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Abstract. The paper is concerned with linear bilevel problems. These non-
convex problems are known to be NP-complete. So, no theoretically efficient
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we give a genericity analysis of linear bilevel problems and present a new al-
gorithm for efficiently computing local minimizers. The method is based on
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Key words: linear bilevel programming, genericity results, numerical methods

Mathematical Subject Classification 1991: 90C26

1 Introduction

This paper deals with linear bilevel problems of the form

(LBL): rgcli}palx+b1y st. A'x+B'y <!

and y is a solution of
Q(x): min a’x + b%y st A’x+ By <’
V

with given matrices A' € R B! e RF1™ 42 ¢ R B2 ¢ R**™ vectors a',
a>eR", b', b2 e R”, ¢! € RM, ¢2 € R* and variables x € R", y € R™.
Throughout the paper we omit the transposed sign in some expressions.
For example ax denotes the inner product a”x in R” and uB? the left multi-
plication of the matrix B> by the vector u € R*2.
The linear bilevel problem can be considered as a game between an
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upper level player and a lower level player which for given x € R” has to
solve the lower level problem Q(x). The constraints A'x + By < ¢!, resp.
A’x + By < ¢? are called upper-resp. lower level constraints. For a theo-
retical and practical introduction into bilevel programming the reader is
referred to [12] and [2]. LBL-problems are non-convex problems which are
NP-complete (cf. [3]).

The aim of the present paper is twofold. Firstly we develop genericity re-
sults for linear bilevel problems. By genericity results we roughly mean state-
ments which assert that for almost all LBL-problems certain nice properties
are fulfilled. Secondly, since the LBL-problem is NP-complete, it could be of
interest to develop an algorithm which is able to compute at least a local mini-
mizer efficiently. We present such an algorithm for the LBL-problems without
upper level constraints. The algorithm is based on the genericity analysis and
combines ideas of the Simplex method in linear programming with projected
gradient steps.

The paper is organized as follows. In the second section we give an over-
view on the structure of the LBL-problems. Section 3 is concerned with ge-
nericity results. In Section 4 we introduce our new algorithm for computing
local minimizer of LBL and discuss complexity questions. In the last section
we report on numerical experiments by comparing the performance of our
local minimization algorithm with a Kuhn-Tucker method of Bard/Moore for
solving the global LBL-problem.

2 Preliminary results

We firstly introduce some notation. With x € R"”, y € R” we define,

My(x) = {y|A*x + B>y < ¢*} feasible set of Q(x)
My ={(x,y)| A>x+ B*y < c*} lower level feasible set
X, = {x| M>r(x) # &} projection of M, onto IR”
S(x) = {y|y solves O(x)} set of solutions of Q(x)
S={(x,y)|yeSx)} the graph of S(x)
v(x) = a’x+ by with y e S(x) value function of Q(x)
M, ={(x,y)|A'x+ By <c'} upper level feasible set
Mem = M 0 M, the semi-feasible set

X ={x]|(x,y) € Mem, for some y}  projection of M, onto IR"
M ={(x,y)|(x,y) € Msm,y € S(x)} feasible set of LBL
Remark 1. The polyhedra M;, M., and their projections X>, X are closed sets.

Throughout the paper the following abbreviations are used: We put
N=n+m, z=(x,y) e RY and



Linear bilevel problems 385
Al B! ¢!
() o) ()
(11 Clz
d1:<b1>, d2:<b2>, C=[A4B].

We define J!' = {1,....k1}, J>={ki + 1,... . k1 + kp}, J = J' UJ? and de-
note by Cj, 4;, B; the j™ rows of C, A, B, jeJ. Then, the semi-feasible
polyhedron can be written as

Msem:{ZEIRN|CiZSCI7jeJ}'

For a given index set Jy — J let Cy, be the sub-matrix of C containing only the
rows C; with indices j € Jy. 4y, By,, ¢y, are defined accordingly.

A subset fy © M.y, is called a face of the polyhedron My, if there exists
an index set Jy < J such that

Jo=f(Jo) = {z € Meem | Gz = ¢;, j € Jo}. (1)

Given Jy = J and the related face fy = f(Jy) of Mgm, we say that f; has di-
mension d, 0 < d < N, if there exists an element z, € fy such that

Cizo <c¢j, jeJ\Jo and dimspan{C;,jeJo} =N —d. (2)

The d-dimensional face fy =f(Jy) is said to be non-degenerate if |Jy| =
N —d. A vertex of Mg, is a face of dimension 0. If int M, # & then M.y,
is a face of dimension N.

The following assumptions will play an important role. (In practice these
assumptions do not imply a restriction. If necessary, we can add appropriate
(large) box constraints to bound the feasible sets.)

Al: For all x € X; the solution set S(x) is bounded (and thus compact).
A2: The polyhedron M, is bounded (thus compact).

The following theorem contains the main results on the structure of linear bi-
level problems.

Theorem 1. For an LBL-problem the following holds.

(@) The set X, = IR" is a polyhedron (thus closed and convex).
(b) The feasible set M consist of a union fi U fa U --- U f; of faces of the poly-
hedron M. In particular, M is a closed set in R"™.

