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Abstract

Order-value optimization (OVO) is a generalization of the min-
imax problem motivated by decision-making problems under uncer-
tainty and by robust estimation. New optimality conditions for this
nonsmooth optimization problem are derived. An equivalent mathe-
matical programming problem with equilibrium constraints is deduced.
The relation between OVO and this nonlinear-programming reformu-
lation is studied. Particular attention is given to the relation between
local minimizers and stationary points of both problems.
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1 Introduction

Assume that f1, . . . , fm are real-valued functions defined on an arbitrary set
Ω. For each x ∈ Ω the values f1(x), . . . , fm(x) are ordered in such a way
that

fi1(x)(x) ≤ fi2(x)(x) ≤ . . . ≤ fim(x)(x).
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For all p ∈ I ≡ {1, . . . ,m}, the p−order-value function f : Ω → IR is
defined by

f(x) = fip(x)(x).

The function f is well defined, despite the fact that the set of indices
{i1(x), . . . , im(x)} is not univocally defined. If p = 1, f(x) = min{f1(x), . . . ,
fm(x)} and, if p = m, f(x) = max{f1(x), . . . , fm(x)}.

The OVO problem consists in minimizing the p−order-value function.
In [2] a primal method with guaranteed convergence to points that satisfy a
weak optimality condition was introduced. One of the motivations invoked
in [2] for solving OVO was the estimation of parameters in situations where
large and systematic errors are present. See [12]. In those cases the OVO
technique seems to be useful to eliminate the influence of outliers.

When x is a vector of portfolio positions and fi(x) is the predicted loss
of the decision x under the scenario i, the order-value function is the dis-
crete Value-at-Risk (VaR) function, largely used in risk evaluations (see, for
example, [13]). The relationship between the order-value function and the
VaR function was unknown to the authors at the time they wrote [2]. Nev-
ertheless, in [2] the application of OVO to decision making was mentioned.

This paper is organized as follows. In Section 2 we prove new optimality
conditions for the OVO problem. In Section 3 we introduce the reformulation
as a nonlinear-programming problem. In Section 4 we prove that stationary
points of the sum of squares of infeasibilities are feasible points. In Section 5
we show that local minimizers of the OVO problem are KKT points of the
reformulation. Conclusions are stated in Section 6.

Throughout this paper we assume that ‖ · ‖ denotes the Euclidian norm,
although in many cases it can be replaced by an arbitrary norm in the fi-
nite dimensional space under consideration. We denote e = (1, . . . , 1) and
IN = {0, 1, 2, . . .}. As usually, we denote #A the number of elements of the
set A.

2 Optimality conditions

In this section, assuming smoothness of the functions fi, we derive optimality
conditions for the OVO problem. The conditions derived here are stronger
than the one used in [2]. First-order optimality conditions will be used in
forthcoming sections in connection to the reformulation.
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Assume that fi : Ω → IR for all i = 1, . . . ,m and define, as in the
introduction,

f(x) = fip(x)(x)

for all x ∈ Ω, where
fi1(x)(x) ≤ . . . ≤ fim(x)(x).

The OVO problem considered here is

Minimize f(x) s.t. x ∈ Ω. (1)

From now on we assume that Ω ⊂ IRn and all the functions fi are continuous
on Ω. In this case the p−order function f is continuous (see [2]).

The objective of this section is to prove optimality conditions for the
OVO problem.

For all x ∈ Ω we define:

L(x) = {i ∈ {1, . . . ,m} | fi(x) < f(x)}, (2)

E(x) = {i ∈ {1, . . . ,m} | fi(x) = f(x)}, (3)

and
G(x) = {i ∈ {1, . . . ,m} | fi(x) > f(x)}. (4)

The sets L(x), E(x) and G(x), as well as the function f(x), depend on
the choice of p. However, we do not make this dependence explicit in order
to simplify the notation.

Clearly, for all x ∈ Ω,

#L(x) < p ≤ #[L(x) ∪ E(x)].

We say that a sequence {xk} is feasible if {xk} ⊂ Ω. Given x ∈ Ω, a feasible
sequence is said to be a descent sequence for the function φ if

lim
k→∞

xk = x

and there exists k0 ∈ IN such that

φ(xk) < φ(x) ∀ k ≥ k0.

In the following theorem we give a characterization of local minimizers
which, in turn, will be useful to prove optimality conditions.
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Theorem 2.1. Assume that x ∈ Ω. Then, x is a local minimizer of the
OVO problem (1) if, and only if, for all feasible sequences {xk} that converge
to x,

#{i ∈ E(x) | {xk} is a descent sequence for fi} < p−#L(x). (5)

Proof. Assume that x is a local minimizer and that (5) does not hold for
all feasible sequences {xk} that converge to x. Then, there exists a feasible
sequence {xk} that is a descent sequence for all i ∈ D ⊂ E(x), where

#D ≥ p−#L(x).

By continuity, there exists ε > 0 such that

fi(y) < f(x) ∀ i ∈ L(x), ‖y − x‖ ≤ ε.

Moreover, there exists k0 ∈ IN such that

fi(xk) < f(x) ∀ k ≥ k0, i ∈ D.

If k1 ≥ k0 is large enough and k ≥ k1, ‖xk − x‖ ≤ ε, therefore

fi(xk) < f(x) ∀ k ≥ k1, i ∈ D ∪ L(x).

But #D ∪ L(x) ≥ p, so

f(xk) = fip(xk)(x
k) < f(x) ∀ k ≥ k1.

This implies that x is not a local minimizer.
Conversely, assume that x is not a local minimizer of (1). Therefore,

there exists a feasible sequence {xk} with limk→∞ xk = x such that

f(xk) < f(x) for k large enough.

So, there exists k2 ∈ IN such that

fi1(xk)(x
k) ≤ . . . ≤ fip(xk)(x

k) = f(xk) < f(x) (6)

for all k ≥ k2.
Since there exist a finite number of sets of the form {i1(xk), . . . , ip(xk)},

at least one of them is repeated infinitely many times in (6). This set will
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be called {i1, . . . , ip}. Thus, taking an appropriate subsequence (which is
also a feasible sequence), we have:

fi1(x
k) ≤ . . . ≤ fip(x

k) = f(xk) < f(x)

for all k ≥ k2.
Since fi(x) > f(x) for all i ∈ G(x), the continuity of the functions implies

that the set {i1, . . . , ip} does not contain elements of G(x). So,

{i1, . . . , ip} ⊂ L(x) ∪ E(x).

