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Abstract. Neighbor games arise from certain matching or sequencing situa-
tions in which only some specific pairs of players can obtain a positive gain.
As a consequence, the class of neighbor games is the intersection of the class
of assignment games (Shapley and Shubik (1972)) and the class of component
additive games (Curiel et al. (1994)). We first present some elementary fea-
tures of neighbor games. After that we provide a polynomially bounded
algorithm of order p3 for calculating the leximax solution (cf. Arin and Iñarra
(1997)) of neighbor games, where p is the number of players.

Key words: Neighbor Games, Leximax Solution, Assignment Games

1 Introduction

In this paper we introduce neighbor games and provide an algorithm to
calculate the leximax solution (cf. Arin and Iñarra (1997)) of neighbor games.
The following two examples describe situations that give rise to neighbor
games.

In the first example we consider a sequencing situation in which customers
are lined up in a queue and waiting for a taxi. The taxi company that provides
the service has two types of cars: one that transports only one customer (type
A) and one that can only transport two customers (type B). The first customer
in the queue can decide to pick a taxi of type A or wait for the next customer
in the queue. In the latter case they decide both to share a taxi of type B or the
second customer will wait for the third customer. In the latter case the first
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b Department of Economics, University of Maastricht, The Netherlands
c Department of Econometrics and CentER, Tilburg University, The Netherlands
d Department of Operations Research, Budapest University of Economic Sciences, Hungary
1 CODE and Departament d’Economia i d’Història Econòmica,
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customer has to pick a taxi of type A. This procedure is repeated until all
customers are transported in a taxi. Since the costs of sharing a taxi of type B
are lower than taking two taxis of type A, it is obvious that the customers can
save costs by sharing a taxi of type B. However, each customer faces the
problem that the cost of a taxi (of type B) is not fixed, because it depends on
the trip to bring the customers to the right locations. Hence, we have that
only customers that are neighbors in the queue can obtain cost savings, and
customers that take a taxi of type A have cost savings equal to zero. All
customers in the queue want to choose a combination of taxis of type A and B
such that their cost savings are maximized. Moreover, they are looking for an
allocation of the cost savings that is ‘stable’.

The second example can be viewed as a restricted matching problem.
Suppose a river runs through a number of regions. To be able to utilize this
cheap transportation possibility, harbours have to be built. Because of
financial restrictions, each country is able to build at most one harbour.
Neighbor regions might join to build a harbour at their border (which then
can serve both regions) and save costs. The regions are interested in maxi-
mizing their cost savings and finding some proper allocation of the cost
savings.

For analyzing both examples we can use cooperative game theory, since
one of the topics in cooperative game theory is the investigation of the sta-
bility of allocation rules. For this purpose we introduce neighbor games. In
neighbor games, players are lined up in a one-dimensional queue. In this
queue, players can only directly cooperate with one of their neighbors in the
queue.

It turns out that the class of neighbor games is the intersection of the class
of assignment games (Shapley and Shubik (1972)) and the class of component
additive game (cf. Curiel et al. (1994)). The latter one is a the class of
C-component additive games (cf. Potters and Reijnierse (1995)) in which the
restricted graph is a line graph. As a consequence, neighbor games have
many appealing properties, such as: the core is a non-empty set and coin-
cides with the set of competitive equilibria (Shapley and Shubik (1972)), the
core coincides with the bargaining set, and the nucleolus coincides with the
kernel (Potters and Reijnierse (1995)). Moreover, neighbor games satisfy
the CoMa-property, i.e., the core is the convex hull of some marginal vectors
(cf. Hamers et al. (2002)).

In this paper we study in detail the leximax solution (cf. Arin and Iñarra
(1997)) for neighbor games. The leximax solution is an egalitarian solution
that equals the core allocation that minimizes the maximum satisfaction
among all players. Note that there is some relation with the nucleolus (cf.
Schmeidler (1969)), since the nucleolus maximizes the minimum satisfaction
among all non-empty coalitions of players. The nucleolus for neighbor games
is studied in Hamers et al. (2003).

The leximax solution and its natural counterpart the leximin solution are
investigated for several classes of games. In Arin and Iñarra (1997) the leximin
solution is studied for the class of convex games and veto games that are
monotonic with respect to the grand coalition. Arin et al. (1998) studied the
leximax solution on the class of large core games. Since the class of neighbor
games is not a subclass of any of the above mentioned classes of games we
study the leximax solution for neighbor games. We characterize the leximax
solution in terms of adjustability to egalitarianism, which induces an
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algorithm for finding the leximax solution. This algorithm is shown to be of
order p3. A nice feature of the algorithm is that it can be visualized nicely by
pictures, showing the process of adjusting and fixing the payoffs of the players.

In Section 2 we introduce neighbor games, relate them with other classes
of games, and provide a convexity result. In Section 3 we characterize the
leximax solution for the class of neighbor games. The proof of this charac-
terization will be used in Section 4 to provide an Oðp3Þ algorithm for finding
the leximax solution.

2 Neighbor games

In this section we introduce the class of neighbor games and present some
results on the core of neighbor games. But we start with recalling some no-
tions of cooperative game theory. In particular, we recall the definition of two
classes of games that are very closely related to neighbor games: assignment
games and component additive games.

A cooperative game with transferable utility (or game, for short) is a pair
(P ; v) where P ¼ f1; . . . ; pg is a finite set of players and v : 2P ! R is a map
that assigns to each coalition S 2 2P a real number vðSÞ, such that vð;Þ ¼ 0.
Here, 2P is the collection of all subsets (coalitions) of P .