If moreover the assumptions Al and A2 hold we have:

(c) The value function v(x) of Q(x) is convex and Lipschitz continuous on X;.

(d) 4 global solution of LBL occurs at a vertex of M.

(e) For any local minimizer (xy, yx) of LBL on a face fi there exist a local
minimizer (Xi, y,) € fx which is a vertex of Men, with the same value alx, +

bly, = a'%; + b'y,.
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Proof. For a proof of (a)—(d) we refer to [12] (or to [13] for a slightly more
general bilevel problem).

(e) This is obvious by noticing that a local minimizer (x, yx) of LBL on a face
f« is a global minimizer on the (bounded) polyhedron f;. O

Th feasible set of an LBL-problem with upper level constraints need not be
connected. However the following holds.

Theorem 2. For all x € X, let the set S(x) be non-empty (fulfilled if A2 holds).
Then if no upper level constraints are present, the feasible set M of the LBL-
problem is path-wise connected.

Proof. We have to show that for any two points (x!, y!), (x2, y?) in M there is
a path in M from (x!, ') to (x2, y?). Suppose that this is not the case. Con-
sider the maximal path-connected component M! in M containing (x', y')
and suppose that M does not coincide with M. Since M consists of the union
of say K faces and any face is convex (thus path-wise connected), M consists

of a number of these faces say fi,..., fx,, K1 < K, i.e. M' = Uf:'l Jx- It now
follows that

K
(U fk) nfi=g, j=K+1,....K.
k=1

In fact, X € f; n M implies that f; = M'. Consequently, with the closed set

2._ | |X .
M? =, _g , f;, we must have

M'uM?>=M, M'AM?>=@.

Let X', ie{1,2}, denote the projections of M’ onto R". We have X =
X'UX? and X!, X? are closed (projections of polyhedra are polyhedra).
Since there are no upper level constraints it follows that M, = M, and
X = X;. Moreover for any x € X we have S(x) # &J. Thus the projection onto
IR” of M coincides with X and X is a polyhedron (in particular convex). Con-
sider the line segment L between the points x' € X! and x> € X2. Since L <
X =X'"UX?and X', X? are closed, there must exist a point X € L belonging
to both sets X' and X2. Consequently, there are points (%, y') e M! and
(%, %) e M?. Since S(X) is convex, the whole line segment between (%, y')
and (X, 7°) lies in M. This contradicts the assumption that M is not path-
wise connected with M2 O

In Section 4 we develop a new algorithm for computing local solutions of
linear bilevel problems without upper level constraints. This raises the ques-
tion whether it is possible to avoid upper level constraints in the LBL-model.
If there are upper level constraints then the the players could change the model
by passing the upper level constraints to the lower level. Such a strategy may
change the model but it can only be an advantage for the upper level player.
For the lower level player it can lead to a better but also to an inferior objec-
tive value depending on whether his objective is ‘similar’ or ‘opposite’ to the
upper level objective.
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Let LBL be the bilevel problem obtained from LBL by passing the con-
straints 4'x + B'y < ¢! to the lower level and let M, be the feasible set of
LBLy. Then the following result is obvious.

Lemma 1. For the the feasible sets My and M of LBLy and LBL we have
M < M,.

In particular, for the corresponding minimal values the inequality vy < v holds.

3 Genericity results for LBL

In this section we study the structure of the feasible set and the set of local
minimizers of LBL from a generic Viewpoint.

Throughout the paper, by a generic subset G of IRX we mean a set which is
open and has a complement G¢ = RX\ G of measure zero (notation u(G¢) =0).
Note that u(G¢) = 0 implies that the set G is dense in IRX. For details on ge-
nericity and stratification theory we refer to [8].

Our genericity analysis will be based on the following ‘non-trivial’ result
(see [8]).

Lemma 2. Let p : RX — R be a polynomial function, p # 0. Then, the solution
set p~1(0) = {w e R¥ | p(w) = 0} is a closed set of measure zero. Equivalently

the complement G = RX\ p=1(0) is a generic set in RX.

By noticing that detd =) _ 17, I8N T (1) - - - Apn(y defines a polynomial
mapping p : R’ — R we directly are led to the following result which will be
used repeatedly.

Lemma 3. Let V) denote the set of real (Ix I)-matrices, ={4=
(ay); 1.1 lay e R} = R Then, the set V;" = {4 e V;|det 4 = 0} is a closed

set of measure zero in R, Equivalently the set Vi = Vi\V;° of reqular matrices
is generic in R"

Remark 2. In the proof of Theorem 3 later on we implicitly make use of the
following elementary facts:

Let V' be a generic subset in RY. Then R* x V is generic in IR® x IRY.
Let 11,..., V, be generic subsets of IR?. Then the intersection V = ﬂ;zl Vi
is generic in RY.

It is well-known that for common linear programs generically all vertices of
the feasible set are non-degenerate. In the following we generalize such a ge-
nericity result to linear bilevel problems.

