Skip to main content
Log in

On the relative power of polynomials with real, rational, and integer coefficients in proofs of termination of rewriting

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In the seventies, Manna and Ness, Lankford, and Dershowitz pionneered the use of polynomial interpretations with integer and real coefficients in proofs of termination of rewriting. More than twenty five years after these works were published, however, the absence of true examples in the literature has given rise to some doubts about the possible benefits of using polynomials with real or rational coefficients. In this paper we prove that there are, in fact, rewriting systems that can be proved polynomially terminating by using polynomial interpretations with (algebraic) real coefficients; however, the proof cannot be achieved if polynomials only contain rational coefficients. We prove a similar statement with respect to the use of rational coefficients versus integer coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs Theoretical Comp. Sci. 236, 133–178 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.-F.: On the Combinatorial and Algebraic Complexity of Quantifier Elimination. J. ACM 43(6), 1002–1045 (1996)

    Article  MathSciNet  Google Scholar 

  3. Beeson, M.J.: Foundations of Constructive Mathematics. Springer-Verlag, Berlin, 1985

  4. Bonfante, G., Cichon, A., Marion, J.-Y., Touzet, H.: Complexity classes and rewrite systems with polynomial interpretation. In Gottlob, G., Grandjean, E., Seyr, K. (eds.) Proc. of 12th International Workshop on Computer Science Logic, CSL '98, LNCS 1584, 372–384 (1998)

  5. Bonfante, G., Cichon, A., Marion, J.-Y., Touzet, H.: Algorithms with polynomial interpretation termination proof. J. Functional Prog. 11(1), 33–53 (2001)

    Article  MathSciNet  Google Scholar 

  6. Bonfante, G., Marion, J.-Y., Moyen, J.Y.: Quasi-interpretations and Small Space Bounds. In: Giesl, J. (ed.) Proc. of 16th International Conference on Rewriting Techniques and Applications, RTA'05, LNCS 3467, 150–164 (2005)

  7. Bochnak, J., Coste, M., Roy, M-F.: Real Algebraic Geometry. Springer-Verlag, Berlin, 1998

  8. ben Cherifa, A., Lescanne, P.: Termination of rewriting systems by polynomial interpretations and its implementation. Science of Computer Programming 9(2), 137–160 (1987)

    Article  Google Scholar 

  9. Cichon, A., Lescanne, P.: Polynomial interpretations and the complexity of algorithms. In Kapur, D. (ed.) Proc. of 11th International Conference on Automated Deduction, CADE'92, LNAI 607, 139–147, Springer-Verlag, Berlin, 1992

  10. Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and Algorithms. Springer-Verlag, Berlin, 1997

  11. Cropper, N., Martin, U.: The Classification of Polynomial Orderings on Monadic Terms. Applicable Algebra in Engineering, Commun. Comput. 12, 197–226 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Contejean, E., Marché, C., Monate, B., Urbain, X.: Proving termination of rewriting with CiME. In Rubio, A. (ed.) Proc. of 6th International Workshop on Termination, WST'03, Technical Report DSIC II/15/03, Valencia, Spain, 2003. Available at http://cime.lri.fr pp 71–73

  13. Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. Automated Reasoning, to appear, 2005

  14. Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cyllindrical Algebraic Decomposition. In Barkhage, H. (ed.) Proc. of 2nd GI Conference on Automata Theory and Formal Languages, LNCS 33, 134–183, Springer-Verlag, Berlin, 1975

  15. Dauchet, M.: Simulation of Turing machines by a regular rewrite rule. Theor. Comp. Sci. 103(2), 409–420 (1992)

    Article  MathSciNet  Google Scholar 

  16. Dedekind, R.: Theory of Algebraic Integers. Cambridge University Press, 1996

  17. Dershowitz, N.: A note on simplification orderings. Information Processing Letters 9(5), 212–215 (1979)

    Article  MathSciNet  Google Scholar 

  18. Dershowitz, N.: Personal communication. March 2004

  19. Giesl, J.: Generating Polynomial Orderings for Termination Proofs. In Hsiang, J. (ed.) Proc. of 6th International Conference on Rewriting Techniques and Applications, RTA'95, LNCS 914, 426–431, Springer-Verlag, Berlin, 1995

  20. Giesl, J.: Generating Polynomial Orderings for Termination Proofs. Technical Report IBN 95/23, Technische Hochschule Darmstadt, 1995 pp. 18

