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Abstract. The paper is concerned with linear bilevel problems. These non-
convex problems are known to be NP-complete. So, no theoretically e‰cient
method for solving the global bilevel problem can be expected. In this paper
we give a genericity analysis of linear bilevel problems and present a new al-
gorithm for e‰ciently computing local minimizers. The method is based on
the given structural analysis and combines ideas of the Simplex method with
projected gradient steps.
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1 Introduction

This paper deals with linear bilevel problems of the form

ðLBLÞ: min
x;y

a1xþ b1y s:t: A1xþ B1ya c1

and y is a solution of

QðxÞ: min
y
a2xþ b2y s:t: A2xþ B2ya c2:

with given matrices A1 A Rk1�n, B1 A Rk1�m, A2 A Rk2�n, B2 A Rk2�m, vectors a1,
a2 A Rn, b1, b2 A Rm, c1 A Rk1 , c2 A Rk2 and variables x A Rn, y A Rm.

Throughout the paper we omit the transposed sign in some expressions.
For example ax denotes the inner product aTx in Rn and uB2 the left multi-
plication of the matrix B2 by the vector u A Rk2 .

The linear bilevel problem can be considered as a game between an



upper level player and a lower level player which for given x A Rn has to
solve the lower level problem QðxÞ. The constraints A1xþ B1ya c1, resp.
A2xþ B2ya c2 are called upper-resp. lower level constraints. For a theo-
retical and practical introduction into bilevel programming the reader is
referred to [12] and [2]. LBL-problems are non-convex problems which are
NP-complete (cf. [3]).

The aim of the present paper is twofold. Firstly we develop genericity re-
sults for linear bilevel problems. By genericity results we roughly mean state-
ments which assert that for almost all LBL-problems certain nice properties
are fulfilled. Secondly, since the LBL-problem is NP-complete, it could be of
interest to develop an algorithm which is able to compute at least a local mini-
mizer e‰ciently. We present such an algorithm for the LBL-problems without
upper level constraints. The algorithm is based on the genericity analysis and
combines ideas of the Simplex method in linear programming with projected
gradient steps.

The paper is organized as follows. In the second section we give an over-
view on the structure of the LBL-problems. Section 3 is concerned with ge-
nericity results. In Section 4 we introduce our new algorithm for computing
local minimizer of LBL and discuss complexity questions. In the last section
we report on numerical experiments by comparing the performance of our
local minimization algorithm with a Kuhn-Tucker method of Bard/Moore for
solving the global LBL-problem.

2 Preliminary results

We firstly introduce some notation. With x A Rn, y A Rm we define,

M2ðxÞ ¼ fy jA2xþ B2ya c2g feasible set of QðxÞ

M2 ¼ fðx; yÞ jA2xþ B2ya c2g lower level feasible set

X2 ¼ fx jM2ðxÞ0qg projection of M2 onto Rn

SðxÞ ¼ fy j y solves QðxÞg set of solutions of QðxÞ

S ¼ fðx; yÞ j y A SðxÞg the graph of SðxÞ

vðxÞ ¼ a2xþ b2y with y A SðxÞ value function of QðxÞ

M1 ¼ fðx; yÞ jA1xþ B1ya c1g upper level feasible set

Msem ¼M1 XM2 the semi-feasible set

X ¼ fx j ðx; yÞ AMsem; for some yg projection of Msem onto Rn

M ¼ fðx; yÞ j ðx; yÞ AMsem; y A SðxÞg feasible set of LBL

Remark 1. The polyhedraM2,Msem and their projections X2, X are closed sets.

Throughout the paper the following abbreviations are used: We put
N ¼ nþm, z ¼ ðx; yÞ A RN and
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A ¼ A1

A2

� �
; B ¼ B1

B2

� �
; c ¼ c1

c2

� �
;

d 1 ¼ a1

b1

� �
; d 2 ¼ a2

b2

� �
; C ¼ ½A B
:

We define J 1 ¼ f1; . . . ; k1g, J 2 ¼ fk1 þ 1; . . . ; k1 þ k2g, J ¼ J 1 W J 2 and de-
note by Cj;Aj;Bj the jth rows of C, A, B, j A J. Then, the semi-feasible
polyhedron can be written as

Msem ¼ fz A RN jCjza cj; j A Jg:

For a given index set J0 H J let CJ0 be the sub-matrix of C containing only the
rows Cj with indices j A J0. AJ0 , BJ0 , cJ0 are defined accordingly.

A subset f0 HMsem is called a face of the polyhedron Msem if there exists
an index set J0 H J such that

f0 ¼ f ðJ0Þ :¼ fz AMsem jCjz ¼ cj; j A J0g: ð1Þ

Given J0 H J and the related face f0 ¼ f ðJ0Þ of Msem, we say that f0 has di-
mension d; 0a daN, if there exists an element z0 A f0 such that

Cjz0 < cj; j A JnJ0 and dim spanfCj; j A J0g ¼ N � d: ð2Þ

The d-dimensional face f0 ¼ f ðJ0Þ is said to be non-degenerate if jJ0j ¼
N � d. A vertex of Msem is a face of dimension 0. If intMsem 0q then Msem

is a face of dimension N.
The following assumptions will play an important role. (In practice these

assumptions do not imply a restriction. If necessary, we can add appropriate
(large) box constraints to bound the feasible sets.)

A1: For all x A X2 the solution set SðxÞ is bounded (and thus compact).
A2: The polyhedron Msem is bounded (thus compact).