Firstly we introduce a set which formally describes a linear bilevel problem
as a point in R¥. Let p = (n,m, k1, k) be fixed (p gives the ‘size’ of the LBL).
A problem LBL can be seen as an element from the set

P, ={P=(A",4* B' B> c' % a',a* b' b?)}
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wilt(h arrays A', ..., b* as defined in Section 1. The set #, can be identified with
R%,

2, =R¥, K= (ki +ka+2)(n+m)+ ki + k.
The following theorem contains the main genericity results.

Theorem 3. The problem set %, = RX contains a generic subset ¥ such that for
any LBL-problem P in v~ the following holds.

(a) All faces of the semi-feasible polyhedron M., of problem P are non-
degenerate faces. In particular all vertices of M., are non-degenerate.

(b) Forany x € X, if Q(x) has a solution, then there is a unique solution y(x) of
O(x) attained at a vertex of M>(x).

(c) All local minimizers z, = (xy, yy), v=1,...,q, of P are locally unique
minimizers and (non-degenerate) vertices of M. All values v, = d'z,,
v=1,...,q, are different. In particular, P has a unique global minimizer.

(d) The feasible set M of P consist of a union fiUf, U - - Uf; of non-
degenerate faces f; of M., of dimension n.

Proof. (a) Suppose fo = f(Jo) is a face of Mgy of dimension d, 0 <d < N,
i.e. with an index Jy = J and a point z € f, we have

Cizo<c¢j, jeJ\Jo and dimspan{C;,jeJy} =N —d. (3)
We now show that generically the face is nondegenerate, i.e. |Jo| = N — d.

Case d = 0: Then fy = {zo} is a vertex of M. Suppose that |Jy| > N holds.
Then there is some subset J; < Jy such that |J;| = N,

Cjzo =c¢y, and Cj, isa regular (N x N)-matrix.
Choose jy € Jo\J; arbitrarily. Then for the vertex z, we have

le CJ,

G20 # ¢jp & Cyyjy = ( C o ) is a regular matrix. (4)
g Jo

By Lemma 2 the set 7}, ;, = {P €%, |detCy, j # 0} is generic in #,. By
Remark 2 also the intersection 77 := ﬂjoe s T is generic. By construction,
in this set 77 the vertex zj is non-degenerate.

Case d > 0: Suppose that |Jy| > N — d. Assume for brevity Jo = {1,...,k},
(k=|Jy| >n—d). Let C be the (N x k)-matrix C = [C}, ..., Ck]. Relation
(3) implies rank C = N — d and then

det(Cy)i j=1,..N—a+1 = 0.
By Lemma 2 this can generically be excluded.

For the proof of (c) we moreover now show that for a generic subset of
problems in %, all vertices Z = (X, ) of M have different function values
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o =d'z. To do so let us assume that zy and zy,zy # z;, are (non-degenerate)
vertices of Mgp,. Then with corresponding index sets Jy,J; < J, Jy # J,

|Jo| = |J1| = n+ m we have

—1 —1
Z():CJO CJys Z]ZCJl Cjy-

. .. . 1 . .
With the adjoint C3¢ of Cj, we can write C; ! = detC Cf}f and accordingly
1 ) Jo |
T €3, Now, the values vy and v; are the same, i.e. d'zg — d'z; =0,
! detC;,

if and only if
p(CJl),CJO, le,le,d1> := det CJ] 'dlC%iCjo — det CJO -d1C3?C'Jl =0.

This relation represents a polynomial equation p = 0 with a non-vanishing
polynomial p. In View of Lemma 2 the set Sy, s, := p~'(0) is closed and of
measure zero in #,. Thus, the complement 77, ; = %,\Sy, s, is generic. By
construction, for P in ¥}, ;, the vertices zo, z; have different values. Since there
are only finitely many such sets Jy, J; < J the intersection of all corresponding
sets ¥7,,, is generic in Z,.

(b) Choose x( € X arbitrarily and consider the lower level problem

O(xo): m}m d*y st. By <bj—Aixy, jelJ

Suppose ¥y is a solution of Q(xg). Then there exist Jo, Jo = J2, |Jo| <m (by
Caratheodory’s Theorem), 0 < uy € RM! such that

ugBy, = —b*,  Bjyy = b; — A;x0, Jj € Jo.

Generically, |Jo| > m, i.e. we can assume |Jy| = m. In fact, if |Jy| < m then in
view of ugB;, = —b? the (|Jo| + 1) x (|Jo| + 1)-matrix (assume for brevity Jy =

{1, [Jo[})

B:=[(By)ie1. po1b] with b := B, b )"

.....

J=Loee 0|

would satisfy det(B) = 0 which can generically be avoided. Since generically
(with |Jo| = m) the matrix By, is regular, a solution yo of Q(xo) is generically
a vertex of the polyhedron M;(xp). Moreover since the multiplier vector wuy is
positive it is not difficult to show that yy is the unique solution.