Therefore, for at least p−#L(x) elements of E(x) we have that

fi(xk) < f(x)

if k is large enough. Thus, the sequence xk is a descent sequence for at least
p−#L(x) functions from the set E(x). This completes the proof. 2

We say that d ∈ IRn is an unitary tangent direction to the set Ω at the
point x ∈ Ω if there exists a feasible sequence {xk} such that

lim
k→∞

xk = x

and

d = lim
k→∞

xk − x

‖xk − x‖
.

The following theorems state optimality conditions related to tangent
directions. We are going to assume that the functions fi have continuous
first derivatives. Under this assumption, although not necessarily differen-
tiable, the function f is locally Lipschitzian.

Theorem 2.2. Assume that x is a local minimizer of (1) and fi has con-
tinuous first derivatives in a neighborhood of x for all i ∈ E(x). Then, for
all unitary tangent directions d,

#{i ∈ E(x) | 〈d,∇fi(x)〉 < 0} < p−#L(x).

Proof. Assume that the thesis is not true. Then, there exists an unitary
tangent direction d and a set D1 ⊂ E(x), such that #D1 ≥ p−#L(x) and

〈d,∇fi(x)〉 < 0
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for all i ∈ D1. Let {xk} be a feasible sequence that converges to x and such
that

d = lim
k→∞

xk − x

‖xk − x‖
.

By the differentiability of fi, for all i ∈ D1 we have that:

fi(xk) = fi(x) + 〈∇fi(x), xk − x〉+ o(‖xk − x‖).

Therefore,

fi(xk)− fi(x)
‖xk − x‖

=
〈
∇fi(x),

xk − x

‖xk − x‖

〉
+

o(‖xk − x‖)
‖xk − x‖

.

Taking limits on the right-hand side, we have that for k large enough,

fi(xk)− fi(x)
‖xk − x‖

≤ 〈∇fi(x), d〉
2

< 0.

Therefore, for k large enough and for all i ∈ D1,

fi(xk) < fi(x).

This contradicts Theorem 2.1. 2

Theorem 2.2 justifies the following definition of first-order stationary
points.

First-order stationary points
Assume that all the functions fi that define the OVO problem have con-

tinuous first derivatives in an open set that contains Ω. We say that x ∈ Ω
is a first-order stationary point for (1) if, for all unitary tangent directions
d,

#{i ∈ E(x) | 〈d,∇fi(x)〉 < 0} < p−#L(x).

In the next theorems of this section we prove second-order necessary
conditions and a sufficient condition for local minimizers. Although these
results may be useful for future developments they will not be used in con-
nection with the reformulation of OVO.
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Theorem 2.3. Assume that x is a local minimizer of (1) and fi has con-
tinuous first and second derivatives in a neighborhood of x for all i ∈ E(x).
For all unitary tangent directions d, define

D′(d) = {i ∈ E(x) | 〈d,∇fi(x)〉 < 0}

and
D′′(d) = {i ∈ E(x) | ∇fi(x) = 0 and dT∇2fi(x)d < 0}.

Then, for all unitary tangent direction d,

#(D′(d) ∪D′′(d)) < p−#L(x).

Proof. Assume that the thesis is not true. Then, there exists d ∈ IRn, an
unitary tangent direction such that

#(D′(d) ∪D′′(d)) ≥ p−#L(x).

Let {xk} a feasible sequence that converges to x and

d = lim
k→∞

xk − x

‖xk − x‖
.

If i ∈ D′(d), the reasoning of the proof of Theorem 2.2 shows that {xk}
is a descent sequence for fi. Assume, now, that i ∈ D′′(d).

Since fi has continuous second derivatives, we have that

fi(xk) = fi(x)+ 〈∇fi(x), xk−x〉+ 1
2
(xk−x)T∇2f(x)(xk−x)+o(‖x−xk‖2)

= fi(x) +
1
2
(xk − x)T∇2f(x)(xk − x) + o(‖x− xk‖2).

So,

[fi(xk)− fi(x)]
‖x− xk‖2

=
1
2

(xk − x)T

‖x− xk‖
∇2f(x)

xk − x

‖x− xk‖
+

o(‖x− xk‖2)
‖x− xk‖2

.

Taking limits, we have that, for k large enough, fi(xk) < fi(x). Therefore,
{xk} is a descent sequence for fi. This contradicts Theorem 2.1. 2

Theorem 2.4. Assume that x ∈ Ω and fi has continuous second derivatives
for all i ∈ E(x). For all unitary tangent direction d define S(d) = S1(d) ∪
S2(d) ⊂ E(x) by

S1(d) = {i ∈ E(x) | 〈d,∇fi(x)〉 > 0},
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and
S2(d) = {i ∈ E(x) | ∇fi(x) = 0 and dT∇2fi(x)d > 0}.

Assume that, for all unitary tangent direction d,

#S(d) > #L(x) + #E(x)− p,

Then, x is a local minimizer.

Proof. Assume that x is not a local minimizer. Then, by Theorem 2.1, there
exists a descent sequence {xk} for at least p − #L(x) functions of the set
E(x). Define S3 ⊂ E(x) by

i ∈ S3 iff {xk} is a descent sequence for fi.

Then #S3 ≥ p−#L(x).
Take a convergent subsequence of (xk − x)/‖xk − x‖ and a subsequence

of {xk} so that, for this subsequence,

lim
k→∞

xk − x

‖xk − x‖
= d.

Then, d is an unitary tangent direction. Consider the sets S1(d) and S2(d)
associated to d.

If i ∈ S1(d) then 〈d,∇fi(x)〉 > 0, so:

fi(xk)− fi(x) = 〈∇fi(xk), xk − x〉+ o(‖xk − x‖)

and

fi(xk)− fi(x)
‖xk − x‖

=
〈
∇fi(x),

x− xk

‖x− xk‖

〉
+

o(‖xk − x‖)
‖xk − x‖

.

Therefore, taking limits we see that fi(xk) > fi(x) for k large enough.
Therefore, {xk} is not a descent sequence for fi.