The core of a game (P ; v) consists of all vectors that distribute the gains
vðP Þ obtained by P among the players in such a way that no subset of players
can be better off by seceding from the rest of the players and act on their own
behalf. Formally, the core of a game (P ; v) is defined by

CoreðP ; vÞ :¼ fx 2 RP : xðSÞ � vðSÞ for all S � P and xðP Þ ¼ vðP Þg;
where xðSÞ :¼

P
i2S xi for S � P . A game (P ; v) is called balanced if

CoreðP ; vÞ 6¼ ;.
A game (P ; v) is called convex if for all i 2 P and all coalitions S and T with

S � T � Pnfig it holds that
vðS [ figÞ � vðSÞ � vðT [ figÞ � vðT Þ:
Assignment games, introduced by Shapley and Shubik (1972), arise from

bipartite matching situations. Let M and N be two finite and disjoint sets. For
each i 2 M and j 2 N the value of a matched pair ði; jÞ is aij � 0. From this
situation an assignment game is defined in the following way. The worth of a
coalition S [ T where S � M and T � N is defined to be the maximum that
S [ T can achieve by making suitable pairs from its members. If S ¼ ; or
T ¼ ; no suitable pairs can be made and therefore the worth in this situation
is 0. Formally, an assignment game ðM [ N ;wÞ is defined by

wðS [ T Þ :¼ max
X

ði;jÞ2l
aij : l 2 MðS; T Þ

8
<

:

9
=

;
for all S � M ; T � N ;

whereMðS; T Þ denotes the set of matchings between S and T , i.e., collections
of disjoint pairs ði; jÞ with i 2 S and j 2 T .

The class of component additive games, introduced by Curiel et al. (1994),
is a special class of C-component additive games, discussed in Potters and
Reijnierse (1995), which in turn is a special class of graph restricted games in
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the sense of Owen (1986). Let (P ; v) be a cooperative game and let C ¼ ðP ;EÞ
be an undirected line graph. Then a component additive game ðP ;wCÞ is de-
fined by

wCðSÞ :¼
X

T2SnC
vðT Þ for all S � P ;

where SnC is the set of connected components of S with respect to C.
The situations discussed in the introduction that motivate the interest for

neighbor games, give rise to a model in which players are lined up in a one-
dimensional queue. In the queue, players can only directly cooperate with one
of the neighbors in the queue. From this point of view, neighbor games are
defined as restricted assignment games: only pairs that are neighbors in the
queue can be matched. Formally, let P be the player set of size p. For the sake
of convenience we assume that P ¼ f1; . . . ; pg. Without loss of generality we
may assume that the players are ordered 1 � 2 � � � � � p. Players i and j are
called neighbors if ji� jj ¼ 1. A matching l for Q � P is a (possibly empty)
collection of disjoint pairs ði; iþ 1Þ of neighboring players (partners) in Q.
Henceforth, the word matching means a matching of this type. Let NðQÞ
denote the set of matchings for Q. For all pairs of neighbors ði; iþ 1Þ let
aiiþ1 � 0 be given. Then, a neighbor game (P ; v) is defined by

vðQÞ :¼ max
X

ði;jÞ2l
aij : l 2 NðQÞ

8
<

:

9
=

;
for all Q � P :

Note that since aiiþ1 ¼ vði; iþ 1Þ a neighbor game is completely determined by
the values of the pairs of neighbors. Note also that vðiÞ ¼ 0 for all i 2 P . A
matching l 2 NðQÞ is called optimal for Q if

P
ði;iþ1Þ2l aiiþ1 ¼ vðQÞ. It is called

minimal for Q if aiiþ1 > 0 for all ði; iþ 1Þ 2 l. Throughout this section and
with a slight abuse of notation, we identify a (possibly non-matched) pair
ði; iþ 1Þ of neighbors in P with the two-person coalition fi; iþ 1g. Let Q � P
and l 2 NðQÞ. Let i 2 P . If ði� 1; iÞ 2 l or ði; iþ 1Þ 2 l then player i is called
matched (with respect to l), otherwise he is called isolated (with respect to l).

Example 2.1. Let P ¼ f1; 2; 3; 4g be the player set. Take a12 ¼ 10; a23 ¼ 20,
and a34 ¼ 30. Then the corresponding neighbor game (P ; v) is depicted in
Table 1. The matching l ¼ fð1; 2Þ; ð3; 4Þg is optimal and minimal for P . h

The following proposition follows immediately from the definition of
neighbor games. The proof is therefore omitted.

Proposition 2.2. The class of neighbor games is the intersection of the class of
assignment games and component additive games.

Since neighbor games are special assignment games, the results of Shapley
and Shubik (1972) on the core of assignment games apply to the core of

Table 1. A neighbor game (P ; v)

S f1; 2g f2; 3g f3; 4g f1; 2; 3g f1; 2; 4g f1; 3; 4g f2; 3; 4g f1; 2; 3; 4g

vðSÞ 10 20 30 20 10 30 30 40
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neighbor games. In particular, the core of neighbor games is not empty.
Furthermore, it is determined by the inequalities induced by the one player
coalitions and the pairs of neighbors. Henceforth, whenever we speak of a
coalition it is a singleton or a pair of neighbors.

Let ðN ; vÞ be a neighbor game. Let l be an optimal matching for P . With a
slight abuse of notation we denote by Pþ the set of players that are matched
by l. The set of isolated players is denoted by P� ¼ PnPþ. The following
lemma is a straightforward consequence of a result of Shapley and Shubik
(1972). Its proof is therefore omitted.

Lemma 2.3. Let (P ; v) be a neighbor game. Let l be an optimal matching for P .
Let x 2 RP . Then, x 2 CoreðP ; vÞ if and only if the following four conditions are
satisfied:

(i) xi þ xiþ1 ¼ vði; iþ 1Þ for all ði; iþ 1Þ 2 l;
(ii) xi þ xiþ1 � vði; iþ 1Þ for all ði; iþ 1Þ 62 l;
(iii) xi ¼ 0 for all players i 2 P�;
(iv) xi � 0 for all players i 2 Pþ.

In general, a neighbor game does not need to be convex, as follows from
the next proposition, which provides a necessary and sufficient condition for
the convexity of neighbor games.

Proposition 2.4. A neighbor game (P ; v) is convex if and only if for any triple
j� 1; j; jþ 1 2 P of consecutive players it holds that vð j� 1; jÞ ¼ 0 or
vð j; jþ 1Þ ¼ 0.