(c) Let zp = (x9, yo) be a local minimizer of the bilevel problem P. The
feasible point zy belongs to a face fo = f(Jy) of Msem and by Theorem 1(b) we
can assume fy € M. Since fy is a polyhedron, z; is a global minimizer of the
linear program

mind'z st. zefy=f(Jo):={zeR""|C.<c, Csz=cy} (5)
With the same arguments as in part (b) we can show that generically the solu-

tion of this program occurs at a vertex z; of the polyhedron fy and that the
solution is unique. The vertex zo of the face f; is also a (non-degenerate) ver-
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tex of Mm. By the arguments in the proof of (a) all vertices have different
values.

(d) Choose z; = (x1, 1) € M. Since y; solves Q(x;) there exist J; = J,
JEcJinJ? |2 =m, u >0, u; € R” such that

Gai<¢, jel\, Ga=g¢, jeJi wBy=-b" (6)

We now show that generically z; is contained in a face fy of dimension n given
by (1) with Jo = J?2. (Since |JZ| = m by definition (see Section 2) this face is
non-degenerate.)

We firstly notice that for a generic subset of %, we have |J;| < n+ m.
Otherwise |J;| > n+m and with some J) < Jy, |J?| = n+m, jo e Ji\J the
quadratic matrix C 1% in (4) would be singular which generically can be
avoided.

Moreover, for a generic subset in %, we have

rank Cj; = /1| and rank Cp. = |JE| = m. (7)

This holds since the condition rank C;, < |J;| or rank C JERRS |J2| would imply
that

det(Cy)ijes; =0 or det(cij)z:jle =0
which by Lemma 2 can generically be excluded.

We now show that z; is contained in an n-dimensional (non-degenerate)
face. Using rank Cj, = |J1| < n+ m (see (7)) there exist a vector £ € R"*" sat-
isfying

Cpé=0, Cé=-1, jel\J}.

Then, for zg := z; + #£, ¢ > 0 small enough, we have (cf. (6))

CJEZ():lez, CjZ() < ¢j, jGJl\le, ullez Z—bz. (8)
Thus z; and zy are contained in the feasible face

Jo=1z€ Mgn| Cpz = cjlz}
of dimension d = n+m — |JZ| = n.

Suppose now that z; is contained in a feasible face f; of dimension greater
than n. Then by definition there exist a feasible pozint 7y = (x2, y2) €f> and
index sets J, = J, J? :=J, nJ? and uy > 0, u» € R”> such that

C1222 =cCy,, CjZ < ¢, J GJ\Jz, uzBJZZ = —b2
and dimspan{C;, je J»} =n+m —d < m (i.e. d > n). Generically we can as-
sume that Cj, has full rank|J>| (see (7)). This implies |J7| < |J2| < m and y; is

not a vertex solution of Q(x;). However this can generically be excluded as
shown in the proof of part (b). O
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We say that the semi-feasible set M., satisfies the Slater condition if there
is a point zy such that

Czy < c.

Such a point zj is an inner point of Mg,. For the numerical computations we
want to restrict the problem set to the following set of linear bilevel problems.

9;," = {P e #,| M fulfills the Slater condition, M., compact,
S(x) is compact Yx € X}.

In this set, for any x € X a solution of Q(x) exists. The following stability
statement holds.

Lemma 4. The problem set %, is open in RX.

Proof. For P € 2, let the Slater condition be satisfied with z, i.e. Cz < ¢ (C,¢
defining the constraints of P). Then, obviously for a whole neighbourhood of
problems P € %, the condition CZ < ¢ holds.

To show that M., is compact it suffice to prove boundedness. We show:
Given P € 7, with bounded Miem(P) there exists some ¢ such that

) Mem(P) is bounded. 9)
[|P—Pl<e

Suppose (9) does not hold. Then there exists a sequence of problems Py € &,
and vectors zy € Mem(Px) such that (with C, ¢; corresponding to Py)

Pp— P, Cizx <cr, and |z — oo fork — co. (10)

By dividing the constraints by ||zx|| and assuming (take a subsequence)

Zk .
—— — z we find for k — o0,

12l

Cz <0.

Choosing a point Z € Mgn(P) also z(t) :=Z + 12 € Men(P) for all >0
contradicting the boundedness of M. (P).

We finally prove the statement for S(x). Let us assume that we have given
a problem P e 2] such that the corresponding sets S(x) are compact for
all xe X. We have to show that there exists some ¢ such that for all P,

|P — P|| < & with corresponding sets S and X the property
S(x) is compact for all x € X (11)

holds. We only have to prove boundedness since the solution sets S(x) are
always (closed) faces of M>(x). Suppose now that (11) is not true in a neigh-
borhood of P. Then there exists a sequence of problems P € %,, P, — P and
points xi € Xx, vk € Sk(xx) such that
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lyell = oo for k — co.

In view of x; € X we can choose elements (xx, ;) € Mgem(Px). Using (9) we
can assume (taking a subsequence)

(X Ti) = (%, 7) € Maem(P). (12)

By assumption, S(X) is bounded. Since the sequence ||(x, 7 )| is bounded the
following inequalities hold with some p > 0,

apxi + blyi < aixi + by, < p.
Consequently

Axp + Blyr < ¢}, aixi +biye < p.