Analogously, if i ∈ S2(d),

fi(xk)−fi(x) = 〈∇fi(x), xk−x〉+ 1
2
(xk−x)T∇2fi(x)(xk−x)+o(‖xk−x‖2)

=
1
2
(xk − x)T∇2fi(x)(xk − x) + o(‖xk − x‖2).
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Dividing by ‖xk − x‖2 and taking limits, we obtain that fi(xk) > fi(x) for
k large enough. So, {xk} is not a descent sequence.

Therefore (S1 ∪ S2) ∩ S3 = ∅. So,

#E(x) ≥ #(S1 ∪ S2) + #S3 > #L(x) + #E(x)− p + p−#L(x) = #E(x),

which is a contradiction. 2

3 Nonlinear-programming reformulation

The optimization problem (1) is a nonsmooth nonconvex minimization prob-
lem. In this section we transform it into a smooth nonlinear-programming
problem. The constraints of this particular nonlinear programming problem
are equilibrium constraints. See [16]. The use of nonlinear programming al-
gorithms for solving mathematical programming problems with equilibrium
constraints has been justified in recent papers [3, 7, 9, 10].

The following lemma prepares the theorem that justifies the equivalence
result.

Lemma 3.1. Assume that z1, . . . , zm are real numbers such that

z1 ≤ z2 ≤ . . . ≤ zm.

Then, for all p ∈ {1, . . . ,m}, there exist r′, u′, w′ ∈ IRm such that
(r′, u′, w′, zp) is a solution of the following problem:

Minimize z

s.t.



∑m
i=1 riwi = 0∑m
i=1(1− ri)ui = 0∑m
i=1 ri = p

ui − z + zi − wi = 0, i = 1, . . . ,m
u ≥ 0, 0 ≤ r ≤ e, w ≥ 0.

(7)

Proof. Define u′, r′ e w′ by

r′i = 1, i = 1, . . . , p,
r′i = 0, i = p + 1, . . . ,m,
u′i = zp − zi, i = 1, . . . , p,
u′i = 0, i = p + 1, . . . ,m,
w′

i = 0, i = 1, . . . , p and
w′

i = zi − zp, i = p + 1, . . . ,m
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Clearly, (r′, u′, w′, zp) is a feasible point of (7) for which the objective
function value is zp. Now, assume that (r, u, w, z) is a feasible point such
that z < zp. But, by feasibility,

wi = ui + zi − z ∀ i = 1, . . . ,m.

Since z < zp ≤ zp+1 ≤ . . . ≤ zm we have that

zi − z > 0 ∀ i = p, . . . ,m.

Therefore, since ui ≥ 0,

wi = ui + zi − z > 0 ∀ i = p, . . . ,m.

Thus, since riwi = 0 for all i = 1, . . . ,m,

ri = 0, ∀ i = p, . . . ,m.

So, since r ≤ e and p =
∑m

i=1 ri,

p =
m∑

i=1

ri =
p−1∑
i=1

ri ≤ p− 1.

This is a contradiction. Therefore, (r, u, w, z) cannot be feasible.
This means that, for all feasible (r, u, w, z), we have that z ≥ zp. Since

(r′, u′, w′, zp) is feasible, the proof is complete. 2

Now we are able to prove an equivalence result. In the next theorem we
show that solving (1) is equivalent to solve a nonlinear-programming prob-
lem.

Theorem 3.1. The point x ∈ Ω is a solution of the OVO problem (1) if,
and only if, there exist r′, u′, w′ ∈ IRm and z′ ∈ IR such that (x, r′, u′, w′, z′)
is a solution of

Minimize z

s.t.



∑m
i=1 riwi = 0∑m
i=1(1− ri)ui = 0∑m
i=1 ri = p

ui − z + fi(x)− wi = 0 i = 1, . . . ,m
u ≥ 0, 0 ≤ r ≤ e, w ≥ 0, x ∈ Ω.

(8)
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In that case, z′ = f(x).

Proof. By Lemma 3.1, given x ∈ Ω, f(x) is the value of z that solves

Minimize z

s.t.



∑m
i=1 riwi = 0∑m
i=1(1− ri)ui = 0∑m
i=1 ri = p

ui − z + fi(x)− wi = 0 i = 1, . . . ,m
u ≥ 0, 0 ≤ r ≤ e, w ≥ 0.

The desired result follows trivially from this fact. 2

It is easy to see that in the case p = m, which corresponds to the
minimax problem, the reformulation (8) reduces to the classical nonlinear
programming reformulation of minimax problems:

Minimize z s. t. z ≥ fi(x) i = 1, . . . ,m, x ∈ Ω.

So far, the global solutions of the OVO problem have been identified
with the global solutions of the nonlinear-programming problem (8). Now
we prove that such identification also exists between the local minimizers of
both problems.

In a preparatory lemma we will prove that feasible points of (8) nec-
essarily satisfy a set of simple relations. Before proving this lemma, and
remembering the definition (3), we give three additional definitions.

If (x, r, u, w, z) is a feasible point of (8), we define

E1(x, r, u, w, z) = {i ∈ E(x) | ri = 1}, (9)

E0(x, r, u, w, z) = {i ∈ E(x) | ri = 0}, (10)

and
E+(x, r, u, w, z) = {i ∈ E(x) | 0 < ri < 1}. (11)

In order to simplify the notation, we will write

E1(x) = E1(x, r, u, w, z),

E0(x) = E0(x, r, u, w, z),
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E+(x) = E+(x, r, u, w, z),

Lemma 3.2. Let (x, r, u, w, z) be a feasible point of (8). Then,

z > f(x) ⇒ #[L(x) ∪ E(x)] = p, (12)

f(x) ≤ z ≤ min
i∈G(x)

fi(x), (13)

ui > 0 ∀ i ∈ L(x), (14)

ri = 1 ∀ i ∈ L(x), (15)

wi = 0 ∀ i ∈ L(x). (16)

Moreover, if z = f(x), we have:

wi > 0 ∀ i ∈ G(x), (17)

ri = 0 ∀ i ∈ G(x), (18)

ui = 0 ∀ i ∈ G(x), (19)

ui = wi = 0 ∀ i ∈ E(x), (20)∑
i∈E(x)

ri = p−#L(x), (21)

and
#[E1(x) ∪ E+(x)] ≥ p−#L(x). (22)

Proof. Suppose that z > f(x) and #L(x)+#E(x) > p. Then, by feasibility,

ui = z − fi(x) + wi > 0 ∀ i ∈ E(x) ∪ L(x). (23)

Since ui(1− ri) = 0, (23) implies that

ri = 1 ∀ i ∈ E(x) ∪ L(x).