Proof. We first prove the ‘only if ’-part. Suppose that vð j� 1; jÞ > 0 and
vð j; jþ 1Þ > 0 for some j 2 P . Then,

vð j� 1; j; jþ 1Þ � vð j� 1; jÞ ¼ maxfvð j� 1; jÞ; vð j; jþ 1Þg � vð j� 1; jÞ
¼ maxf0; vð j; jþ 1Þ � vð j� 1; jÞg
< vð j; jþ 1Þ � vð jÞ:

Hence, (P ; v) is not convex.
To prove the ‘if’-part, suppose that for any triple j� 1; j; jþ 1 2 P of

consecutive players it holds that vð j� 1; jÞ ¼ 0 or vð j; jþ 1Þ ¼ 0. Take
S � T � P and k 2 PnT . It is easy, but tedious, to check that

vðT [ fkgÞ � vðT Þ ¼
X

i2A\T

vði; kÞ

�
X

i2A\S

vði; kÞ

¼ vðS [ fkgÞ � vðSÞ;
where A is the set defined by

A :¼
fk � 1; k þ 1g if k 6¼ 1; p;
f2g if k ¼ 1;
f p � 1g if k ¼ p.

8
<

:

This proves the convexity of (P ; v). h
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So, neighbor games are not convex in general. Hence, the core of a
neighbor game does not need to be the convex hull of all marginal vectors.
Nevertheless, since neighbor games are assignment games, it follows from
Hamers et al. (2002) that they satisfy the CoMa-property, i.e., the core is the
convex hull of some marginal vectors.

3 The leximax solution, a characterization

In this section we recall the leximax solution, a solution concept that was
introduced by Arin and Iñarra (1997). After that, we characterize the
restriction of the leximax solution to the class of neighbor games in terms of
adjustability to egalitarianism.

Before we turn to the definition of the leximax solution, we first recall the
notion of lexicographical ordering. Given two vectors x; y 2 Rq for some q, we
have that x �lex y if either x ¼ y or there exists an index k such that xi ¼ yi for
i ¼ 1; . . . ; k and xkþ1 < ykþ1. Further, let x̂x be the vector that results when
arranging the elements of the vector x in a non-increasing order, i.e.,
x̂x1 � x̂x2 � � � � � x̂xq. Then, for a balanced game (P ; v), Arin and Iñarra (1997)
defined the leximax solution LmaxðP ; vÞ as

LmaxðP ; vÞ :¼ fx 2 CoreðP ; vÞ : x̂x�lexŷy for all y 2 CoreðP ; vÞg:
So, the leximax solution minimizes lexicographically the maximum payoff
among all core allocations. Arin and Iñarra (1997) showed that the leximax
solution is a one-point solution. This fact also follows from Lemma 1.1 of
Moulin (1988) in which a leximax-like solution for bargaining situations is
studied.

Theorem 3.1. For a balanced game (P ; v), LmaxðvÞ is a singleton.

For a balanced game (P ; v) we henceforth identify LmaxðP ; vÞ with its unique
element.

Arin and Iñarra (1997) provided an algorithm that determines the leximin
solution (the natural counterpart of the leximax solution) for convex games and
veto games that are P -monotonic. Recall that from Proposition 2.4 it follows
that in general neighbor games are not convex. A game (P ; v) is called a veto
game if there is a player i 2 P such that vðSÞ ¼ 0 for all S � Pnfig. A game (P ; v)
is called P -monotonic if vðP Þ � vðSÞ for all S � P . It is clear from the definition
of a neighbor game that in general neighbor games are not veto games.

The leximax solution was also studied by Arin et al. (1998). They provided
a characterization of the leximax solution on the class of large core games,
which are defined next. Let (P ; v) be a balanced game. We define UðP ; vÞ as
the set of games ðP ;wÞ with wðSÞ ¼ vðSÞ for all S 6¼ P and wðP Þ � vðPÞ. Then,
the game (P ; v) is said to have a large core (Sharkey (1982)) if for all
ðP ;wÞ 2 UðP ; vÞ and for all x 2 CoreðwÞ there exists an allocation y 2 CoreðvÞ
such that yi � xi for all i 2 P . The next example shows that in general
neighbor games do not have a large core.

Example 3.2. Let (P ; v) be the neighbor game with P ¼ f1; 2; 3g (in the order
1 � 2 � 3) and vð1; 2Þ ¼ 6 and vð2; 3Þ ¼ 10. Then, as is easily verified,

CoreðvÞ ¼ fkð0; 6; 4Þ þ ð1� kÞð0; 10; 0Þ : 0 � k � 1g:
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Now, consider the game ðP ;wÞ 2 UðP ; vÞ with wðP Þ ¼ 14. Notice that
x ¼ ð4; 2; 8Þ 2 CoreðwÞ, but there is no y 2 CoreðvÞ such that y2 � x2 (since for
all y 2 CoreðvÞ we have y2 � 6 > 2 ¼ x2). Hence, the neighbor game (P ; v)
does not have a large core. h

From the above it follows that the known results and algorithms con-
cerning the leximax solution cannot be applied to the class of neighbor games.
Hence, for the determination of the leximax solution for neighbor games we
need to develop a new algorithm. Before this we first provide a character-
ization of the leximax solution in terms of adjustability to egalitarianism.

Let (P ; v) be a neighbor game. Let l be an optimal matching. A pair
ði; iþ 1Þ is called essential if ði; iþ 1Þ 2 l. A coalition I � P is called an
interval if i; j 2 I and i � k � j imply that k 2 I . We write I ¼ ½i; j	 for an
interval I � P if i and j are the starting point and the end point of I ,
respectively.

Definition 3.3. Let (P ; v) be a neighbor game. Let x 2 CoreðP ; vÞ be a core
allocation. An interval ½i� 1; k	 (k � i) is called s-relevant3 for player i 2 P
with respect to x, if it satisfies the following three conditions:

(1) ði; iþ 1Þ is either not essential or non-existent (i.e., i ¼ p);
(2) x is tight on ½i� 1; k	 (i.e., xj þ xjþ1 ¼ vð j; jþ 1Þ for all j; jþ 1 2 ½i� 1; k	);
(3) ½i� 1; k	 � Pþ (so essential and non-essential pairs alternate on ½i� 1; k	).
For intervals of the form ½k; iþ 1	, p-relevancy is defined in a similar way.

Definition 3.4. Let (P ; v) be a neighbor game. Let x 2 CoreðP ; vÞ be a core
allocation. An interval ½k; iþ 1	 (k � i) is called p-relevant4 for player i 2 P
with respect to x, if it satisfies the following three conditions:

(1) ði� 1; iÞ is either not essential or non-existent (i.e., i ¼ 1);
(2) x is tight on ½k; iþ 1	;
(3) ½k; iþ 1	 � Pþ.