Dividing these relations by || yx|| and assuming Tk, », 7l =1 we find
using || yk|| — oo that [l
B*)<0 and b%* <O. (13)

We choose some ¥ € S(¥) and define y(¢) := y + t. In view of (13), for all
t>0,

A’x+ B*y(t) <& and a*x+ b*y(t) < a*x + b*y,
i.e. y(#) € S(x). This contradicts the fact that S(X) is bounded. O

These genericity results in particular mean that given a LBL-problem P
which does not have the nice properties in Theorem 3 (i.e. P ¢ ¥") by almost
all arbitrarily small perturbations we obtain a problem in ¥". However, in
contrast to the situation for linear programs, where a ‘small’ perturbation of
the problem data leads to a ‘small’ perturbation of the minimal value, here for
LBL-problems an arbitrarily small perturbation of the problem may lead to a
large perturbation in the minimal value.

4 A new algorithm for computing local minima of LBL

Different methods for solving linear bilevel problems have been designed. For
example the algorithm of Bard/Moore in [1] which combines a Kuhn-Tucker
approach with a branch and bound method, the penalty method (see e.g.
White/Anandalingam [14]) and the subgradient method (see e.g. Falk/Liu [4]).
An overview of numerical methods is to be found in [12] and [2].

It is well-known that the LBL-problem (also the problem without upper
level constraints) is NP-complete (see [3]). So, (unless P = NP) no efficient
(polynomial) algorithm can be expected to solve the global minimization
problem for LBL. Therefore it could be of interest to have a method which is
able to compute at least a local minimizer of LBL efficiently.

In this section we describe such an algorithm for the bilevel problem
without upper level constraints: With z = (x, y) e R"™, C = [4 B]
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(LBLg): min a'x +b'y (ord'z) s.t. yisa solution of
X,y

Q(x): min b’y st. Ax+By<c (or Cz<c).
¥

Again, C; denotes the j-th row of C, jeJ :={1,...,k}. As usual, for z sat-
isfying Cz < ¢ the active index set is defined by J(z) = {j € J | Cjz = ¢;}. For
Ji = J we introduce the linear subspace

S(J) = {ze R"™"™| C).z = 0}.

In every step of the algorithm below we have to compute the projection of the
objective vector —d! onto a space S(J;) corresponding to a face f(Jx) of Myem.

Our method is based on the analysis of the structure of the feasible set in
Section 2 and combines projected gradient steps with ideas of the Simplex
method. The conceptual method is as follows:

Phase I: Compute a starting feasible point zy = (xo, y9) of LBLy.

Phase II: Compute a local minimizer z = (X, y) by proceeding with pro-
jected gradient steps along feasible faces of dimension (n — ),
K=Kp,... N

We now describe our algorithm in detail.
Phase I: (Computation of a feasible point zy and a descent direction dy in zy)

1. Compute a solution z = (%, p) of the LP-relaxation of LBL:

min d'z st Cz<ec.
(If Z is feasible for LBLy, i.e. if y solves Q(x) then stop: Z is a solution of
LBL,.)
2. Compute a solution yy of Q(%); zg := (%, yo) is a feasible point.
3. Put Jy = J(z0) and compute the projection so of —d! onto S(Jp).

Phase II: (Computation of a local minimizer)

We start with the feasible point zy and the direction sy computed in Phase I
and end up with a local minimizer z of LBL,.

Step k — k + 1: We have given

a feasible point Zk = (Xk, y) € R"™™

a feasible descent direction s, € R

a multiplier ur =0

an index set Jrcd(z),m< | <n+m—1
such that

1. zp and zi () := zx + tsx (¢ > 0 small) are contained in f(J;) and

Cizi(t) <¢j, jeJ\Ji, forall >0 small
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2. dlsk <0
3. ukBJk = 71)2

(i): Move along the (feasible) ray zi () := zx + sk, ¢ > 0 to the ‘boundary’ of
Meer. The maximum step-length is

¢ — Gz

min with /™ € argmin{#}.
J¢J Cs>0  Cisye Ji gmin{ti}

Iy ==

Put zjy 1 == zx + tiSk.
(Since Mer, is bounded we must have # < c0.)

(ii): Change to a new feasible face depending on the number |J|, m < |Ji| <
n+ m — 1. We distinguish between three cases

(A) |Jk| =m (face of ‘maximum’ dimension )
B) m<|Ji|<n+m-2
C) |Jk|l=n+m-1 (feasible edge)

(A) |Jk| = m (try to move to a new feasible face of dimension n)
Compute the solution # of

uB;, = B/»;r.
case i £ O:

(a) (feasibility test w.r.t. the multipliers of the lower level) Compute

. (”k)/ . .
P = min =5, Jp €argmin{p,}.

jedw>0 | Uj

and put J, = Ji v {ji \{ic }-
(Note that by construction BJ (ux — pit) + PkBjr = —b2)

(b) (feasibility test w.r.t. constraints) Compute the projection s; | of —d'
onto S(J,).
If Sk+1Cj; <0put Jpy =Jpu {]2'}\{]1:}
(sk+1 a is feasible descent direction in zx.; on the face f(Jiy1) of di-
mension n)
If s;41C;- > 0 put Jiyy = Jy U {j; } and compute the projection sy
of —d" onto f(Ji+1).
(sk+1 1s feasible direction of descent in zy; on the face f(Jix.1) of di-
mension 7 — 1)

case i < 0: (face f(J.) is not feasible)
Put Jii1 =Jr U {j} and compute the projection sp; of —d I onto
S(Jk+1).