This contradicts the fact that
∑m

i=1 ri = p. Therefore, (12) is proved.
The fact that f(x) ≤ z is a direct consequence of Lemma 3.1.
Assume that z > mini∈G(x) fi(x). Then, z > f(x). So, by (12),

#[L(x) ∪#E(x)] = p.
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Then,
ui = z − fi(x) + wi > 0 (24)

for all i ∈ E(x) ∪ L(x) and for at least an additional index belonging to
G(x). Therefore, the inequality (24) holds for at least p + 1 indices. As in
the proof of (12), this contradicts the fact that

∑m
i=1 ri = p. Therefore, (13)

is proved.
If i ∈ L(x) we have that fi(x) < f(x) ≤ z. So, since wi ≥ 0,

ui = wi + z − fi(x) > 0.

Thus, (14) is proved. Therefore, since ui(1 − ri) = 0, we deduce (15) and,
since riwi = 0, we obtain (16).

If i ∈ G(x) and z = f(x), we have that fi(x) > f(x) = z. So, since
ui ≥ 0, we obtain (17) and, since riwi = 0, (18) is deduced. Then, since
(1− ri)ui = 0, we get (19).

If i ∈ E(x), we have that fi(x) = f(x) = z, therefore, since ui =
wi + z − fi(x), we get

ui = wi ∀ i ∈ E(x), (25)

But
0 = wiri = (1− ri)ui,

then, by (25),
0 = wiri = wi(1− ri) ∀ i ∈ E(x).

This implies (20).
By (15) and (18), since

∑m
i=1 ri = p, we obtain (21). So, (22) also holds.

2

In Lemma 3.2 we proved that, if (x, r, u, w, z) is a feasible point of
the nonlinear-programming reformulation then z ≥ f(x). The possibility
z > f(x) is not excluded at feasible points of (8). However, in the following
lemma we prove that, at local minimizers of (8), the identity z = f(x) nec-
essarily holds.

Lemma 3.3. Assume that (x∗, r∗, u∗, w∗, z∗) is a local minimizer of (8).
Then, z∗ = f(x∗).

Proof. By (13), since (x∗, r∗, u∗, w∗, z∗) is feasible, we have that

f(x∗) ≤ z∗ ≤ min
i∈G(x∗)

fi(x∗).
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Suppose that z∗ > f(x∗). By (12), #[E(x∗) ∪ L(x∗)] = p. Then, by the
feasibility of (x∗, r∗, u∗, w∗, z∗), we have that:

[r∗]i =

{
1 i ∈ E(x∗) ∪ L(x∗)
0 i ∈ G(x∗),

[u∗]i =

{
z∗ − fi(x∗) i ∈ E(x∗) ∪ L(x∗)

0 i ∈ G(x∗)

and

[w∗]i =

{
0 i ∈ E(x∗) ∪ L(x∗)

fi(x∗)− z∗ i ∈ G(x∗).

Define δ = z∗ − f(x∗) > 0 and, for all k ∈ IN ,

zk = z∗ −
δ

2(k + 1)
< z∗,

[uk]i =

{
[u∗]i − (z∗ − zk) i ∈ E(x∗) ∪ L(x∗)

0 i ∈ G(x∗),

rk = r∗

and

[wk]i =

{
[w∗]i + (z∗ − zk) i ∈ G(x∗)

0 i ∈ E(x∗) ∪ L(x∗).

Let us show that {(x∗, rk, uk, wk, zk)}k∈IN is feasible. Clearly,

m∑
i=1

[rk]i[wk]i = 0,
m∑

i=1

(1− [rk]i)[uk]i = 0,
m∑

i=1

[rk]i = p, 0 ≤ [rk]i ≤ e.

Moreover:

(i) If i ∈ L(x∗) ∪ E(x∗),

[uk]i = [u∗]i − (z∗ − zk) = [u∗]i −
δ

2(k + 1)
≥ δ − δ

2(k + 1)
> 0

and

[uk]i − zk + fi(x∗)− [wk]i = [u∗]i − (z∗ − zk)− zk + fi(x∗) =

= [u∗]i − z∗ + fi(x∗) = 0.
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(ii) If i ∈ G(x∗),
[wk]i = [w∗]i + (z∗ − zk) > 0

and

[uk]i − zk + fi(x∗)− [wk]i = −zk + fi(x∗)− ([w∗]i + (z∗ − zk)) =

= −z∗ + fi(x∗)− [w∗]i = 0.

Then, the sequence {(x∗, rk, uk, wk, zk)}k∈IN is feasible and converges to
(x∗, r∗, u∗, w∗, z∗). However, zk < z∗ for all k, then (x∗, r∗, u∗, w∗, z∗) is not
a local minimizer. 2

The following theorem states the relations between local minimizers of
the OVO problem and its reformulation. Essentially, a local minimizer of
(1) induces a natural local minimizer of (8). The reciprocal property needs
and additional hypothesis which, in turn, will be shown to be unavoidable.

Theorem 3.2. Assume that x ∈ Ω is a local minimizer of (1) and that
(x, r, u, w, f(x)) is a feasible point of (8). Then, (x, r, u, w, f(x)) is a local
minimizer of (8). Reciprocally, if, for some z ∈ IR, we have that (x, r, u, w, z)
is a local minimizer of (8) whenever (x, r, u, w, z) is feasible, then z = f(x)
and x is a local minimizer of (1).