The following theorem contains the main results on the structure of linear bi-
level problems.

Theorem 1. For an LBL-problem the following holds.

(a) The set X2 HRn is a polyhedron (thus closed and convex).
(b) The feasible set M consist of a union f1 W f2 W � � � W fl of faces of the poly-

hedron Msem. In particular, M is a closed set in Rnþm.

If moreover the assumptions A1 and A2 hold we have:

(c) The value function vðxÞ of QðxÞ is convex and Lipschitz continuous on X2.
(d) A global solution of LBL occurs at a vertex of Msem.
(e) For any local minimizer ðxk; ykÞ of LBL on a face fk there exist a local

minimizer ðxk; ykÞ A fk which is a vertex of Msem with the same value a
1xk þ

b1yk ¼ a1xk þ b1yk.
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Proof. For a proof of (a)–(d) we refer to [12] (or to [13] for a slightly more
general bilevel problem).

(e) This is obvious by noticing that a local minimizer ðxk; ykÞ of LBL on a face
fk is a global minimizer on the (bounded) polyhedron fk. r

Th feasible set of an LBL-problem with upper level constraints need not be
connected. However the following holds.

Theorem 2. For all x A X2 let the set SðxÞ be non-empty (fulfilled if A2 holds).
Then if no upper level constraints are present, the feasible set M of the LBL-
problem is path-wise connected.

Proof.We have to show that for any two points ðx1; y1Þ, ðx2; y2Þ inM there is
a path in M from ðx1; y1Þ to ðx2; y2Þ. Suppose that this is not the case. Con-
sider the maximal path-connected component M 1 in M containing ðx1; y1Þ
and suppose that M 1 does not coincide with M. SinceM consists of the union
of say K faces and any face is convex (thus path-wise connected), M 1 consists

of a number of these faces say f1; . . . ; fK1
, K1 < K , i.e. M 1 ¼ 6K1

k¼1
fk. It now

follows that

6
K1

k¼1

fk

 !
X fj ¼ q; j ¼ K1 þ 1; . . . ;K :

In fact, x A fj XM 1 implies that fj HM 1. Consequently, with the closed set

M 2 :¼ 6K

j¼K1þ1
fj, we must have

M 1 WM 2 ¼M; M 1 XM 2 ¼ q:

Let X i, i A f1; 2g, denote the projections of Mi onto Rn. We have X ¼
X 1 WX 2 and X 1, X 2 are closed (projections of polyhedra are polyhedra).
Since there are no upper level constraints it follows that Msem ¼M2 and
X ¼ X2. Moreover for any x A X we have SðxÞ0q. Thus the projection onto
Rn of M coincides with X and X is a polyhedron (in particular convex). Con-
sider the line segment L between the points x1 A X 1 and x2 A X 2. Since LH
X ¼ X 1 WX 2 and X 1;X 2 are closed, there must exist a point x A L belonging
to both sets X 1 and X 2. Consequently, there are points ðx; y1Þ AM 1 and
ðx; y2Þ AM 2. Since SðxÞ is convex, the whole line segment between ðx; y1Þ
and ðx; y2Þ lies in M. This contradicts the assumption that M 1 is not path-
wise connected with M 2. r

In Section 4 we develop a new algorithm for computing local solutions of
linear bilevel problems without upper level constraints. This raises the ques-
tion whether it is possible to avoid upper level constraints in the LBL-model.
If there are upper level constraints then the the players could change the model
by passing the upper level constraints to the lower level. Such a strategy may
change the model but it can only be an advantage for the upper level player.
For the lower level player it can lead to a better but also to an inferior objec-
tive value depending on whether his objective is ‘similar’ or ‘opposite’ to the
upper level objective.
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Let LBL0 be the bilevel problem obtained from LBL by passing the con-
straints A1xþ B1ya c1 to the lower level and let M0 be the feasible set of
LBL0. Then the following result is obvious.

Lemma 1. For the the feasible sets M0 and M of LBL0 and LBL we have

MHM0:

In particular, for the corresponding minimal values the inequality v0 a v holds.

3 Genericity results for LBL

In this section we study the structure of the feasible set and the set of local
minimizers of LBL from a generic viewpoint.

Throughout the paper, by a generic subset G of RK we mean a set which is
open and has a complement Gc¼RKnG of measure zero (notation mðGcÞ ¼ 0).

Note that mðGcÞ ¼ 0 implies that the set G is dense in RK . For details on ge-
nericity and stratification theory we refer to [8].

Our genericity analysis will be based on the following ‘non-trivial’ result
(see [8]).

Lemma 2. Let p : RK ! R be a polynomial function, p2 0. Then, the solution
set p�1ð0Þ ¼ fw A RK j pðwÞ ¼ 0g is a closed set of measure zero. Equivalently
the complement G ¼ RKnp�1ð0Þ is a generic set in RK .

By noticing that detA ¼
P

p AP l
sign pa1pð1Þ . . . alpðlÞ defines a polynomial

mapping p : Rl�l ! R we directly are led to the following result which will be
used repeatedly.

Lemma 3. Let Vl denote the set of real ðl � lÞ-matrices, Vl ¼ fA ¼
ðaijÞi; j¼1;...; l j aij A Rg1Rl�l . Then, the set V 0

l ¼ fA A Vl j detA ¼ 0g is a closed
set of measure zero in Rl�l . Equivalently the set V r

l ¼ VlnV 0
l of regular matrices

is generic in Rl�l .