If an interval is s-relevant (p-relevant) for a player i with respect to a core
allocation x, we say, when no confusion is possible, that the interval is s-
relevant (p-relevant) for player i. An interval I is called relevant for player
i 2 P if it is s-relevant or p-relevant for player i.

Lemma 3.5. Let (P ; v) be a neighbor game. Let x 2 CoreðP ; vÞ be a core allo-
cation.

(i) If i 2 P�, then no interval is relevant for i.
(ii) If i 2 Pþ, then i has either only s-relevant intervals or only p-relevant intervals.
(iii) If i 2 Pþ, then i has a unique maximal relevant interval.

Proof. (i) follows from condition (3) of s-relevancy and p-relevancy.
(ii) Since i 2 Pþ we have that either ði� 1; iÞ or ði; iþ 1Þ is essential. Then

condition (1) of s-relevancy and p-relevancy proves this part of the lemma.
(iii) is a straightforward consequence of statement (ii) of the lemma. h

3 The s stands for successor.
4 The p stands for predecessor.
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The maximal relevant interval for a player i 2 Pþ with respect to a core
allocation x is henceforth denoted by Iði; xÞ. From Lemma 3.5 it follows that
Iði; xÞ 6¼ ; for all i 2 Pþ.

Lemma 3.6. Let (P ; v) be a neighbor game. Let x 2 CoreðP ; vÞ. For i 2 Pþ, the
cardinality of Iði; xÞ is even.

Proof. By Lemma 3.5 (ii) we have that Iði; xÞ ¼ ½i� 1; k	 or
Iði; xÞ ¼ ½k; iþ 1	 for some k 2 P . We may assume, without loss of gener-
ality, that Iði; xÞ is of the form ½i� 1; k	. Then, by condition (3) of s-rel-
evancy we have that k 2 Pþ. Then, ðk; k þ 1Þ cannot be essential.
Otherwise, ½i� 1; k þ 1	 would be s-relevant for i, which would contradict
the maximality of Iði; xÞ. Hence, it follows readily, since essential and
inessential pairs alternate, that jIði; xÞj is even. h

In the following definition we define adjustability of the payoff of a
matched player. This notion will be used in the characterization of the lexi-
max solution.

Definition 3.7. Let (P ; v) be a neighbor game. Let x 2 CoreðP ; vÞ. The payoff
xi of a player i 2 Pþ can be adjusted 5 with respect to x if the following three
conditions are satisfied:

(1) xj > 0 for all j 2 Iði; xÞ with ji� jj even;
(2) xj < xi for all j 2 Iði; xÞ with ji� jj odd;
(3) (a) If Iði; xÞ is of the form ½i� 1; k	, then either k þ 1 is non-existent or

xk þ xkþ1 > vðk; k þ 1Þ.
(b) If Iði; xÞ is of the form ½k; iþ 1	, then either k � 1 is non-existent or

xk�1 þ xk > vðk � 1; kÞ.
Before we can characterize the leximax solution we need the following tech-
nical lemma.

Lemma 3.8. Let x; y 2 RP with x̂x 6¼ ŷy and ŷy �lexx̂x. Let r : f1; . . . ; pg ! P be a
bijection such that xrð1Þ � xrð2Þ � � � � � xrðpÞ. Let r be the smallest number with
xrðrÞ > yrðrÞ. Then for all l < r, xrðlÞ ¼ yrðlÞ.

Proof. By induction on the number of players p. For p ¼ 1; 2 the statement
is quite obvious. Assume that the lemma holds for p � 1 for some p � 3.
If r ¼ 1, the lemma holds trivially. If r > 1, then distinguish between l ¼ 1
and 2 � l < r.

Case 1: l ¼ 1. Since xrð1Þ is the maximal coordinate of x, xrð1Þ � yrð1Þ (since
r > 1). So, since ŷy �lexx̂x, it is clear that xrð1Þ ¼ yrð1Þ.

Case 2: 2 � l < r. Consider the restrictions of x and y to Pnfrð1Þg and
apply the induction hypothesis. h

5 For the sake of convenience we will say that a player itself can (or cannot) be adjusted with
respect to x.
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Theorem 3.9. Let (P ; v) be a neighbor game. Let x 2 CoreðP ; vÞ. Then,
x ¼ LmaxðP ; vÞ if and only if no player i 2 Pþ can be adjusted with respect to x.

Proof. We first prove the ‘only if ’-part. Suppose that some player i 2 Pþ can
be adjusted with respect to x. We will show that there is a core allocation
y 2 CoreðP ; vÞ with ŷy 6¼ x̂x and ŷy � lexx̂x. Assume, without loss of generality, that
Iði; xÞ ¼ ½i� 1; k	 for some k. Since i can be adjusted, there exists � > 0 such
that for all j 2 ½i� 1; k	

ðA1Þ xj � � > 0 if ji� jj is even;
ðA2Þ xj þ � < xi � � if ji� jj is odd;
ðA3Þ xk þ xkþ1 � � > vðk; k þ 1Þ if k þ 1 2 P ;

ðA4Þ xj < xi � � for all j 62 ½i� 1; k	 with xj < xi:

Now define y 2 RP by

yj :¼

xj if j 62 Iði; xÞ;

xj þ � if j 2 Iði; xÞ and ji� jj odd;

xj � � if j 2 Iði; xÞ and ji� jj even.

8
>><

>>:
ð1Þ

Since Iði; xÞ 6¼ ;, it follows that y 6¼ x.

We will prove that y 2 CoreðP ; vÞ by checking the conditions in Lemma 2.3.

(i) ð j; jþ 1Þ 2 l.

Note that then either j; jþ 1 2 Iði; xÞ or j; jþ 1 62 Iði; xÞ. If j; jþ 1 2 Iði; xÞ,
then yj þ yjþ1 ¼ ðxj 
 �Þ þ ðxjþ1 � �Þ ¼ xj þ xjþ1 ¼ vð j; jþ 1Þ. If j; jþ 1 62 I
ði; xÞ, then yj þ yjþ1 ¼ xj þ xjþ1 ¼ vð j; jþ 1Þ. So, in either case, yj þ yjþ1 ¼
vð j; jþ 1Þ.
(ii) ð j; jþ 1Þ 62 l.