Proof. Assume that x ∈ Ω is a local minimizer of (1) and that (x, r, u, w, f(x))
is a feasible point of (8). Suppose, by contradiction, that (x, r, u, w, f(x)) is
not a local minimizer of (8). Therefore, there exists a sequence of feasible
points {(xk, rk, uk, wk, zk)} such that

lim
k→∞

(xk, rk, uk, wk, zk) = (x, r, u, w, f(x))

and
zk < f(x) ∀ k ∈ IN. (26)

But, by Lemma 3.1, f(xk) is a minimum value of z among the points
(r, u, w, z) that satisfy

∑m
i=1 riwi = 0∑m
i=1(1− ri)ui = 0∑m
i=1 ri = p

ui − z + fi(xk)− wi = 0, i = 1, . . . ,m
u ≥ 0, 0 ≤ r ≤ e, w ≥ 0.
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Moreover, by the feasibility of (xk, rk, uk, wk, zk),

∑m
i=1 rk

i wk
i = 0∑m

i=1(1− rk
i )uk

i = 0∑m
i=1 rk

i = p
uk

i − zk + fi(xk)− wk
i = 0, i = 1, . . . ,m

uk ≥ 0, 0 ≤ rk ≤ e, wk ≥ 0.

Therefore f(xk) ≤ zk. So, by (26),

f(xk) < f(x) ∀ k ∈ IN.

This implies that x is not a local minimizer of (1).
Conversely, let us assume that for some z ∈ IR, (x, r, u, w, z) is a local

minimizer of (8) whenever (x, r, u, w, z) is feasible. By Lemma 3.3, this
implies that z = f(x). Assume, by contradiction, that x is not a local
minimizer of (1). Then, there exists a sequence {xk} ⊂ Ω such that

lim
k→∞

xk = x

and

f(xk) < f(x). (27)

For all k ∈ IN let us define rk, uk, wk ∈ IRm, zk ∈ IR by:

zk = f(xk),

rk
ij(xk) = 1, j = 1, . . . , p,

rk
ij(xk) = 0, j = p + 1, . . . ,m,

uk
ij(xk) = f(xk)− fij(xk)(x

k), j = 1, . . . , p,

uk
ij(xk) = 0, j = p + 1, . . . ,m,
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wk
ij(xk) = 0, j = 1, . . . , p,

wk
ij(xk) = fij(xk)(x

k)− f(xk), j = p + 1, . . . ,m.

Clearly, (xk, rk, uk, wk, zk) is a feasible point of (8). Moreover, zk < f(x)
for all k,

lim
k→∞

xk = x and lim
k→∞

zk = f(x). (28)

Since the set of permutations of {1, . . . ,m} is finite, there exists one of
them (say (i1, . . . , im)) such that

i1 = i1(xk), . . . , im = im(xk)

infinitely many times. Taking the corresponding subsequence of the original
{xk}, we have that:

zk = f(xk),

rk
ij = 1, j = 1, . . . , p,

rk
ij = 0, j = p + 1, . . . ,m,

uk
ij = f(xk)− fij (x

k), j = 1, . . . , p,

uk
ij = 0, j = p + 1, . . . ,m,

wk
ij = 0, j = 1, . . . , p,

wk
ij = fij (x

k)− f(xk), j = p + 1, . . . ,m.

for all the indices of the new sequence. By the continuity of the functions
fi, we can take limits in the above equations, and we get that

lim
k→∞

(xk, rk, uk, wk, zk) = (x, r, u, w, z),

where
z = f(x),

rij = 1, j = 1, . . . , p,

rij = 0, j = p + 1, . . . ,m,
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uij = f(x)− fij (x), j = 1, . . . , p,

uij = 0, j = p + 1, . . . ,m,

wij = 0, j = 1, . . . , p,

wij = fij (x)− f(x), j = p + 1, . . . ,m.

By continuity, (x, r, u, w, z) is a feasible point of (8) and, by (27) and (28)
it is not a local minimizer of (8). This completes the proof. 2

Remark. In the previous theorem we proved the identity between local
minimizers of (1) and (8) in the following sense. On one hand, if x is a
local minimizer of (1) then (x, r, u, w, f(x)) is a local minimizer of (8) for
all feasible choices of r, u, w. On the other hand, if (x, r, u, w, f(x)) is a
local minimizer of (8) for all feasible choices of r, u, w, then x is a local
minimizer of the OVO problem. A natural question remains: if x is not a
local minimizer of (1), is it possible that, for a particular choice of r, u, w,
the point (x, r, u, w, f(x)) is a local minimizer of (8)? The following example
shows that, in fact, this possibility exists. So, the “for all” assumption in
the converse proof of Theorem 3.2 cannot be eliminated.

Let us consider the OVO problem defined by n = 1, p = 2 and

f1(x) = x, f2(x) = 2x, f3(x) = 3x ∀ x ∈ IR.

In this case, the reformulation (8) is:

Minimize z

s.t.

(a) r1w1 + r2w2 + r3w3 = 0
(b) (1− r1)u1 + (1− r2)u2 + (1− r3)u3 = 0
(c) r1 + r2 + r3 = 2
(d) u1 − z + x− w1 = 0
(e) u2 − z + 2x− w2 = 0
(f) u3 − z + 3x− w3 = 0
(g) ui ≥ 0, 0 ≤ ri ≤ e wi ≥ 0, i = 1, 2, 3

(29)

Clearly, x̄ = 0 is not a local minimizer of the OVO problem. Moreover,
it is not a first-order stationary point.

However, defining

ȳ = (x̄, r̄, ū, w̄, z̄) = (0, (1, 0, 1), (0, 0, 0), (0, 0, 0), 0),

it is easy to verify that ȳ is a local minimizer of (29).
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4 Feasible points of the reformulation

In this section we assume that Ω ⊂ IRn and the functions fi are continuously
differentiable.

In Theorem 4.1, we prove a practical important property of the feasible
set of (8). This property says that stationary points of the sum of squares
of infeasibilities are feasible points. This is an important result if one is
planning to solve (8) using nonlinear-programming algorithms, since most
reasonable nonlinear-programming methods converge to stationary points of
the sum of squares of infeasibilities.

Suppose that the set Ω is defined by

Ω = {x ∈ IRn such that h(x) = 0, lb ≤ x ≤ ub}, (30)

where, perhaps, some bounds are infinite and h is a continuously differen-
tiable vector-valued function. Consider the problem of minimizing the sum
of squares of infeasibilities:

Minimize [
m∑

i=1

riwi]2 + [
m∑

i=1

(1− ri)ui]2 (31)

+[(
m∑

i=1

ri)− p]2 +
m∑

i=1

[ui − z + fi(x)− wi]2 +
m∑

i=1

h2
i (x) (32)

s.t. u ≥ 0, 0 ≤ r ≤ e, w ≥ 0, lb ≤ x ≤ ub. (33)

We want to know whether stationary points of (31-33) represent feasible
points of (8). In the following lemma we state a simple property that will
be useful for our further analysis.

