m

m!�(m+q+1) dz
.

By the bounded convergence theorem, we can let y go to zero to obtain

g(t; 0, 0)∫ ∞
0 g(z; 0, 0) dz = c(t)e−aqt/2(c(t)eat/2)q∫ ∞

0 c(z)e−aqz/2(c(z)eaz/2)q dz
= c(t)q+1∫ ∞

0 c(z)q+1 dz
.

Note that indeed it holds by partial integration and using −1 < q < 0 that

(
2a

δ2

)−q−1 ∫ ∞

0
c(z)q+1 dz =

∫ ∞

0

(
eaz − 1

)−q−1 dz

= 1

−aq

∫ ∞

0

(
eaz − 1

)−q
e−az dz

= 1

−aq

∫ ∞

0
eaqz

(
eaz − 1

)−q
e−(1+q)az dz

≤ 1

−aq

∫ ∞

0
e−(1+q)az dz = 1

−qa2(1 + q)
< ∞.

The last inequality follows because eaqz
(
eaz − 1

)−q ≤ 1 and −1 − q < 0. With
similar arguments one obtains

E0[λ0] =
∫ ∞

0
t

g(t; 0, 0)∫ ∞
0 g(z; 0, 0) dz dt =

∫ ∞

0
t

(
eat − 1

)−q−1

∫ ∞
0

(
eaz − 1

)−q−1 dz
dt < ∞.

��
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