Remark 2. In the proof of Theorem 3 later on we implicitly make use of the
following elementary facts:

Let V be a generic subset in Rq. Then Rs � V is generic in Rs � Rq.
Let V1; . . . ;Vr be generic subsets of Rq. Then the intersection V ¼ 7r

i¼1
Vi

is generic in Rq.

It is well-known that for common linear programs generically all vertices of
the feasible set are non-degenerate. In the following we generalize such a ge-
nericity result to linear bilevel problems.

Firstly we introduce a set which formally describes a linear bilevel problem
as a point in RK . Let p ¼ ðn;m; k1; k2Þ be fixed ( p gives the ‘size’ of the LBL).
A problem LBL can be seen as an element from the set

Pp ¼ fP ¼ ðA1;A2;B1;B2; c1; c2; a1; a2; b1; b2Þg
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with arrays A1; . . . ; b2 as defined in Section 1. The set Pp can be identified with
RK ,

Pp1RK ; K :¼ ðk1 þ k2 þ 2ÞðnþmÞ þ k1 þ k2:

The following theorem contains the main genericity results.

Theorem 3. The problem set Pp1RK contains a generic subsetV such that for
any LBL-problem P in V the following holds.

(a) All faces of the semi-feasible polyhedron Msem of problem P are non-
degenerate faces. In particular all vertices of Msem are non-degenerate.

(b) For any x A X, if QðxÞ has a solution, then there is a unique solution yðxÞ of
QðxÞ attained at a vertex of M2ðxÞ.

(c) All local minimizers zn ¼ ðxn; ynÞ, n ¼ 1; . . . ; q, of P are locally unique

minimizers and (non-degenerate) vertices of Msem. All values vn ¼ d 1zn,
n ¼ 1; . . . ; q, are di¤erent. In particular, P has a unique global minimizer.

(d) The feasible set M of P consist of a union f1 W f2 W � � � W fl of non-
degenerate faces fi of Msem of dimension n.

Proof. (a) Suppose f0 ¼ f ðJ0Þ is a face of Msem of dimension d; 0a daN,
i.e. with an index J0 H J and a point z0 A f0 we have

Cjz0 < cj; j A JnJ0 and dim spanfCj; j A J0g ¼ N � d: ð3Þ

We now show that generically the face is nondegenerate, i.e. jJ0j ¼ N � d.

Case d ¼ 0: Then f0 ¼ fz0g is a vertex of Msem. Suppose that jJ0j > N holds.
Then there is some subset J1 H J0 such that jJ1j ¼ N,

CJ1z0 ¼ cJ1 and CJ1 is a regular ðN �NÞ-matrix:

Choose j0 A J0nJ1 arbitrarily. Then for the vertex z0 we have

Cj0z0 0 cj0 , CJ1; j0 :¼
CJ1 cJ1
Cj0 cj0

� �
is a regular matrix: ð4Þ

By Lemma 2 the set VJ1; j0 ¼ fP A Pp j detCJ1; j0 0 0g is generic in Pp. By
Remark 2 also the intersectionV1 :¼7

j0 A J0nJ1 VJ1; j0 is generic. By construction,
in this set V1 the vertex z0 is non-degenerate.

Case d > 0: Suppose that jJ0j > N � d. Assume for brevity J0 ¼ f1; . . . ; kg;
ðk ¼ jJ0j > n� dÞ. Let C be the ðN � kÞ-matrix C ¼ ½C1; . . . ;Ck
. Relation
(3) implies rankC ¼ N � d and then

detðCijÞi; j¼1;...;N�dþ1 ¼ 0:

By Lemma 2 this can generically be excluded.
For the proof of (c) we moreover now show that for a generic subset of

problems in Pp all vertices z ¼ ðx; yÞ of Msem have di¤erent function values
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v ¼ d 1z. To do so let us assume that z0 and z1; z0 0 z1, are (non-degenerate)
vertices of Msem. Then with corresponding index sets J0; J1 H J, J0 0 J1,
jJ0j ¼ jJ1j ¼ nþm we have

z0 ¼ C�1
J0
cJ0 ; z1 ¼ C�1

J1
cJ1 :

With the adjoint Cad
J0

of CJ0 we can write C�1
J0

¼ 1

detCJ0
Cad
J0

and accordingly

C�1
J1

¼ 1

detCJ1
Cad
J1
. Now, the values v0 and v1 are the same, i.e. d 1z0 � d 1z1 ¼ 0,

if and only if

pðCJ0 ; cJ0 ;CJ1 ; cJ1 ; d 1Þ :¼ detCJ1 � d 1Cad
J0
cJ0 � detCJ0 � d 1Cad

J1
cJ1 ¼ 0:

This relation represents a polynomial equation p ¼ 0 with a non-vanishing
polynomial p. In View of Lemma 2 the set SJ0;J1 :¼ p�1ð0Þ is closed and of
measure zero in Pp. Thus, the complement VJ0;J1 ¼ PpnSJ0;J1 is generic. By
construction, for P in VJ0;J1 the vertices z0; z1 have di¤erent values. Since there
are only finitely many such sets J0; J1 H J the intersection of all corresponding
sets VJ0;J1 is generic in Pp.