Lemma 4.1. Assume that x ∈ Ω. Then, (r, u, w, z) satisfies the first-order
optimality conditions of

Minimize [
m∑

i=1

riwi]2 + [
m∑

i=1

(1− ri)ui]2 (34)

+[(
m∑

i=1

ri)− p]2 +
m∑

i=1

[ui − z + fi(x)− wi]2 (35)

s.t. u ≥ 0, 0 ≤ r ≤ e, w ≥ 0. (36)
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if, and only if, (x, r, u, z, w) satisfies the first-order optimality conditions
of (31-33).

Proof. Write the optimality conditions of (31-33) and compare them with
the ones of (34-36) using the fact that x ∈ Ω. 2

Due to Lemma 4.1, our question is whether, given x ∈ Ω, the optimality
conditions of (34-36) imply the fulfillment of the constraints of (8). In other
words, we want to know if, with a feasible x ∈ Ω and a stationary (r, u, z, w)
with respect to (34-36), we can be sure that z = fip(x)(x). The answer is
positive, and is stated in the following theorem.

Theorem 4.1. Assume that Ω is given by (30), the functions fi and h
are continuously differentiable, x∗ ∈ Ω and (x∗, r∗, u∗, w∗, z∗) is a stationary
(KKT) point of (31-33). Then, (x∗, r∗, u∗, w∗, z∗) satisfies the constraints of
(8).

Proof. Define

θ1 =
m∑

i=1

[r∗]i[w∗]i,

θ2 =
m∑

i=1

(1− [r∗]i)[u∗]i,

θ3 =
m∑

i=1

[r∗]i − p.

Since (x∗, r∗, u∗, w∗, z∗) is a KKT point of (31-33), there exist µ1, µ2, µ3, µ4 ∈
IRm such that

2θ1[w∗]i − 2θ2[u∗]i + 2θ3 − [µ1]i + [µ2]i = 0, i = 1, . . . ,m, (37)

2θ2(1− [r∗]i) + 2([u∗]i− z∗ + fi(x∗)− [w∗]i)− [µ3]i = 0, i = 1, . . . ,m, (38)

−2
m∑

i=1

([u∗]i − z∗ + fi(x∗)− [w∗]i) = 0, (39)

2θ1[r∗]i − 2([u∗]i − z∗ + fi(x∗)− [w∗]i)− [µ4]i = 0, i = 1, . . . ,m, (40)

[µ1]i[r∗]i = [µ2]i(1− [r∗]i) = [µ3]i[u∗]i = [µ4]i[w∗]i = 0, i = 1, . . . ,m, (41)

u∗ ≥ 0, 0 ≤ r∗ ≤ e, w∗ ≥ 0, µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ4 ≥ 0. (42)

We consider four possibilities:
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(a) Suppose that θ1 = θ2 = 0. By (38),(40) and (42), we have that

0 ≤ [u∗]i − z∗ + fi(x∗)− [w∗]i ≤ 0, for all i.

This implies that [u∗]i−z∗+fi(x∗)− [w∗]i = 0 for all i. Then (37)-(42)
represent the KKT conditions of the following convex problem:

Minimize [(
m∑

i=1

ri)− p]2 s.t. 0 ≤ r ≤ e.

Since p ∈ [1,m], we have that θ3 = 0, and the desired result is proved.

(b) Suppose that θ1 = 0. Then, by (40) and (42), we obtain:

2([u∗]i − z∗ + fi(x∗)− [w∗]i) = −[µ4]i ≤ 0, i = 1, . . . ,m.

By (39),

[u∗]i − z∗ + fi(x∗)− [w∗]i = 0, i = 1, . . . ,m.

Multiplying (38) by [u∗]i and using (41), we get:

2θ2[u∗]i(1− [r∗]i) = 0, i = 1, . . . ,m.

So, by the definition of θ2 and by (42), we obtain θ2 = 0. Therefore,
the feasibility result follows from (a).

(c) Suppose that θ2 = 0. By (38) and (42),

2([u∗]i − z∗ + fi(x∗)− [w∗]i) = [µ3]i ≥ 0, i = 1, . . . ,m.

By (39),

[u∗]i − z∗ + fi(x∗)− [w∗]i = 0, i = 1, . . . ,m.

Multiplying (40) by [w∗]i and using (41), we get:

2θ1[w∗]i[r∗]i = 0, i = 1, . . . ,m.

Then, by the definition of θ1 and (42) we have that θ1 = 0. Therefore,
the feasibility result also follows from (a).
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(d) Suppose that θ1 > 0 e θ2 > 0.

By the definition of θ1, there exists an index k such that [r∗]k > 0 and
[w∗]k > 0. By (40) and (41),

2θ1[r∗]k = 2([u∗]k − z∗ + fi(x∗)− [w∗]k) > 0

and [µ1]k = 0.

By (38) and the fact that θ2 > 0, we have that

0 ≤ 2θ2(1− [r∗]k) = −2([u∗]k − z∗ + fk(x∗)− [w∗]k) + [µ3]k.

So, [µ3]k > 0. Therefore, by (41), we obtain that [u∗]k = 0. So,

[µ1]k = 0, [w∗]k > 0, and [u∗]k = 0.

Thus, by (37),
2θ1[w∗]k + 2θ3 + [µ2]k = 0.

Therefore,
θ3 < 0. (43)

On the other hand, by the definition of θ2, there exists k such that
1− [r∗]k > 0 and [u∗]k > 0. By (38) and (41),

−2θ2(1− [r∗]k) = ([u∗]k − z∗ + fi(x∗)− [w∗]k) < 0

and [µ2]k = 0. By (40) and since θ1 > 0, we get:

0 ≤ 2θ1[r∗]k = 2([u∗]k − z∗ + fk(x∗)− [w∗]k) + [µ4]k.

This implies that [µ4]k > 0. So, by (41), [w∗]k = 0 and, therefore,

[w∗]k = 0 and [µ2]k = 0.