  21. Giesl, J.: POLO - A System for Termination Proofs using Polynomial Orderings. Technical Report IBN 95/24, Technische Hochschule Darmstadt, 1995 pp. 27

  22. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated Termination Proofs with AProVE. In van Oostrom, V. (ed.) Proc. of 15h International Conference on Rewriting Techniques and Applications, RTA'04, LNCS 3091, 210–220, Springer-Verlag, Berlin, 2004. Available at http://www-i2.informatik.rwth-aachen.de/AProVE

  23. Hofbauer, D.: Termination Proofs by Context-Dependent Interpretations. In Middeldorp, A. (ed.) Proc. of 12th International Conference on Rewriting Techniques and Applications, RTA'01, LNCS 2051, 108–121 Springer-Verlag, Berlin, 2001

  24. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In N. Dershowitz, editor, Proc. of the 3rd International Conference on Rewriting Techniques and Applications, RTA'89, LNCS 355, 167–177 Springer-Verlag, Berlin, 1989

  25. Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool. In Giesl, J (ed.) Proc. of 16th International Conference on Rewriting Techniques and Applications, RTA'05, LNCS 3467, 175–184, 2005. Available at http://cl2-informatik.uibk.ac.at.

  26. Iturriaga, R.: Contributions to mechanical mathematics. PhD Thesis, Carnegie-Mellon University, Pittsburgh, PA, USA, 1967

  27. Lang, S.: Algebra. Springer-Verlag, Berlin, 2004

  28. Lankford, D.S.: On proving term rewriting systems are noetherian. Technical Report, Louisiana Technological University, Ruston, LA, 1979

  29. Lucas, S. MU-TERM: A Tool for Proving Termination of Context-Sensitive Rewriting In van Oostrom, V. (ed.) Proc. of 15h International Conference on Rewriting Techniques and Applications, RTA'04, LNCS 3091 200–209, Springer-Verlag, Berlin, 2004. Available at http://www.dsic.upv.es/~slucas/csr/termination/muterm

  30. Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theoretical Informatics and Applications, 39(3):547–586, 2005

    Google Scholar 

  31. Manna, Z., Ness, S.: On the termination of Markov algorithms. In Proc. of the Third Hawaii International Conference on System Science, 1970 pp 789–792

  32. Marion, J.Y.: Analysing the implicit complexity of programs. Information and Computation 183(1), 2–18 (2003)

    Article  MathSciNet  Google Scholar 

  33. Martin, U., Shand, D.: Invariants, Patterns and Weights for Ordering Terms. J. Symbolic Computation 29, 921–957 (2000)

    Article  MATH  Google Scholar 

  34. Matijasevich, Y.: Enumerable sets are Diophantine. Soviet Mathematics (Dokladi) 11(2), 354–357 (1970)

    Google Scholar 

  35. Rouyer, J.: Calcul formel en géométrie algébrique réelle appliqué à la terminaison des systèmes de réécriture. Université de Nancy, I, PhD Thesis, 1991

  36. Scott, E.A.: Weights for total division orderings on strings. Theor. Comp. Sci. 135(2), 345–359 (1994)

    Article  Google Scholar 

  37. Steinbach, J.: Generating Polynomial Orderings. Information Processing Letters 49, 85–93 (1994)

    Article  MATH  Google Scholar 

  38. Steinbach, J.: Termination of Rewriting - Extensions, Comparison and Automatic Generation of Simplification Orderings. PhD Thesis. Fachbereich Informatik, Universität Kaiserslautern, Jan 1994

  39. Tarski, A:. A Decision Method for Elementary Algebra and Geometry. Second Edition. University of California Press, Berkeley, 1951

  40. TeReSe, editor, Term Rewriting Systems, Cambridge University Press, 2003

  41. Thiemann, R., Giesl, J., Schneider-Kamp, P.: Improved Modular Termination Proofs Using Dependency Pairs. In Basin, D.A., Rusinowitch, M. (eds.) Proc. of 2nd International Joint Conference on Automated Reasoning, IJCAR'04, LNCS 3097, 75–90, Springer-Verlag, Berlin, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Lucas.

Additional information

Tel.: +34 96 387 7007 (ext. 73531)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas, S. On the relative power of polynomials with real, rational, and integer coefficients in proofs of termination of rewriting. AAECC 17, 49–73 (2006). https://doi.org/10.1007/s00200-005-0189-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-005-0189-5

Keywords

Navigation