We distinguish among three cases.

Case a: j; jþ 1 2 Iði; xÞ or j; jþ 1 62 Iði; xÞ.
A proof similar to that of (i) shows that yj þ yjþ1 � vð j; jþ 1Þ.
Case b: j 2 Iði; xÞ, jþ 1 62 Iði; xÞ.
Obviously, j ¼ k. By Lemma 3.6 we have that ji� jj ¼ ji� kj is even. Hence,
by the definition of y we have that yj ¼ xj � � and yjþ1 ¼ xjþ1. So,
yj þ yjþ1 ¼ xj � �þ xjþ1 > vð j; jþ 1Þ, where the inequality follows from (A3).

Case c: j 62 Iði; xÞ, jþ 1 2 Iði; xÞ.
Obviously, jþ 1 ¼ i� 1. So, ji� ð jþ 1Þj ¼ ji� ði� 1Þj is odd. Hence, by the
definition of y we have that yjþ1 ¼ xjþ1 þ � and yj ¼ xj. So,
yj þ yjþ1 ¼ xj þ ðxjþ1 þ �Þ � vð j; jþ 1Þ, where the inequality follows from
x 2 CoreðP ; vÞ.
(iii) j 2 P�.

Then, since Iði; xÞ � Pþ, j 62 Iði; xÞ. So, yj ¼ xj ¼ 0.

(iv) j 2 Pþ.
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If j 2 Iði; xÞ, then by (A1) of the choice of � and the definition of y, it follows
that yj � 0.
If j 62 Iði; xÞ, then yj ¼ xj � 0.
Hence, y 2 CoreðP ; vÞ.
Now, we will show that ŷy �lexx̂x and ŷy 6¼ x̂x. Let J :¼ fj 2 P : yj 6¼ xjg ¼ Iði; xÞ.
Take k 2 argmaxj2J xj. Then, yk 6¼ xk and xk � xj for all j 2 J . Since k 2 J we
have either yk ¼ xk � � or yk ¼ xk þ �. Suppose that yk ¼ xk þ �. Then,
yk ¼ xk þ � < xi � � � xk � �. The first inequality follows from (A2) and the
second inequality from i 2 J and the fact that xk � xj for all j 2 J . So, we
have a contradiction. Hence, yk ¼ xk � �.

Now take l 2 J with yl ¼ xl þ �. We have that yl ¼ xl þ � < xi � � �
xk � � ¼ yk. Again, the first inequality follows from (A2) and the second
inequality from i 2 J and the fact that xk � xj for all j 2 J . We conclude that
yl < yk for all l 2 J with yl ¼ xl þ �.

From yk ¼ xk � � and yl < yk for all l 2 J with yl ¼ xl þ � it follows that
ŷy � lexx̂x and ŷy 6¼ x̂x.

Now we will prove the ‘if ’-part. Suppose there is a core allocation
y 2 CoreðP ; vÞ with ŷy 6¼ x̂x and ŷy � lexx̂x. Let r : f1; . . . ; pg ! P be a bijection
such that xrð1Þ � xrð2Þ � � � � � xrð pÞ. We may assume, without loss of gener-
ality, that r satisfies the following condition: if yrðaÞ < xrðaÞ ¼ xrðbÞ � yrðbÞ,
then a > b.

Let r be the smallest number with xrðrÞ > yrðrÞ. (Note that this r exists,
because x 6¼ y.) We claim that player rðrÞ can be adjusted with respect to x.
First notice that rðrÞ 2 Pþ, since xrðrÞ > yrðrÞ � 0, where the second inequality
follows from y 2 CoreðP ; vÞ. Now we check conditions (1), (2), and (3) of
Definition 3.7.

(1) Take j 2 IðrðrÞ; xÞ for which jj� rðrÞj is even. From xrðrÞ > yrðrÞ,
y 2 CoreðP ; vÞ, and condition (2) of Definition 3.3 and Definition 3.4 it
follows that xj > yj � 0.

(2) Take j 2 IðrðrÞ; xÞ for which jj� rðrÞj is odd. Assume that xj � xrðrÞ.
From xrðrÞ > yrðrÞ, y 2 CoreðP ; vÞ, and condition (2) of Definition 3.3 and
Definition 3.4 it follows that yj > xj. By the assumption on r and
xj � xrðrÞ there is a number l < r with rðlÞ ¼ j. This, however, contra-
dicts Lemma 3.8. So, xj < xrðrÞ.

(3) We may assume, without loss of generality, that IðrðrÞ; xÞ ¼ ½rðrÞ � 1;m	
for some m � rðrÞ. Suppose that mþ 1 exists. We prove that xmþ
xmþ1 > vðm;mþ 1Þ. We distinguish between two cases.

Case 1: mþ 2 does not exist or ðmþ 1;mþ 2Þ is not essential. In both cases,
mþ 1 2 P�.
Then, by x; y 2 CoreðP ; vÞ, mþ 1 2 P�, and Lemma 2.3 (iii), we have
xmþ1 ¼ 0 ¼ ymþ1.
Since jm� rðrÞj is even by Lemma 3.6, we know that xm > ym as in (1). Hence,
xm þ xmþ1 > ym þ ymþ1 � vðm;mþ 1Þ.
Case 2: ðmþ 1;mþ 2Þ is essential. Then, by definition of IðrðrÞ; xÞ, x is not
tight on fm;mþ 1g. So, xm þ xmþ1 > vðm;mþ 1Þ. h

In the following proposition we provide a closed formula for the leximax
solution of neighbor games in case there are four or less players involved.
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Proposition 3.10. Let (P ; v) be a two person neighbor game,where P ¼ f1; 2g and
the characteristic function v is induced by a12 ¼ a � 0. Then LmaxðP ; vÞ ¼ ða2 ; a

2Þ.
Let (P ; v) be a three person neighbor game, where P ¼ f1; 2; 3g and the

characteristic function v is induced by a12 ¼ a � 0 and a23 ¼ b � 0. Assume,
without loss of generality, that a � b. Then6 LmaxðP ; vÞ ¼ ða2 ^ ða� bÞ;
a
2 _ b; 0Þ.