(B) m < |Jx| <n+m—2 (move to a face of dimension n+ m — |Ji| — 1.)
Put Jiy1 = Jr U {j{}. and compute the projection s of —d' onto
S(Jk41)-
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(C) |Jk| =n+m—1 (find a feasible descent edge emanating from the vertex

Ziet1)

Put J, = Jr U {j{} (and assume for brevity J, = {1,...,n+ m}).
Forie J;:

(1) Compute the solution s’ of C;.s = —¢;

(s’ is the direction of the edge emanating from zj )
if d's’ > 0 goto next i, if d's’ < 0 goto (2).
(2) Put J' = J.\{i} and solve the feasibility condition

u'Byi=—b>, u'>0.

If a solution exists then put s =s', Jr1 = Je v {ji P\ {i}, kK —
k + 1. otherwise goto next i.

If no feasible edge of descent is found in z;,; then the vertex z;,; is a
local minimizer of LBL, (see Lemma 5).

Lemma 5. Given zjy| € My, and let J.:= J(zi11) where ziy1 is a non-
degenerate vertex. Suppose for all directions s' (of the edges emanating from
Zi11), 1 € Jy, at least one of the following holds:

1. The vector s' is not a descent direction (sid' >0)
2. The points zj1(t) := zgx1 + ts', with t > 0 small, are not feasible.

Then the vertex zj1 is a local minimum of LBLy.

Proof. Assume z; ) is not a local minimizer. Then a descent direction d must
exist, such that

For ¢ > 0 small, zy(¢) = zx4+1 + td is feasible and dd' < 0. (14)
Direction d can be written as positive combination of the directions s’. So,
d= Z oS’
ieJ
with some J<J, and o; >0, ieJ. (Again, assume for brevity J, =
{1,...,n+ m}.) Consequently, in view of C;s' = —1, i € J, the indices in J are

no longer active for zjyi(7) for ¢ >0 small, ie. J(zxp1(2)) = JN\T =: Jo.
Moreover, since zx(¢) is feasible, with some # we have

Bji=—b* i>0. (15)
Thus, for all i € J = J.\Jy the multiplier & in (15) gives a solution of
BJ];\{I}H = —bz, u> O

In other words, s’ is a feasible direction in z;,;. By assumption s'd' > 0.
Therefore,
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dd' = " as'd' > 0.

ieJ
in contradiction to the second condition in (14). O

Our algorithm is a special instance of a method for solving general mathe-
matical programs with equilibrium constraints (MPEC) in [6]. To write the
problem LBL, in (MPEC) form we only have to express the minimization in
the lower level equivalently by the Kuhn-Tucker condition. This leads to the
following problem (with the notation above):

mind'z st. ¢c—Cz>0, u>0, ul(c—Cz)=0, BTu=-b>

The method in [6] is based on the computation of feasible descent directions in
each step. Under certain regularity assumptions the algorithm is proven to
converge to a so-called B-stationary point, i.e. a point z such that with the ob-
jective function f(z) and the tangent cone T(Z, F) at Z w.r.t. the feasible set F:

Vi(Z)d >0 forallde T(zF).

Note that in the algoritm above we move along a feasible descent direction sy
in each step. Moreover the algorithm converges to a local minimizer z;,| sat-
isfying the assumptions of Lemma 5 which implies that z;.; is B-stationary.

Remark 3. (Finiteness of the algorithm)

If all feasible faces attained during the algorithm are non-degenerate and
sk # 0 for all projections (which is generically satisfied) the algorithm above
computes a local minimizer after finitely many steps. This can be seen as fol-
lows. Suppose that in step (ii) A of the algorithm we arrive at a point z;,; with
active indices J(zx41) = Jx U {j{}. Then if Sk+1C/; < 0 holds we pass to a
new face f(Jyi1) with Jiy1 = Jp 0 {ji"} \U {Jj; } of dimension n and we never
can come back to a point in the relative interior of the face f(J(zx+1)). In
the other case where s;1C;- > 0 we pass successively to faces of dimension
n—1,n—2,...,0. Finally we end up with steps proceeding from vertex to
vertex of the polyhedron M., with strictly decreasing objective value. So,
during the algorithm we never can reach two points z;, z; with the same active
index sets J(zx) = J(z;). The result follows since there are only finitely many
possible active sets.

Remark 4. The different steps of our algorithm can be implemented efficiently
by using appropriate update formulas for the LR-decomposition (or QR-
decomposition) of the ‘basis matrices’” By, in each step (cf. e.g. [9]).

Remark 5. We restricted our algorithm to problems LBL without upper level
constraints. The reason is that for these problems a feasible starting point can
be found efficiently (by solving two LP’s in Phase I).

