Skip to main content
Log in

Blind algebraic identification of communication channels: symbolic solution algorithms

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We introduce in this paper a new algebraic approach to some problems arising in signal processing and communications that can be described as or reduced to systems of multivariate quadratic polynomial equations. Based on methods from computational algebraic geometry, the approach achieves a full description of the solution space and thus avoids the usual local minima issue of adaptive algorithms. Furthermore, unlike most symbolic methods, the computational cost is kept low by a subtle split of the problem into two stages. First, a symbolic pre-computation of normal forms is done offline once for all sets of parameters, to get a more convenient parametric trace-matrix representation of the problem. The solutions of the problem are then easily obtained for any set of parameters from this representation by solving a single univariate polynomial equation. This approach is quite general and can be applied to a wide variety of problems: SISO channel identification of PSK modulations but also filter design and MIMO blind source separation by deflation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abed-Meraim K., et al. (1997) On subspace methods for blind identification of SIMO FIR systems. IEEE Trans. Signal Proc. 45(1):42–55

    Article  Google Scholar 

  2. Becker, E., Woermann, T.: On the trace formula for quadratic forms and some applications. In: Recent Advances in Real Algebraic Geometry and Quadratic Forms, vol. 155 of Contemporary Mathematics, pp. 271–291. AMS, New York (1994)

  3. Benedetto S., Biglieri E., Castellani V. (1987) Digital Transmission Theory. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  4. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: Proceedings of ACM Symposium on Theory of Computing, pp. 460–467 (1988)

  5. Canny J.F. (1990) Generalized characteristic polynomials. J. Symb. Comp. 9, 241–250

    Article  MATH  MathSciNet  Google Scholar 

  6. Ciblat, P., Quadrat, A.: New proof of a blind equalization result: a module theory approach. In: Proceedings First IFAC Symposium on Syst. Struct. and Cont., Praha (2001)

  7. Cox D., Little J., O’Shea D. (1998) Using Algebraic Geometry, vol 185 of GTM. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Donoho, D.: On minimum entropy deconvolution. In: Applied time-series analysis II, pp. 565–609. Academic, New York (1981)

  9. Emiris, I., Rege, A.: Monomial bases and polynomial system solving. In: Proceedings of ACM International Symposium on Symbolic and Algebraic Computation, pp. 114–122 (1994)

  10. Gesbert D., Duhamel P. (2000) Unbiased blind adaptive channel identification and equalization. IEEE Trans. Sig. Proc. 48(1): 148–158

    Article  MATH  Google Scholar 

  11. Gesbert D., Duhamel P., Mayrargue S. (1997) On-line blind multichannel equalization based on mutually referenced filters. IEEE Trans. Signal Proc. 45(9): 2307–2317

    Article  Google Scholar 

  12. Giannakis G.B., Halford S.D. (1997) Blind fractionally spaced equalization of noisy FIR channels: Direct and adaptive solutions. IEEE Trans. Sig. Proc. 45(9): 2277–2292

    Article  Google Scholar 

  13. Giusti M., Lecerf G., Salvy B. (2001) A Gröbner free alternative for polynomial systems solving. J. Complexity 17(1): 154–211

    Article  MATH  MathSciNet  Google Scholar 

  14. odard D. (1980) Self recovering equalization and carrier tracking in two dimensional data communication systems. IEEE Trans. Com. 28(11): 1867–1875

    Article  Google Scholar 

  15. Gonzalez-Vega L., Rouillier F., Roy M.-F. (1999) Some Tapas of Computer Algebra, Chap. Symbolic recipes for polynomial system solving. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Grellier O., Comon P., Mourrain B., Trebuchet P. (2002) Analytical blind channel identification. IEEE Trans. Signal Proc. 50(9): 2196–2207

    Article  MathSciNet  Google Scholar 

  17. Janovitz-Freireich, I., Rónyai, L., Szántó, A.: Approximate radical of ideals with clusters of roots. In: Proceedings of ACM International Symposium on Symbolic and Algebraic Computation (2006)