(b) Choose x0 A X arbitrarily and consider the lower level problem

Qðx0Þ: min
y
d 2y st: Bjya bj � Ajx0; j A J 2:

Suppose y0 is a solution of Qðx0Þ. Then there exist J0, J0 H J 2, jJ0jam (by
Caratheodory’s Theorem), 0 < u0 A RjJ0j such that

u0BJ0 ¼ �b2; Bjy0 ¼ bj � Ajx0; j A J0:

Generically, jJ0jbm, i.e. we can assume jJ0j ¼ m. In fact, if jJ0j < m then in
view of u0BJ0 ¼ �b2 the ðjJ0j þ 1Þ � ðjJ0j þ 1Þ-matrix (assume for brevity J0 ¼
f1; . . . ; jJ0jg)

B̂B :¼ ½ðBijÞi¼1;...; jJ0jþ1
j¼1;...; jJ0j

b̂b
 with b̂b :¼ ðb2
1 ; . . . ; b

2
jJ0jþ1Þ

T

would satisfy detðB̂BÞ ¼ 0 which can generically be avoided. Since generically
(with jJ0j ¼ m) the matrix BJ0 , is regular, a solution y0 of Qðx0Þ is generically
a vertex of the polyhedron M2ðx0Þ. Moreover since the multiplier vector u0 is
positive it is not di‰cult to show that y0 is the unique solution.

(c) Let z0 ¼ ðx0; y0Þ be a local minimizer of the bilevel problem P. The
feasible point z0 belongs to a face f0 ¼ f ðJ0Þ ofMsem and by Theorem 1(b) we
can assume f0 AM. Since f0 is a polyhedron, z0 is a global minimizer of the
linear program

min d 1z st: z A f0 ¼ f ðJ0Þ :¼ fz A Rnþm jCz a c;CJ0z ¼ cJ0g: ð5Þ

With the same arguments as in part (b) we can show that generically the solu-
tion of this program occurs at a vertex z1 of the polyhedron f0 and that the
solution is unique. The vertex z0 of the face f0 is also a (non-degenerate) ver-
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tex of Msem. By the arguments in the proof of (a) all vertices have di¤erent
values.

(d) Choose z1 ¼ ðx1; y1Þ AM. Since y1 solves Qðx1Þ there exist J1 H J,
J 2
1 H J1 X J 2, jJ 2

1 j ¼ m, u1 b 0, u1 A Rm such that

Cjz1 < cj; j A JnJ1; Cjz1 ¼ cj; j A J1 u1BJ 2
1
¼ �b2: ð6Þ

We now show that generically z1 is contained in a face f0 of dimension n given
by (1) with J0 ¼ J 2

1 . (Since jJ 2
1 j ¼ m by definition (see Section 2) this face is

non-degenerate.)
We firstly notice that for a generic subset of Pp we have jJ1ja nþm.

Otherwise jJ1j > nþm and with some J 0
1 H J1, jJ 0

1 j ¼ nþm, j0 A J1nJ 0
1 the

quadratic matrix CJ 0
1
j0

in (4) would be singular which generically can be
avoided.

Moreover, for a generic subset in Pp we have

rankCJ1 ¼ jJ1j and rankCJ 2
1
¼ jJ 2

1 j ¼ m: ð7Þ

This holds since the condition rankCJ1 < jJ1j or rankCJ 2
1
< jJ 2

1 j would imply
that

detðCijÞi; j A J1 ¼ 0 or detðCijÞi; j A J 2
1
¼ 0

which by Lemma 2 can generically be excluded.
We now show that z1 is contained in an n-dimensional (non-degenerate)

face. Using rankCJ1 ¼ jJ1ja nþm (see (7)) there exist a vector x A Rnþm sat-
isfying

CJ 2
1
x ¼ 0; Cjx ¼ �1; j A J1nJ 2

1 :

Then, for z0 :¼ z1 þ tx; t > 0 small enough, we have (cf. (6))

CJ 2
1
z0 ¼ cJ 2

1
; Cjz0 < cj; j A J1nJ 2

1 ; u1BJ 2
1
¼ �b2: ð8Þ

Thus z1 and z0 are contained in the feasible face

f0 ¼ fz AMsem jCJ 2
1
z ¼ cJ 2

1
g

of dimension d ¼ nþm� jJ 2
1 j ¼ n.

Suppose now that z1 is contained in a feasible face f2 of dimension greater
than n. Then by definition there exist a feasible point z2 ¼ ðx2; y2Þ A f2 and
index sets J2 H J, J 2

2 :¼ J2 X J 2 and u2 b 0, u2 A RJ 2
2 such that

CJ2z2 ¼ cJ2 ; Cjz < cj; j A JnJ2; u2BJ 2
2
¼ �b2

and dim spanfCj; j A J2g ¼ nþm� d < m (i.e. d > n). Generically we can as-
sume that CJ2 has full rankjJ2j (see (7)). This implies jJ 2

2 ja jJ2j < m and y2 is
not a vertex solution of Qðx2Þ. However this can generically be excluded as
shown in the proof of part (b). r
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We say that the semi-feasible set Msem satisfies the Slater condition if there
is a point z0 such that

Cz0 < c:

Such a point z0 is an inner point of Msem. For the numerical computations we
want to restrict the problem set to the following set of linear bilevel problems.

Pr
p ¼ fP A Pp jMsem fulfills the Slater condition; Msem compact;

SðxÞ is compact Ex A Xg:

In this set, for any x A X a solution of QðxÞ exists. The following stability
statement holds.

Lemma 4. The problem set P r
p is open in RK .

Proof. For P A Pp let the Slater condition be satisfied with z, i.e. Cz < c (C; c
defining the constraints of P). Then, obviously for a whole neighbourhood of
problems P A Pp the condition Cz < c holds.