Unfortunately, if upper level constraints are present, then the point z
computed in Phase I need not satisfy the upper level constraints. In this case z
is not feasible for LBL. We did not succeed in finding an ‘efficient’ Phase I
procedure for problems with upper level constraints. Note that this problem is
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NP-complete. In fact finding a feasible point of a LBL with a single upper
level constraint a;x + by < ¢; is equivalent with solving the LBL-program

mina;x+ by st ysolves: min a'x+b'y st. A*x+ B’y <¢?
}/’

(with value not exeeding c¢;) which is known to be (strongly) NP-complete. The
modification of Phase II to general linear bilevel problems with upper level
constraints does not make any problems.

We emphasize that our algorithm could be used to ‘accelerate’ branch and
bound methods (for example, the Bard/Moore algorithm).

The ‘pivot-strategy’ for selecting a new feasible face can by modified in
various directions. By Theorem 2, since the feasible set is path-wise connected,
in principle we can reach the global minimizer of LBL, from our starting
point zg.

5 Computational experiments

In this section we report on some numerical experiments with our algorithm.
We compare the computing time for our local search with the time needed for
the global minimization by an implementation of the Bard/Moore method in
Hamming [10] on the same machine and on the same randomly generated
problems. (Note however, that there are more efficient methods for solving
LBL-problems, e.g. the HIS-method (cf. [11], [2]) and the method in [7]).

Remark 6. The problems are randomly generated in the following way: The
components of the vectors (a',b!), (a*,b%) in the objectives and C; in the
constraints Cz < ¢ are generated randomly in [—100, 100]. The right-hand side
components ¢; corresponding to C; are given by ¢; = ¢;||C;|| with g; random in
[1, 100].

Some results are presented in table (6.1), in which we use the abbreviations:

n: Number of leader variables.

m: Number of follower variables.

k: Number of constraints (in addition we added the constraints
x,y = 0).

[Jo]: Number of active indices at the feasible starting point z, (see Phase
I).

N Number of iterations k in Phase II.

vo = d'zy: Objective value of the leader in the feasible starting point.

Vloc: Objective value of the leader in the local minimum.

Vglob: Objective function value of the leader in the global minimum.

foc: time (in sec.) needed for computing the local minimizer (our algo-
rithm).

Lolob: time (in sec.) needed for computing the global minimizer

(implementation of the Bard/Moore method).

In 12 of the 25 test problems our local method ended up with the global solu-
tion.
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Table 6.1. Results of the computation of local minimum versus global minimum

n m k ‘JO ‘ Nit Vo Uloc Uglob Hoc tglob
2 6 8 8 1 7.68 7.68 0.3 8
2 8 | 10 10 1 -3.90 -3.90 0.4 19
2110 | 12 11 4 —44.88 —61.20 —61.20 1.3 25
4 2 6 6 1 —21.67 —21.67 0.3 2
4 4 8 7 2 —1.69 —8.53 —9.08 0.5 7
4 6 | 10 9 2 —0.13 —5.59 —7.16 0.7 15
4110 | 14 13 3 80.72 65.36 —15.22 1.9 220
6 2 8 8 1 —186.08 —186.08 0.3 3
6 4 | 10 8 4 —100.99 | —121.58 | —148.51 0.8 21
6 6 | 12 11 2 —155.01 | —159.39 | —159.39 0.9 62
6 8 | 14 14 1 —328.92 —328.92 0.9 154
6|10 | 16 15 3 —30.11 —32.30 —34.77 1.9 133
8 2|10 10 1 —129.85 —129.85 0.5 3
8 4 | 12 11 2 —8.89 —30.10 —38.22 0.8 28
8 6 | 14 14 1 —98.12 -98.12 0.8 15
8 8 | 16 14 3 —128.92 [ —131.08 | —142.52 1.7 150
8 |10 | 18 16 3 —69.48 —96.81 | —102.55 2.5 691
10 2|12 12 1 —23.95 —23.95 0.6 9
10 4 | 14 14 1 —131.04 —131.04 0.8 24
10 6 | 16 11 6 —76.81 | —131.69 | —149.34 1.8 213
10 8 | 18 15 4 —101.81 [ —112.57 | —122.42 23 429
10 | 10 | 20 19 2 —88.42 —88.76 —88.76 3.6 763
12 | 12 | 24 23 2 —1.26 -30.82 | —113.65 5.6 3318
16 | 16 | 32 29 4 —6.73 —18.38 —47.28 | 13 11413
20 | 20 | 40 36 6 —11.09 —16.94 —-17.57 | 21 13938

G. Still

The next two tables contain results with problems for constant # + m and
different n, m. In the first table, for 8 of the 15, and in the second, for 6 of the 9
problems, the local method computed the global solution. In table 6.3, Ny,
gives the number of vertex to vertex steps in Phase II iiC.