  18. Kailath T. (1980) Linear Systems. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  19. Keyser, J., Ouchi, K., Rojas, J.M.: The exact rational univariate representation and its application. In: Computer Aided Design and Manufacturing, DIMACS. AMS, New York (to appear) (2004)

  20. Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Grossen. J. Reine Angew. Math. (1882)

  21. Lebrun J., Selesnick I. (2004) Gröbner bases and wavelet design. J. Symb. Comp. 35(2): 227–259

    Article  MathSciNet  Google Scholar 

  22. Ljung L., Soderstrom T. (1983) Theory and Practice of Recursive Identification. MIT Press, Cambridge

    MATH  Google Scholar 

  23. Mourrain B. (1998) Computing isolated polynomial roots by matrix methods. J. Symb. Comp. Spec. Issue Symb.-Numer. Algebra Polynom. 26(6): 715–738

    MATH  MathSciNet  Google Scholar 

  24. Mourrain, B.: An introduction to linear algebra methods for solving polynomial equations. In: Lipitakis, E.A. (ed.) Proc. HERCMA’9, pp. 179–200 (1999)

  25. Mourrain, B., Trébuchet, Ph.: Generalized normal forms and polynomial system solving. In: Proceedings of ACM International Symposium on Symbolic and Algebraic Computation, pp. 253–260 (2005)

  26. Pedersen, P., Roy, M.-F., Szpirglas, A.: Counting real zeros in the multivariate case. In: Birkhauser (ed.) Proc. Mega’92 Int. Symp. on Effective Methods in Algebraic Geometry, Progress in Mathematics, pp. 203–224 (1992)

  27. Pistone G., Riccomagno E., Wynn H.P. (2000) Algebraic Statistics: Computational Commutative Algebra in Statistics. Chapman & Hall/CRC Press, London/Boca Raton

    Google Scholar 

  28. Proakis J.G. (1995) Digital Communications, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  29. Renegar J. (1992) On the computational complexity and geometry of the first-order theory of the reals, Part I, II & III. J. Symb. Comp. 13(3): 255–352

    Article  MATH  MathSciNet  Google Scholar 

  30. Rota, L., Comon, P.: Blind equalizers based on polynomial criteria. In: Proceedings of ICASSP’04, Montreal, 17–21 May (2004)

  31. Rouillier F. (1999) Solving zero-dimensional systems through the rational univariate representation. J. App. Alg. Eng. Comm. Comp. 9, 433–461

    Article  MATH  MathSciNet  Google Scholar 

  32. Schost E. (2003) Computing parametric geometric resolutions. J. App. Alg. Eng. Comm. Comp. 13, 349–393

    Article  MathSciNet  Google Scholar 

  33. Stüber G.L. (1996) Principles of Mobile Communications. Kluwer, Dordrecht

    Google Scholar 

  34. Sturmfels B. (2002) Solving Systems of Polynomial Equations. Number 97 in CBMS series. AMS, New York

    Google Scholar 

  35. Trebuchet, P.: Vers une résolution stable et rapide des équations algèbriques. PhD thesis, INRIA – Sophia-Antipolis (2002)

  36. van der Veen A.J., Paulraj A. (1996) An analytical constant modulus algorithm. IEEE Trans. Sig. Proc. 44(5): 1136–1155

    Article  Google Scholar 

  37. Xu G., Liu H., Tong L., Kailath T. (1995) A least-squares approach to blind channel identification. IEEE Trans. Sig. Proc. 43(12): 813–817

    Google Scholar 

  38. Yellin D., Porat B. (1993) Blind identification of FIR systems excited by discrete-alphabet inputs. IEEE Trans. Sig. Proc. 41(3): 1331–1339

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Lebrun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebrun, J., Comon, P. Blind algebraic identification of communication channels: symbolic solution algorithms. AAECC 17, 471–485 (2006). https://doi.org/10.1007/s00200-006-0021-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-006-0021-x

Keywords

Navigation