To show that Msem is compact it su‰ce to prove boundedness. We show:
Given P A Pr

p with bounded MsemðPÞ there exists some e such that

6
kP�Pk<e

MsemðPÞ is bounded: ð9Þ

Suppose (9) does not hold. Then there exists a sequence of problems Pk A Pp
and vectors zk AMsemðPkÞ such that (with Ck; ck corresponding to Pk)

Pk ! P; Ckzk a ck; and kzkk ! y for k ! y: ð10Þ

By dividing the constraints by kzkk and assuming (take a subsequence)
zk

kzkk
! ẑz we find for k ! y,

Cẑza 0:

Choosing a point z AMsemðPÞ also zðtÞ :¼ zþ tẑz AMsemðPÞ for all t > 0

contradicting the boundedness of MsemðPÞ.
We finally prove the statement for SðxÞ. Let us assume that we have given

a problem P A Pr
p such that the corresponding sets SðxÞ are compact for

all x A X . We have to show that there exists some e such that for all P,
kP� Pk < e with corresponding sets S and X the property

SðxÞ is compact for all x A X ð11Þ

holds. We only have to prove boundedness since the solution sets SðxÞ are
always (closed) faces of M2ðxÞ. Suppose now that (11) is not true in a neigh-
borhood of P. Then there exists a sequence of problems Pk A Pp, Pk ! P and
points xk A Xk, yk A SkðxkÞ such that
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kykk ! y for k ! y:

In view of xk A Xk we can choose elements ðxk; ~yykÞ AMsemðPkÞ. Using (9) we
can assume (taking a subsequence)

ðxk; ~yykÞ ! ðx; ~yyÞ AMsemðPÞ: ð12Þ

By assumption, SðxÞ is bounded. Since the sequence kðxk; ~yykÞk is bounded the
following inequalities hold with some r > 0,

a2
kxk þ b2

kyk a a2
kxk þ b2

k~yyk a r:

Consequently

A2
kxk þ B2

kyk a c2k ; a2
kxk þ b2

kyk a r:

Dividing these relations by kykk and assuming
yk

kykk
! ŷy, k ŷyk ¼ 1 we find

using kykk ! y that

B2ŷya 0 and b2ŷya 0: ð13Þ

We choose some y A SðxÞ and define yðtÞ :¼ yþ tŷy. In view of (13), for all
t > 0,

A2xþ B2yðtÞa c2 and a2xþ b2yðtÞa a2xþ b2y;

i.e. yðtÞ A SðxÞ. This contradicts the fact that SðxÞ is bounded. r

These genericity results in particular mean that given a LBL-problem P
which does not have the nice properties in Theorem 3 (i.e. P B V) by almost
all arbitrarily small perturbations we obtain a problem in V. However, in
contrast to the situation for linear programs, where a ‘small’ perturbation of
the problem data leads to a ‘small’ perturbation of the minimal value, here for
LBL-problems an arbitrarily small perturbation of the problem may lead to a
large perturbation in the minimal value.

4 A new algorithm for computing local minima of LBL

Di¤erent methods for solving linear bilevel problems have been designed. For
example the algorithm of Bard/Moore in [1] which combines a Kuhn-Tucker
approach with a branch and bound method, the penalty method (see e.g.
White/Anandalingam [14]) and the subgradient method (see e.g. Falk/Liu [4]).
An overview of numerical methods is to be found in [12] and [2].

It is well-known that the LBL-problem (also the problem without upper
level constraints) is NP-complete (see [3]). So, (unless P ¼ NP) no e‰cient
(polynomial) algorithm can be expected to solve the global minimization
problem for LBL. Therefore it could be of interest to have a method which is
able to compute at least a local minimizer of LBL e‰ciently.

In this section we describe such an algorithm for the bilevel problem
without upper level constraints: With z ¼ ðx; yÞ A Rnþm, C ¼ ½A B


392 G. Still



ðLBL0Þ: min
x;y

a1xþ b1y ðor d 1zÞ s:t: y is a solution of

QðxÞ: min
y
b2y s:t: Axþ Bya c ðor Cza cÞ:

Again, Cj denotes the j-th row of C, j A J :¼ f1; . . . ; kg. As usual, for z sat-
isfying Cza c the active index set is defined by JðzÞ ¼ f j A J jCjz ¼ cjg. For
JkH J we introduce the linear subspace

SðJkÞ ¼ fz A Rnþm jCJkz ¼ 0g:

In every step of the algorithm below we have to compute the projection of the
objective vector �d 1 onto a space SðJkÞ corresponding to a face f ðJkÞ ofMsem.

Our method is based on the analysis of the structure of the feasible set in
Section 2 and combines projected gradient steps with ideas of the Simplex
method. The conceptual method is as follows:

Phase I: Compute a starting feasible point z0 ¼ ðx0; y0Þ of LBL0.
Phase II: Compute a local minimizer z ¼ ðx; yÞ by proceeding with pro-

jected gradient steps along feasible faces of dimension ðn� kÞ,
k ¼ k0; . . . ; n.

We now describe our algorithm in detail.

Phase I: (Computation of a feasible point z0 and a descent direction d0 in z0)

1. Compute a solution ẑz ¼ ðx̂x; ŷyÞ of the LP-relaxation of LBL0:

min
z
d 1z s:t: Cza c:

(If ẑz is feasible for LBL0, i.e. if ŷy solves Qðx̂xÞ then stop: ẑz is a solution of
LBL0.)