Table 6.2. Results for computing local minima versus global minima
for constant n +m = 12

(}’l7 mk) |J0| Vo Vloc Vglob Noc Tglob
(4,8,16) 11 —58.07 —61.52 —61.52 1 78
10 —107.53 —127.18 | —141.50 1 133
11 —33.01 —33.74 —33.74 1 123
11 —18.44 —40.29 —40.29 1 169
11 —39.40 —73.24 —78.41 2 243
(8,4,16) 12 —107.82 —107.82 1 66
11 —44.19 —56.84 -95.90 1 62
11 12.79 1.63 —70.82 2 43
12 —1.08 —1.08 1 12
12 —1.02 —1.02 1 10
(6,6,16) 12 —8.89 —8.89 1 51
11 —14.98 —19.62 —43.29 1 92
11 —115.81 —116.36 | —126.66 1 78
11 —116.12 —123.14 | —123.14 1 187
10 —102.42 —129.60 | —129.60 1 209
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Table 6.3. Results of computation of local minimum versus global minimum
for for constant n +m = 16

(n,m,k) ‘JO‘ Nier 2] Vloc Vglob Noc Tglob
(8,8,20) 16 0 —135.96 —135.96 2 594
13 6 —139.56 | —173.84 | —173.84 4 1005
14 0 —60.40 —60.80 —60.80 2 923
(4,12,20) 15 0 151.87 150.50 —0.66 4 3366
15 3 —85.15 | —130.98 | —140.70 4 1531
14 0 —-36.12 —42.10 —59.03 3 1781
(12,4,20) 16 0 —84.65 —84.65 2 139
14 5 —60.98 —89.25 —89.25 3 209
12 0 —121.34 | —162.97 | —162.97 2 75

The next table gives the computation time for the local search for increas-
ing problem size (average of 3 randomly generated problems). The results sug-
gest a polynomial behavior; doubling the problem size leads to a factor of
about 10 in the computing time.

Table 6.4. Mean computing times for local minimum

(n,m, k) mean foc (n,m, k) mean foc
(2,2,6) 0.3 (14, 14,42) 22
(4,4,12) 0.7 (16,16,48) 38
(6,6,18) 1.6 (18,18, 54) 34
(8,8,24) 3.0 (20,20, 60) 97
(10, 10, 30) 78 (24,24,72) 140
(12,12,36) 11 (28,28, 84) 302

Surprisingly, in all our computations we never had to start after Phase I on
a feasible face of maximal dimension n. In many cases the starting feasible
point zy in Phase I, coincides with the global minimizer. In most of the other
cases the point z, was situated ‘near’ the local (or even global) solution, such
that only few steps in Phase II had to be performed. This explains why in our
experiments the computing time of our local search seems to behaves poly-
nomial in contrast to the drastic increase in the computing time for the global
search (compare for example the results in Tables 6.2 and 6.3 for (n,m, k) =
(4,8,16) and (n,m, k) = (4,12,20); and also the experiments in [10])).

Acknowledgments. The author wish to thank Theo Frederiks for his numerical experiments in [5].
He is also indebted to the referees for their valuable comments in particular one of the referees for
clarifying the NP-completeness of the feasibility problem for LBL with upper level constraints in
Remark 5.



400 G. Still

References

[1] Bard JF, Moore JT (1990) A branch and bound algorithm for the bilevel programming
problem. SIAM J. Sci. Stat. Comput. 11:281-292
[2] Bard JF (1998) Practical bilevel optimization. Kluwer, Dordrecht
[3] Ben-Ayed O, Blair CE (1990) Computational difficulties of bilevel linear programming. Oper.
Res. 38(3):556-560
[4] Falk JF, Liu J (1995) On bilevel programming, Part I. Mathematical Programming 70(1):47—
72
[5] Fredericks T (2000) Linear bi-level problems: An efficient method for computing local min-
ima. Master’s Thesis, Department Applied Mathematics at University of Twente
[6] Fukushima M, Tseng P, An implementable active-set algorithm for computing a B-stationary
point of a mathematical program with linear complementarity constraints
[7] Gendreau M, Marcotte P, Savard G (1996) A hybrid tabu-ascent algorithm for the linear
bilevel programming problem. J. of Global Optimization 8:217-232
[8] Gibson CG, Wirthmiiller K, Du Plessis AA, Looijenga EJN (1976) Topological stability of
smooth mappings. Lecture Notes in Math., vol. 552, Springer-Verlag, Berlin
[9] Golub G, Loan F van (1986) Matrix computions. North Oxford, London
[10] Hamming R (1998) Linear bi-level optimization problems. Master’s Thesis, Department
Applied Mathematics at University of Twente
(11] Hansen P, Jaumard B, Savard G (1992) New branch-and-bound rules for linear bilevel pro-
gramming. SIAM J. of Scientific and Statistical Computing 13(5):1194-1217
(12] Shimizu K, Ishizuka Y, Bard J (1997) Nondifferentiable and two-level mathematical pro-
gramming. Kluwer Academic Publishers, Boston
[13] Stein O, Still G, Generalized semi-infinite optimization and bilevel optimization. To appear
in European Journal of Operational Research
[14] White DJ (1993) Anandalingam, a penalty function approach for solving bilevel linear
problems. J. Global Optim. 3(4):397-419