Let (P ; v) be a four person neighbor game, where P ¼ f1; 2; 3; 4g and the
characteristic function v is induced by a12 ¼ a � 0, a23 ¼ b � 0, and
a34 ¼ c � 0. Assume, without loss of generality, that a � c. Then,

(i) if b 2 ½0; aþc
2 	, then LmaxðP ; vÞ ¼ ða2 ; a

2 ;
c
2 ;

c
2Þ.

(ii) if b 2 ðaþc
2 ; aþ2c

2 	, then LmaxðP ; vÞ ¼ ða2 ^ ða� b
2Þ; a

2 _ b
2 ; ðb� a

2Þ ^ b
2 ; ðcþ a

2
�bÞ _ ðc� b

2ÞÞ.

(iii) if b 2 ðaþ2c
2 ; aþ cÞ, then LmaxðP ; vÞ ¼ ð0 _ ðc� b

2Þ; c ^ b
2 ; ðb� cÞ _ b

2 ; ðaþ c
�bÞ ^ ða� b

2ÞÞ.

(iv) if b 2 ½aþ c;1Þ, then LmaxðP ; vÞ ¼ ð0; b
2 _ a; b

2 ^ ðb� aÞ; 0Þ.

Proof. One easily checks the conditions in Definition 3.7 to see that no player
is adjustable. Then the proposition follows from Theorem 3.9. h

4 The leximax solution, an algorithm

In this section we provide an algorithm for finding the leximax solution for
neighbor games. A nice feature of the algorithm is that it can be visualized
nicely by some pictures showing the process of adjusting and fixing payoffs.
We first present the algorithm. Then, we give an illustrative example. After
that, we give a formal proof that the algorithm does indeed yield the leximax
solution. Finally, we show that the algorithm is polynomially bounded of
order p3 in the number of players p.

Let (P ; v) be a neighbor game and let l be an optimal matching for P . The
algorithm to find LmaxðP ; vÞ is based on the proof of Theorem 3.9. Loosely
speaking, given an initial allocation, the algorithm generates a more egali-
tarian solution thereby fixing the payoffs of some players in Pþ. The algo-
rithm terminates when the payoffs of all players in Pþ are fixed. The final
allocation is the leximax solution, since – as we will see later – whenever we fix
the payoff of a particular player, that player is no longer adjustable in the
remainder of the algorithm.

6 For x; y 2 R we define x ^ y :¼ minfx; yg and x _ y :¼ maxfx; yg.
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Algorithm for the leximax solution for neighbor games

Input

A neighbor game (P ; v).
A core allocation7 x 2 CoreðP ; vÞ.

Initialisation

Let l be an optimal matching for P .
Let Pþ be the set of players that are matched by l.
Set F :¼ ;. We call F � Pþ the set of fixed players.

Recursive step

Step 1. If F ¼ Pþ, then STOP, LmaxðP ; vÞ ¼ x. Otherwise, define8

S1 :¼ fi 2 PþnF : xi � xj for all j 2 PþnF g:
Step 2. Calculate the set C1 of inadjustable players in S1.
If C1 6¼ ;, say C1 ¼ fi1; . . . ; ikg, then set t :¼ 1 and do the following procedure:

Beginning of the F-procedure

If t � k, take i :¼ it.
Otherwise, skip the procedure.
If Iði; xÞ ¼ ½i� 1; k	, then:
Step a. If there is a player m 2 Iði; xÞ with xm ¼ 0 and ji� mj even, then set
F :¼ F [ ½i� 1;m	.
Step b. If there is a player m 2 Iði; xÞ with xm � xi and ji� mj odd, then take
the player m� with the highest index satisfying m� 2 Iði; xÞ with xm� � xi and
ji� m�j odd. Set F :¼ F [ ½i� 1;m� þ 1	.
Step c. If player k þ 1 exists and xk þ xkþ1 ¼ vðk; k þ 1Þ (so, k þ 1 2 P�), then
set F :¼ F [ ½i� 1; k	.
If Iði; xÞ ¼ ½k; iþ 1	, then:
Step a. If there is a player m 2 Iði; xÞ with xm ¼ 0 and ji� mj even, then set
F :¼ F [ ½m; iþ 1	.
Step b. If there is a player m 2 Iði; xÞ with xm � xi and ji� mj odd, then take
the player m� with the lowest index satisfying m� 2 Iði; xÞ with xm� � xi and
ji� m�j odd. Set F :¼ F [ ½m� � 1; iþ 1	.
Step c. If player k � 1 exists and xk�1 þ xk ¼ vðk � 1; kÞ (so, k � 1 2 P�), then
set F :¼ F [ ½k; iþ 1	.
Set t :¼ t þ 1 and repeat the procedure.

7 A core allocation can for example be obtained by solving a certain linear programming problem
(cf. Shapley and Shubik (1972)). Another possibility is calculating the nucleolus using the
algorithm in Hamers et al. (2003). This takes Oðp2Þ time.
8 Notice that the set S1 is not empty.
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End of the F-procedure
If S1 � F , then go to Step 1.
If S1 6� F , then define

S2 :¼ S1nF 6¼ ;:
Step 3. For � > 0, consider the conditions (B1), (B2), (B3), and (B4) for a
player i 2 S2.

ðB1Þ xj � � > 0 if j 2 Iði; xÞ and ji� jj is even;
ðB2Þ xj þ � < xi � � if j 2 Iði; xÞ and ji� jj is odd;

ðB3ÞðaÞ xk þ xkþ1 � � > vðk; k þ 1Þ if Iði; xÞ ¼ ½i� 1; k	 and k þ 1 2 P ;

ðB3ÞðbÞ xk�1 þ xk � � > vðk � 1; kÞ if Iði; xÞ ¼ ½k; iþ 1	 and k � 1 2 P ;

ðB4Þ xj < xi � � for all j 62
[

l2S2

Iðl; xÞ with xj < xi:

Beginning of the x-procedure

Calculate the smallest positive number � > 0 for which one of the conditions
(B1), (B2), (B3), and (B4) becomes an equality for one of the players i 2 S2.
Define the allocation y 2 RP by

yj :¼
xj if j 62

S
i2S2 Iði; xÞ;

xj þ � if j 2 Iði; xÞ; ji� jj odd, and i 2 S2;
xj � � if j 2 Iði; xÞ; ji� jj even, and i 2 S2:

8
<

:
ð2Þ

Set x :¼ y.
End of the x-procedure

Repeat recursive step

In the following example we visualize the algorithm, showing the process of
adjusting and fixing the payoffs of the players.