So, by (37),

−2θ2[u∗]k + 2θ3 − [µ1]k = 0.

Therefore, θ3 > 0. This contradicts (43). So, the proof is complete.
2
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5 KKT points of the reformulation

In this section we assume that Ω = IRn. The reformulation (8) is a smooth
minimization problem with nonlinear (equilibrium-like) constraints. It in-
cludes the complementarity constraints

riwi = 0, ri ≥ 0, wi ≥ 0

and
(1− ri)ui = 0, ri ≤ 1, ui ≥ 0.

Complementarity constraints are responsible for the fact that no feasible
point satisfies the Mangasarian-Fromovitz constraint qualification [17]. See
[4, 22]. Mathematical programming problems with equilibrium constraints
share this difficulty. See [3, 9, 16]. Therefore, minimizers of the problem
might not satisfy the KKT optimality conditions of nonlinear programming
and this might represent a difficulty for nonlinear programming algorithms.
The main result of this section is that, at least when Ω = IRn, this possible
drawback does not exist. We will prove that local minimizers of (1) generate
KKT points of (8) regardless of the lack of regularity of the points.

Observe that, given x ∈ Ω, it is easy to define r, u, w such that (x∗, r, u, w, f(x∗))
is a feasible point of (8). In fact, we may set

ri =


1 i ∈ L(x)

p−#L(x)
#E(x) i ∈ E(x)

0 i ∈ G(x),

ui =

{
f(x)− fi(x) i ∈ L(x)

0 i ∈ E(x) ∪G(x),

wi =

{
fi(x)− f(x) i ∈ G(x)

0 i ∈ L(x) ∪ E(x).

Therefore, the only essential assumption of Theorem 5.1 below is that x∗ is
a first-order stationary point of OVO.

Theorem 5.1. Assume that Ω = IRn and let x∗ ∈ Ω be a first-order station-
ary point of the OVO problem. Let r, u, w ∈ IRm such that (x∗, r, u, w, z∗)
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is a feasible point of (8) with z∗ = f(x∗). Then, (x∗, r, u, w, z∗) is a KKT
point of (8).

Proof. We must prove that there exist multipliers γ, β, ρ ∈ IR, λ, θ, π, µ1, µ2 ∈
IRm such that

m∑
i=1

λi = 1, (44)

and, for all i = 1, . . . ,m,

m∑
i=1

λi∇fi(x∗) = 0, (45)

wiγ − uiβ + ρ− [µ1]i + [µ2]i = 0, (46)

(1− ri)β + λi − θi = 0, (47)

riγ − λi − πi = 0, (48)

uiθi = wiπi = ri[µ1]i = (1− ri)[µ2]i = 0, (49)

with
θ ≥ 0, π ≥ 0, µ1 ≥ 0, µ2 ≥ 0. (50)

Let us define L(x∗), G(x∗), E(x∗), E1(x∗), E+(x∗), E0(x∗) by (2)–(3) and
(9)–(11).

By Lemma 3.2, the feasibility of (x∗, r, u, w, z∗) and the fact that z∗ =
f(x∗), the possible values of ri, ui, wi for indices i in the disjoint sets L(x∗),
E1(x∗), E0(x∗), E+(x∗) are the ones given in Table 1.

L(x∗) E1(x∗) E+(x∗) E0(x∗) G(x∗)
ri 1 1 ∈ (0, 1) 0 0
ui > 0 0 0 0 0
wi 0 0 0 0 > 0

Table 1. Possible values of ri, ui, wi.

Since x∗ is a first-order stationary point and, by (22), #[E1(x∗)∪E+(x∗)] ≥
p−#L(x∗), it turns out that the set of d ∈ IRn such that

〈∇fi(x∗), d〉 < 0 ∀i ∈ E1(x∗) ∪ E+(x∗)

is empty. Therefore, d = 0 is a solution of the linear-programming problem

Minimize y
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s. t. 〈∇fi(x∗), d〉 ≤ y ∀ i ∈ E1(x∗) ∪ E+(x∗).

Writing the KKT conditions for this problem, we obtain that, for all
i ∈ E1(x∗) ∪ E+(x∗) there exists

λ∗i ≥ 0 (51)

such that ∑
i∈E+(x∗)∪E1(x∗)

λ∗i = 1,
∑

i∈E+(x∗)∪E1(x∗)

λ∗i∇fi(x∗) = 0 (52)

Let us define the multipliers

λi =

{
0 if i ∈ L(x∗) ∪G(x∗) ∪ E0(x∗)
λ∗i if i ∈ E+(x∗) ∪ E1(x∗),

(53)

γ = max
i∈E+(x∗)∪E1(x∗)

λi

ri
, (54)

β = 0, (55)

ρ = 0. (56)

Let us define [µ1]i, [µ2]i, θi and πi by Table 2.

i ∈ L(x∗) i ∈ E+(x∗) i ∈ E1(x∗) i ∈ E0(x∗) i ∈ G(x∗)
[µ1]i = 0 0 0 0 wiγ
[µ2]i = 0 0 0 0 0
θi = 0 λi λi 0 0
πi = γ riγ − λi γ − λi 0 0

Table 2. Definition of multipliers.

Observe that, by (51) and (53) we have that π ≥ 0 and θ ≥ 0. By (54)
we have that µ1 ≥ 0, then (50) is satisfied.

Now, we show that with these definitions of the multipliers, the equations
(44)–(49) are satisfied. Clearly, (44) and (45) follow from (51), (52) and (53).

By Tables 1 and 2 it is straightforward to verify that the complementarity
conditions (49) and are verified.

Let us analyze the remaining equations.