2. Compute a solution y0 of Qðx̂xÞ; z0 :¼ ðx̂x; y0Þ is a feasible point.
3. Put J0 ¼ Jðz0Þ and compute the projection s0 of �d 1 onto SðJ0Þ.

Phase II: (Computation of a local minimizer)

We start with the feasible point z0 and the direction s0 computed in Phase I
and end up with a local minimizer z of LBL0.

Step k ! k þ 1: We have given

a feasible point zk ¼ ðxk; ykÞ A Rnþm

a feasible descent direction sk A Rnþm

a multiplier uk b 0
an index set JkH JðzkÞ, ma jJkja nþm� 1

such that

1. zk and zkðtÞ :¼ zk þ tsk (tb 0 small) are contained in f ðJkÞ and

CjzkðtÞ < cj; j A JnJk; for all t > 0 small:
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2. d 1sk < 0
3. ukBJk ¼ �b2

(i): Move along the (feasible) ray zkðtÞ :¼ zk þ tsk, tb 0 to the ‘boundary’ of
Msem. The maximum step-length is

tk :¼ min
j B Jk ;Cjsk>0

cj � Cjzk

Cjsk
with jþk A argminftkg:

Put zkþ1 :¼ zk þ tksk.
(Since Msem is bounded we must have tk < y.)

(ii): Change to a new feasible face depending on the number jJkj, ma jJkja
nþm� 1. We distinguish between three cases

(A) jJkj ¼ m (face of ‘maximum’ dimension n)
(B) m < jJkja nþm� 2
(C) jJkj ¼ nþm� 1 (feasible edge)

(A) jJkj ¼ m (try to move to a new feasible face of dimension n)
Compute the solution u of

uBJk ¼ Bjþ
k
:

case uE 0:

(a) ( feasibility test w.r.t. the multipliers of the lower level ) Compute

rk ¼ min
j A Jk ;uj>0

ðukÞj
uj

� �
; j�k A argminfrkg:

and put J� ¼ JkW f jþk gnf j�k g.
(Note that by construction BTJk ðuk � rkuÞ þ rkBjþ

k
¼ �b2.)

(b) ( feasibility test w.r.t. constraints) Compute the projection skþ1 of �d 1

onto SðJ�Þ.
If skþ1Cj�

k
< 0 put Jkþ1 ¼ JkW f jþk gnf j�k g:

(skþ1 a is feasible descent direction in zkþ1 on the face f ðJkþ1Þ of di-
mension n)
If skþ1Cj�

k
b 0 put Jkþ1 ¼ JkW f jþk g and compute the projection skþ1

of �d 1 onto f ðJkþ1Þ.
(skþ1 is feasible direction of descent in zkþ1 on the face f ðJkþ1Þ of di-
mension n� 1)

case ua 0: (face f ðJ�Þ is not feasible)
Put Jkþ1 ¼ JkW f jþk g and compute the projection skþ1 of �d 1 onto
SðJkþ1Þ.

(B) m < jJkja nþm� 2 (move to a face of dimension nþm� jJkj � 1.)
Put Jkþ1 ¼ JkW f jþk g. and compute the projection skþ1 of �d 1 onto
SðJkþ1Þ.
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(C) jJkj ¼ nþm� 1 ( find a feasible descent edge emanating from the vertex
zkþ1)
Put J� ¼ JkW f jþk g (and assume for brevity J� ¼ f1; . . . ; nþmg).
For i A Jk:

(1) Compute the solution si of CJ�s ¼ �ei
(si is the direction of the edge emanating from zkþ1)
if d 1si b 0 goto next i, if d 1si < 0 goto (2).

(2) Put J i ¼ J�nfig and solve the feasibility condition

uiBJ i ¼ �b2; ui b 0:

If a solution exists then put skþ1 ¼ si, Jkþ1 ¼ JkW f jþk gnfig, k !
k þ 1. otherwise goto next i.

If no feasible edge of descent is found in zkþ1 then the vertex zkþ1 is a
local minimizer of LBL0 (see Lemma 5).

Lemma 5. Given zkþ1 AMsem and let J� :¼ Jðzkþ1Þ where zkþ1 is a non-
degenerate vertex. Suppose for all directions si (of the edges emanating from
zkþ1), i A J�, at least one of the following holds:

1. The vector si is not a descent direction (sid 1 b 0)
2. The points zkþ1ðtÞ :¼ zkþ1 þ tsi, with t > 0 small, are not feasible.

Then the vertex zkþ1 is a local minimum of LBL0.

Proof. Assume zkþ1 is not a local minimizer. Then a descent direction d must
exist, such that

For t > 0 small; zkþ1ðtÞ ¼ zkþ1 þ td is feasible and dd 1 < 0: ð14Þ

Direction d can be written as positive combination of the directions si. So,

d ¼
X
i A J

ais
i

with some JH J� and ai > 0, i A J. (Again, assume for brevity J� ¼
f1; . . . ; nþmg.) Consequently, in view of Cis

i ¼ �1, i A J, the indices in J are
no longer active for zkþ1ðtÞ for t > 0 small, i.e. Jðzkþ1ðtÞÞ ¼ J�nJ ¼: J0.
Moreover, since zkþ1ðtÞ is feasible, with some u we have

BTJ0u ¼ �b2; ub 0: ð15Þ

Thus, for all i A J ¼ J�nJ0 the multiplier u in (15) gives a solution of

BTJ�nfigu ¼ �b2; ub 0:

In other words, si is a feasible direction in zkþ1. By assumption sid 1 b 0.
Therefore,
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dd 1 ¼
X
i A J

ais
id 1

b 0:

in contradiction to the second condition in (14). r

Our algorithm is a special instance of a method for solving general mathe-
matical programs with equilibrium constraints (MPEC) in [6]. To write the
problem LBL0 in (MPEC) form we only have to express the minimization in
the lower level equivalently by the Kuhn-Tucker condition. This leads to the
following problem (with the notation above):

min d 1z s:t: c� Czb 0; mb 0; mT ðc� CzÞ ¼ 0; BTu ¼ �b2:

The method in [6] is based on the computation of feasible descent directions in
each step. Under certain regularity assumptions the algorithm is proven to
converge to a so-called B-stationary point, i.e. a point z such that with the ob-
jective function f ðzÞ and the tangent cone Tðz;FÞ at z w.r.t. the feasible set F:

‘f ðzÞdb 0 for all d A Tðz;F Þ:

Note that in the algoritm above we move along a feasible descent direction sk
in each step. Moreover the algorithm converges to a local minimizer zkþ1 sat-
isfying the assumptions of Lemma 5 which implies that zkþ1 is B-stationary.

Remark 3. (Finiteness of the algorithm)

If all feasible faces attained during the algorithm are non-degenerate and
sk0 0 for all projections (which is generically satisfied) the algorithm above
computes a local minimizer after finitely many steps. This can be seen as fol-
lows. Suppose that in step (ii) A of the algorithm we arrive at a point zkþ1 with
active indices Jðzkþ1Þ ¼ JkW f jþk g. Then if skþ1Cj�

k
< 0 holds we pass to a

new face f ðJkþ1Þ with Jkþ1 ¼ JkW f jþk g nW f j�k g of dimension n and we never
can come back to a point in the relative interior of the face f ðJðzkþ1ÞÞ. In
the other case where skþ1Cj�

k
b 0 we pass successively to faces of dimension

n� 1; n� 2; . . . ; 0. Finally we end up with steps proceeding from vertex to
vertex of the polyhedron Msem with strictly decreasing objective value. So,
during the algorithm we never can reach two points zk; zl with the same active
index sets JðzkÞ ¼ JðzlÞ. The result follows since there are only finitely many
possible active sets.

Remark 4. The di¤erent steps of our algorithm can be implemented e‰ciently
by using appropriate update formulas for the LR-decomposition (or QR-
decomposition) of the ‘basis matrices’ BJk in each step (cf. e.g. [9]).

Remark 5.We restricted our algorithm to problems LBL0 without upper level
constraints. The reason is that for these problems a feasible starting point can
be found e‰ciently (by solving two LP’s in Phase I).

Unfortunately, if upper level constraints are present, then the point z0
computed in Phase I need not satisfy the upper level constraints. In this case z0
is not feasible for LBL. We did not succeed in finding an ‘e‰cient’ Phase I
procedure for problems with upper level constraints. Note that this problem is
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NP-complete. In fact finding a feasible point of a LBL with a single upper
level constraint a1xþ b1ya c1 is equivalent with solving the LBL-program

min a1xþ b1y s:t: y solves: min
y
a1xþ b1y s:t: A2xþ B2ya c2

(with value not exeeding c1) which is known to be (strongly) NP-complete. The
modification of Phase II to general linear bilevel problems with upper level
constraints does not make any problems.

We emphasize that our algorithm could be used to ‘accelerate’ branch and
bound methods (for example, the Bard/Moore algorithm).

The ‘pivot-strategy’ for selecting a new feasible face can by modified in
various directions. By Theorem 2, since the feasible set is path-wise connected,
in principle we can reach the global minimizer of LBL0 from our starting
point z0.

5 Computational experiments

In this section we report on some numerical experiments with our algorithm.
We compare the computing time for our local search with the time needed for
the global minimization by an implementation of the Bard/Moore method in
Hamming [10] on the same machine and on the same randomly generated
problems. (Note however, that there are more e‰cient methods for solving
LBL-problems, e.g. the HJS-method (cf. [11], [2]) and the method in [7]).

Remark 6. The problems are randomly generated in the following way: The
components of the vectors ða1; b1Þ, ða2; b2Þ in the objectives and Cj in the
constraints Cza c are generated randomly in ½�100; 100
. The right-hand side
components cj corresponding to Cj are given by cj ¼ qjkCjk with qj random in
[1, 100].

Some results are presented in table (6.1), in which we use the abbreviations:

n: Number of leader variables.
m: Number of follower variables.
k: Number of constraints (in addition we added the constraints

x; yb 0).
jJ0j: Number of active indices at the feasible starting point z0 (see Phase

I).
Nit: Number of iterations k in Phase II.
v0 ¼ d 1z0: Objective value of the leader in the feasible starting point.
vloc: Objective value of the leader in the local minimum.
vglob: Objective function value of the leader in the global minimum.
tloc: time (in sec.) needed for computing the local minimizer (our algo-

rithm).
tglob: time (in sec.) needed for computing the global minimizer

(implementation of the Bard/Moore method).

In 12 of the 25 test problems our local method ended up with the global solu-
tion.
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The next two tables contain results with problems for constant nþm and
di¤erent n;m. In the first table, for 8 of the 15, and in the second, for 6 of the 9
problems, the local method computed the global solution. In table 6.3, Nver

gives the number of vertex to vertex steps in Phase II iiC.