Example 4.1. Consider the neighbor game (P ; v) where P ¼ f1; . . . ; 9g is the
set of players. Let v be the characteristic function determined by the values of
the neighbors as given in Table 2. One readily verifies that there is a unique
optimal matching, viz., the matching l ¼ fð1; 2Þ; ð3; 4Þ; ð5; 6Þ; ð7; 8Þg. As ini-
tial allocation we take x ¼ ð0; 3; 7; 3; 0; 3; 1; 5; 0Þ.

The game (P ; v) and the allocation x are depicted in Figure 1. We put the
players along the horizontal axis and their respective payoffs along the ver-
tical axis. We connect the payoffs of the players so that the allocation x
corresponds to a piecewise linear graph. Moreover, using Lemma 2.3 we
immediately see that x is a core allocation:

Table 2. The values of the neighbors in the neighbor game (P ; v)

S f1; 2g f2; 3g f3; 4g f4; 5g f5; 6g f6; 7g f7; 8g f8; 9g

vðSÞ 3 10 10 3 3 4 6 4
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(i) The line through the payoffs of two matched neighbors runs exactly
through the filled circle, which denotes half of the value of these neigh-
bors;

(ii) The line through the payoffs of two unmatched neighbors lies above or
runs through the open circle, which denotes half of the value of these
neighbors;

(iii) All matched players receive a non-negative payoff;
(iv) The unmatched player receives a payoff equal to zero.

We apply the algorithm to x to find the leximax solution for the game (P ; v).
Note that Pþ ¼ f1; . . . ; 8g and P� ¼ f9g. Set F :¼ ;.

Loop I: (F 6¼ Pþ)

Step 1: S1 ¼ f3g.
Step 2: C1 ¼ f3g, since player 3 is not adjustable (Definition 3.7 (1) with
j ¼ 1). As a consequence, F ¼ f1; 2; 3; 4g. Since S1 � F we go to Loop II.

Loop II: (F ¼ f1; 2; 3; 4g 6¼ Pþ)

Step 1: S1 ¼ f8g.
Step 2: C1 ¼ ;. Hence, S2 ¼ f8g.
Step 3: Ið8; xÞ ¼ ½7; 8	 and by condition (B3)(a) with k þ 1 ¼ 9 we have � ¼ 1.
The new allocation x is depicted in Figure 2.

Loop III: (F ¼ f1; 2; 3; 4g 6¼ Pþ)

Step 1: S1 ¼ f8g.
Step 2: C1 ¼ f8g, since player 8 is not adjustable (Definition 3.7 (3)(a) with
k þ 1 ¼ 9). As a consequence, F ¼ f1; 2; 3; 4; 7; 8g. Since S1 � F we go to
Loop IV.

Loop IV: (F ¼ f1; 2; 3; 4; 7; 8g 6¼ Pþ)

Step 1: S1 ¼ f6g.
Step 2: C1 ¼ ;. Hence, S2 ¼ f6g.

player

payoff

2 3 4 5 6 7 8 91

2

4

6

8

3 10 10 3 3 4 6 4

Fig. 1. The initial allocation x
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Step 3: Ið6; xÞ ¼ ½5; 6	 and by condition (B3)(a) with k þ 1 ¼ 7 and condi-
tion (B4) with j ¼ 7 we have � ¼ 1. The new allocation x is depicted in Fig-
ure 3.

Loop V: (F ¼ f1; 2; 3; 4; 7; 8g 6¼ Pþ)

Step 1: S1 ¼ f6g.
Step 2: C1 ¼ f6g, since player 6 is not adjustable (Definition 3.7 (3)(a) with
k þ 1 ¼ 9). As a consequence, F ¼ f1; 2; 3; 4; 5; 6; 7; 8g. Since S1 � F we go to
Loop VI.

Loop VI: F ¼ f1; 2; 3; 4; 5; 6; 7; 8g ¼ Pþ

Hence, we stop and LmaxðP ; vÞ ¼ x ¼ ð0; 3; 7; 3; 1; 2; 2; 4; 0Þ. h

In the next lemma we prove that the recursive step is well-defined and that
the algorithm does indeed yield the leximax solution. The lemma will also be
used to prove that the algorithm terminates in a finite number of steps.

player

payoff

2 3 4 5 6 7 8 91

2

4

6

8

3 10 10 3 3 4 6 4

Fig. 3. The allocation x that results from Loop IV

player

payoff

2 3 4 5 6 7 8 91

2

4

6

8

3 10 10 3 3 4 6 4

Fig. 2. The allocation x that results from Loop II
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Lemma 4.2. In the recursive step of the algorithm:

(a) The players that we fix in the F -procedure are inadjustable and remain
inadjustable if we do not change the payoffs of the players in F .

(b) We only fix players in Pþ. Moreover, if we fix a player, then we fix his
partner too.

(c) If C1 6¼ ;, then let x� :¼ xi where i 2 C1. It holds that xi � x� for all players
i 62 F .

(d) In the F -procedure we fix all players in C1. Hence, C1 \ S2 ¼ ;.
(e) For � > 0 sufficiently small, every player in S2 satisfies the conditions (B1),

(B2), (B3), and (B4).
(f) If i 2 S2 and j 2 Iði; xÞ, then j 62 F .
(g) If i1; i2 2 S2 and i1 6¼ i2, then not both i1 2 Iði2; xÞ and i2 2 Iði1; xÞ.
(h) The allocation y is well-defined and the payoffs of the fixed players do not

change. Moreover, y is a core allocation and maxj 62F yj < maxj 62F xj.

Proof. The proof is by induction on the number of loops. We assume that
(a)–(h) hold for loops 1; . . . ; t � 1 of the algorithm and that F 6¼ Pþ. Then, we
prove that (a)–(h) hold for the t-th loop. The proof of (a)–(h) for the first loop
of the algorithm has been omitted, since it is similar to the proof for the t-th
loop.

(a) By the induction hypothesis we only have to show that every unfixed
player that we fix in the F -procedure is inadjustable by giving a condition in
Definition 3.7 that is not satisfied. We distinguish among the three cases in
Step 2. Let i 2 C1. We may assume, without loss of generality, that
Iði; xÞ ¼ ½i� 1; k	.