(a) Equation (46):
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• i ∈ L(x∗)

wiγ − uiβ + ρ− [µ1]i + [µ2]i = 0γ − ui(0) + 0− 0 + 0 = 0

• i ∈ E(x∗)

wiγ − uiβ + ρ− [µ1]i + [µ2]i = (0)γ − 0 + 0− 0 + 0 = 0

• i ∈ G(x∗)

wiγ − uiβ + ρ− [µ1]i + [µ2]i = wiγ − 0 + 0− wiγ + 0 = 0

(b) Equation (47):

• i ∈ L(x∗)

(1− ri)β + λi − θi = (0)(0) + (0)− (0) = 0

• i ∈ E+(x∗) ∪ E1(x∗)

(1− ri)β + λi − θi = (1− ri)(0) + λi − λi = 0

• i ∈ E0(x∗)

(1− ri)β + λi − θi = (1− 0)(0) + 0− 0 = 0

• i ∈ G(x∗)

(1− ri)β + λi − θi = (1− 0)(0) + 0− 0 = 0

(c) Equation (48):

• i ∈ L(x∗)
riγ − λi − πi = γ − 0− γ = 0

• i ∈ E+(x∗) ∪ E1(x∗)

riγ − λi − πi = riγ − λi − (riγ − λi) = 0

• i ∈ E0(x∗) ∪G(x∗)

riγ − λi − πi = (0)γ − 0− 0 = 0
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Therefore, the theorem is proved. 2

¿From the statement of Theorem 5.1, a natural question arises about the
existence of KKT points of (8) (with Ω = IRn) such that z∗ > f(x∗). In the
following, we prove that those points do not exist. So, all the KKT points
of (8) satisfy z∗ = f(x∗).

Theorem 5.2. Assume that Ω = IRn and (x∗, r, u, w, z∗) is a KKT point of
(8). Then z∗ = f(x∗).

Proof. We have already proved that the feasibility of (x∗, r, u, w, z∗) implies
that

f(x∗) ≤ z∗ ≤ min
i∈G(x∗)

fi(x∗).

Assume that z∗ > f(x∗). Then

z∗ − fi(x∗) > 0 ∀ i ∈ L(x∗) ∪ E(x∗).

But, by feasibility,
z∗ − fi(x∗) = ui − wi,

then
ui > wi ≥ 0 ∀ i ∈ L(x∗) ∪ E(x∗). (57)

So, by the complementarity condition (1− ri)ui = 0,

ri = 1 ∀ i ∈ L(x∗) ∪ E(x∗) (58)

and, by the complementarity condition riwi = 0,

wi = 0 ∀ i ∈ L(x∗) ∪ E(x∗).

Then, by (47),
λi = θi ∀ i ∈ L(x∗) ∪ E(x∗).

But, by (49) and (57),

θi = 0 ∀ i ∈ L(x∗) ∪ E(x∗),

therefore,
λi = 0 ∀ i ∈ L(x∗) ∪ E(x∗). (59)
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Now, since #[L(x∗) ∪ E(x∗)] ≥ p, by (58) and
∑m

i=1 ri = p, we have that

ri = 0 ∀ i ∈ G(x∗).

Then, by (48),
λi = −πi ≤ 0 ∀ i ∈ G(x∗). (60)

So, by (59) and (60),
m∑

i=1

λi ≤ 0.

This contradicts (44). Therefore, (x∗, r, u, w, z∗) is not a KKT point. 2

Remark. The inspection of the proof of Theorem 5.1 shows that we
have proved something stronger than the KKT thesis. In fact, we proved
that, when x∗ is a first-order stationary point of the OVO problem and
(x∗, r, u, w, f(x∗)) is feasible for (8), there exist multipliers γ ∈ IR, λ, π ∈ IRm

such that

m∑
i=1

λi = 1, (61)

λ + π = γr, (62)
m∑

i=1

λi∇fi(x∗) = 0 (63)

and, for all i = 1, . . . ,m,
uiλi = wiπi = 0, (64)

with
λ ≥ 0, π ≥ 0, γ ≥ 0. (65)

It is easy to verify, using Tables 1 and 2, that the conditions (61)–(65),
together with the feasibility conditions, imply the KKT conditions (44)–(50).

6 Final remarks

The reliability and efficiency of many nonlinear-programming algorithms is
closely related to the fulfillment of KKT conditions at the solution. Se-
quential quadratic programming methods, for example, can be thought as
modifications of the Newton method applied to the KKT nonlinear system.
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See [6, 8, 11]. In feasible and semifeasible nonlinear-programming methods
[1, 15, 19, 18, 20, 23] efficiency is linked to the possibility of decreasing a
good approximation of the Lagrangian function on a linear approximation
of the feasible region. Of course, a good approximation of the Lagrangian
is only possible if Lagrange multipliers at the solution exist. Primal-dual
interior point methods (see, for example, [5]) are also based on simultane-
ous approximation of the primal and the dual (Lagrangian) solution of the
problem. (It is worthwhile to mention that the application of nonlinear-
programming algorithms to problems whose feasible points do not satisfy
regularity conditions has been considered in recent papers [3, 7, 9, 10].)

Therefore, the fact that minimizers are KKT points may be invoked
as a strong argument to try ordinary optimization methods for solving the
OVO problem. Our preliminary experience (with an augmented Lagrangian
method [14]) has been encouraging in the sense that we realised that the
main difficulty is associated to the existence of many local minimizers of
the problem. No visible stability problems appeared in spite of the lack of
fulfillment of the Mangasarian-Fromovitz [17] constraint qualification.

In [2] we introduced a primal method, without additional variables, that
deal directly with the nonsmoothness of (1). Primal methods have the ad-
vantage of dealing with a smaller number of variables, but their convergence
is guaranteed to points that satisfy a weaker optimality condition than the
one considered in this paper. On the other hand, primal methods as the one
introduced in [2] are complementary to methods based in the approach of
the present paper in the following sense: If a weak stationary point found
by the primal method is not a KKT point of the nonlinear programming
problem, a suitable nonlinear programming algorithm can be applied start-
ing from this point until a feasible point with a smaller objective function
value is found. Since the functional values obtained by the primal method
are strictly decreasing, this guarantees that the spurious weak stationary
point will not be found again.

The development of specific algorithms for (1) and (8) is a matter of
future research. The relationship between the general OVO problem and
the minimax problem must be exploited. As mentioned before, the minimax
problem corresponds to OVO with p = m. Since many effective algorithms
for minimax exist (see, for example, [21]) suitable generalizations of these
algorithms are likely to be effective for solving the OVO problem.

The applicability of the OVO problem to important practical problems
is, of course, linked to the effectiveness of general or specific methods for its
solution. The difficulties of minimizing the Value-at-Risk (one of the most
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stimulating practical problems related with OVO) are mentioned in many
papers that can be found in the web site www.gloriamundi.org.
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