Table 6.1. Results of the computation of local minimum versus global minimum

n m k jJ0j Nit v0 vloc vglob tloc tglob

2 6 8 8 1 7.68 7.68 0.3 8
2 8 10 10 1 �3.90 �3.90 0.4 19
2 10 12 11 4 �44.88 �61.20 �61.20 1.3 25
4 2 6 6 1 �21.67 �21.67 0.3 2
4 4 8 7 2 �1.69 �8.53 �9.08 0.5 7
4 6 10 9 2 �0.13 �5.59 �7.16 0.7 15
4 10 14 13 3 80.72 65.36 �15.22 1.9 220
6 2 8 8 1 �186.08 �186.08 0.3 3
6 4 10 8 4 �100.99 �121.58 �148.51 0.8 21
6 6 12 11 2 �155.01 �159.39 �159.39 0.9 62
6 8 14 14 1 �328.92 �328.92 0.9 154
6 10 16 15 3 �30.11 �32.30 �34.77 1.9 133
8 2 10 10 1 �129.85 �129.85 0.5 3
8 4 12 11 2 �8.89 �30.10 �38.22 0.8 28
8 6 14 14 1 �98.12 �98.12 0.8 15
8 8 16 14 3 �128.92 �131.08 �142.52 1.7 150
8 10 18 16 3 �69.48 �96.81 �102.55 2.5 691

10 2 12 12 1 �23.95 �23.95 0.6 9
10 4 14 14 1 �131.04 �131.04 0.8 24
10 6 16 11 6 �76.81 �131.69 �149.34 1.8 213
10 8 18 15 4 �101.81 �112.57 �122.42 2.3 429
10 10 20 19 2 �88.42 �88.76 �88.76 3.6 763
12 12 24 23 2 �1.26 �30.82 �113.65 5.6 3318
16 16 32 29 4 �6.73 �18.38 �47.28 13 11413
20 20 40 36 6 �11.09 �16.94 �17.57 21 13938

Table 6.2. Results for computing local minima versus global minima
for constant nþm ¼ 12

ðn;m; kÞ jJ0j v0 vloc vglob tloc tglob

ð4; 8; 16Þ 11 �58.07 �61.52 �61.52 1 78
10 �107.53 �127.18 �141.50 1 133
11 �33.01 �33.74 �33.74 1 123
11 �18.44 �40.29 �40.29 1 169
11 �39.40 �73.24 �78.41 2 243

ð8; 4; 16Þ 12 �107.82 �107.82 1 66
11 �44.19 �56.84 �95.90 1 62
11 12.79 1.63 �70.82 2 43
12 �1.08 �1.08 1 12
12 �1.02 �1.02 1 10

ð6; 6; 16Þ 12 �8.89 �8.89 1 51
11 �14.98 �19.62 �43.29 1 92
11 �115.81 �116.36 �126.66 1 78
11 �116.12 �123.14 �123.14 1 187
10 �102.42 �129.60 �129.60 1 209
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The next table gives the computation time for the local search for increas-
ing problem size (average of 3 randomly generated problems). The results sug-
gest a polynomial behavior; doubling the problem size leads to a factor of
about 10 in the computing time.

Surprisingly, in all our computations we never had to start after Phase I on
a feasible face of maximal dimension n. In many cases the starting feasible
point z0 in Phase I, coincides with the global minimizer. In most of the other
cases the point z0 was situated ‘near’ the local (or even global) solution, such
that only few steps in Phase II had to be performed. This explains why in our
experiments the computing time of our local search seems to behaves poly-
nomial in contrast to the drastic increase in the computing time for the global
search (compare for example the results in Tables 6.2 and 6.3 for ðn;m; kÞ ¼
ð4; 8; 16Þ and ðn;m; kÞ ¼ ð4; 12; 20Þ; and also the experiments in [10])).

Acknowledgments. The author wish to thank Theo Frederiks for his numerical experiments in [5].
He is also indebted to the referees for their valuable comments in particular one of the referees for
clarifying the NP-completeness of the feasibility problem for LBL with upper level constraints in
Remark 5.

Table 6.3. Results of computation of local minimum versus global minimum
for for constant nþm ¼ 16

ðn;m; kÞ jJ0j Nver v0 vloc vglob tloc tglob

ð8; 8; 20Þ 16 0 �135.96 �135.96 2 594
13 6 �139.56 �173.84 �173.84 4 1005
14 0 �60.40 �60.80 �60.80 2 923

ð4; 12; 20Þ 15 0 151.87 150.50 �0.66 4 3366
15 3 �85.15 �130.98 �140.70 4 1531
14 0 �36.12 �42.10 �59.03 3 1781

ð12; 4; 20Þ 16 0 �84.65 �84.65 2 139
14 5 �60.98 �89.25 �89.25 3 209
12 0 �121.34 �162.97 �162.97 2 75

Table 6.4. Mean computing times for local minimum

ðn;m; kÞ mean tloc ðn;m; kÞ mean tloc

ð2; 2; 6Þ 0.3 ð14; 14; 42Þ 22
ð4; 4; 12Þ 0.7 ð16; 16; 48Þ 38
ð6; 6; 18Þ 1.6 ð18; 18; 54Þ 34
ð8; 8; 24Þ 3.0 ð20; 20; 60Þ 97
ð10; 10; 30Þ 7.8 ð24; 24; 72Þ 140
ð12; 12; 36Þ 11 ð28; 28; 84Þ 302
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