Step a. Clearly, m � i. Let j 2 ½i� 1;m	, j 62 F .
Suppose ji� jj is even. Then, j � i and Ið j; xÞ ¼ ½j� 1; k	. Hence, j is not
adjustable by Definition 3.7 (1) and m 2 Ið j; xÞ.
Suppose ji� jj is odd. Note that xj � xi (otherwise i 62 S1) and
Ið j; xÞ ¼ ½l; jþ 1	 for some l � i� 1. Hence, j is not adjustable by Defini-
tion 3.7 (2), and i 2 Ið j; xÞ.
Step b. Clearly, m� � i� 1. Let j 2 ½i� 1;m� þ 1	, j 62 F .
We have xj � xi (otherwise i 62 S1).
Suppose ji� jj is even. Note that xj � xi � xm� and Ið j; xÞ ¼ ½j� 1; k	. Hence,
j is not adjustable by Definition 3.7 (2) and m� 2 Ið j; xÞ.
Suppose ji� jj is odd. Note that Ið j; xÞ ¼ ½l; jþ 1	 for some l � i� 1. Hence,
j is not adjustable by Definition 3.7 (2) and i 2 Ið j; xÞ.
Step c. Let j 2 ½i� 1; k	, j 62 F .
Suppose ji� jj is even. Then, j is not adjustable by Definition 3.7 (3).
Suppose ji� jj is odd. Note that xj � xi (otherwise i 62 S1) and
Ið j; xÞ ¼ ½l; jþ 1	 for some l � i� 1. Hence, j is not adjustable by Defini-
tion 3.7 (2) and i 2 Ið j; xÞ.
As one can verify easily, the discussed unsatisfied conditions above remain
unsatisfied in the remainder of the algorithm if we do not change the payoffs
of the players in F . Hence, the players that we fix in the F -procedure remain
inadjustable in the remainder of the algorithm if we do not change the payoffs
of the players in F .
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(b) Follows immediately from the F -procedure.
(c) Suppose C1 6¼ ;. By definition of S1, it holds that the payoff of every

player in C1 is the same. So, we can define x� :¼ xi for i 2 C1. By defi-
nition of S1, we have that xi � x� for all players i 62 F .

(d) Let i 2 C1. At least one of the conditions for i in Steps a, b, and c in the
F -procedure is satisfied. In any case, we fix player i. So, i 62 S2. Hence,
C1 \ S2 ¼ ;.

(e) From the definition of C1 and (d), it follows that each player in S2 is
adjustable. This implies that for � > 0 sufficiently small, every player in S2

satisfies the conditions (B1), (B2), (B3), and (B4).
(f) The statement is clear for j ¼ i. So, suppose j 6¼ i.

Suppose j 2 F . By (c), (h), and the induction hypothesis, there exists
some player i0 2 F with xi0 � xi, j 2 Iði0; xÞ; and for which all players between
i0 and j are fixed. By (b) and the induction hypothesis, the partner of j in l is
also fixed. One verifies that together with j 2 Iði; xÞ this implies that
i0 2 Iði; xÞ.

If ji� i0j is odd, then i is not adjustable by Definition 3.7 (2). If ji� i0j is
even, then i is not adjustable for the same reason that i0 is not adjustable. So,
in either case i is not adjustable, contradicting (b). Hence, our assumption
that j 2 F is false.

(g) Let i1; i2 2 S2 and i1 6¼ i2. Suppose that both i1 2 Iði2; xÞ and i2 2 Iði1; xÞ.
Then, ji1 � i2j is odd. Since i1; i2 2 S2 � S1, we have xi1 ¼ xi2 . So, i1 and i2
are not adjustable by Definition 3.7 (2). This contradicts i1; i2 2 S2.

(h) It follows from (g) that y is well-defined. It follows from (f) that the
payoffs of fixed players do not change. The inequality maxj62F yj <
maxj62F xj follows from the definition of S1 and the definition of the
allocation y. One easily verifies that y 2 CoreðP ; vÞ by checking the con-
ditions in Lemma 2.3. We have omitted this part of the proof since it runs
similarly to the proof of y 2 CoreðP ; vÞ in the ‘only if’-part of the proof of
Theorem 3.9. h

The following lemma shows that the algorithm terminates after a finite
number of steps.

Lemma 4.3. After at most 2p þ 1 loops the number of fixed players increases
strictly.

Proof. Consider a loop of the algorithm for which F 6¼ Pþ in Step 1. Let x be
the allocation in Step 1. Suppose that the number of fixed players does not
increase strictly. In other words, suppose that we do not fix any player in the
F -procedure. Then we go to Step 3 with S2 ¼ S1 6¼ ;. We make the following
three observations.

Observation 1. If there is an equality in (B1) or (B2) for a player i 2 S2, then i
will be an inadjustable player in the next loop. Since i remains a player with
highest payoff among the non-fixed players, he will be fixed in the next loop.

Observation 2. If there is an equality in (B3) for a player i 2 S2, then: either

1) i is fixed in the next loop (for sure if k þ 1 2 F or k þ 1 2 P�) or
2) the maximal relevant interval of i becomes strictly larger in the next loop

(only possible if k þ 1 2 PþnF ),
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where Iði; xÞ is, without loss of generality, assumed to be of the form ½i� 1; k	.
By Lemma 4.2 (g), there can be at most p subsequent loops in which

1) we do not fix any player in S2 and
2) in which the maximal relevant interval of a player in S2 becomes strictly

larger.

Observation 3. There can be at most p subsequent loops in which we do not
fix any player and in which there is no equality in (B1), (B2), or (B3). This
follows since a player j appears at most once in an equality in (B4).

From the three observations one can conclude that after at most 1þ p þ p
subsequent loops we fix a player. This proves the lemma. h

Lemma 4.4. The algorithm for finding the leximax solution of a neighbor game
takes Oðp3Þ time.

Proof. It takes at most Oðp2Þ time to calculate a core allocation, which serves
as initial allocation for the algorithm (see footnote on the initial allocation in
the algorithm). It follows from Lemma 4.3 that the algorithm terminates after
at most pð2p þ 1Þ loops. Since each loop takes at most OðpÞ time we conclude
that the algorithm is of order p3. h
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