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ABSTRACT. We provide some guidelines for deriving new projective
hash families of cryptographic interest. Our main building blocks
are so called group action systems; we explore what properties of
this mathematical primitives may lead to the construction of cryp-
tographically useful projective hash families. We point out different
directions towards new constructions, deviating from known propos-
als arising from Cramer and Shoup’s seminal work.

1. INTRODUCTION AND OUTLINE

In [3], Cramer and Shoup presented a practical encryption scheme that
could be proven IND-CCA secure in the standard model. Later, in [4, 5] the
authors generalized that construction introducing a celebrated methodology
for deriving IND-CCA schemes based on a new mathematical tool for cryp-
tography: universal projective hash families. We start this contribution by
recalling the basic notions and results related to this cryptographic primi-
tive of increasing relevance (see Section 2). Also in [4, 5], so called group
systems were introduced by Cramer and Shoup as atomic building blocks
for projective hash families. Moreover, choosing the underlying group sys-
tem wisely, one could actually prove the derived projective hash family to
be cryptographically useful in a very strict sense.

We introduce a generalization of Cramer and Shoup’s group systems,
called group action systems and prove that, similarly, simple properties of
this building blocks guarantee the desired cryptographic robustness of the
derived projective hash families. Section 3 is devoted to the introduction
of this new primitive, as well as to pointing out which properties of the
underlying group action systems are suited for cryptographic applications.

In search for specific constructions, in Section 4 we focus on a special
type of group action systems, so called automorphism group systems, which
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are derived from the action of a certain subgroup of automorphisms on a
given base group (these were recently defined in [14]). Section 5 roughly
sketches some other types of action group systems of (potential) crypto-
graphic relevance. Also, we note there that our work can actually be seen
as a generalization of Cramer and Shoup s original construction, for their
celebrated abelian setting also yields concrete instances in our framework.

2. SOME PRELIMINARIES

2.1. Cryptographically Useful Hash Families. Families of hash func-
tions have been widely used as essential building blocks of various crypto-
graphic primitives. General hash functions are simply defined as mappings
transforming n-bit strings into m-bit strings, which exist independently of
any intractability assumption (See 3.5.1. of [7]). Together with one way
permutations, general hash functions allow for the construction of pseudo-
random generators. So called universal hash families were first defined in [6],
as a tool for designing an algorithm for key storage and retrieval. The main
feature of such families is, roughly speaking, a somehow strong collision
resistance property. Later on, in 1989 [12], Naor and Yung introduced so
called universal one way hash functions, which fulfill a kind of relaxed colli-
sion resistance property, which is referred to as hardness to form designated
collisions or target collision resistance (see [8]). The existence of provable
secure signature schemes can be derived from the existence of universal
one way hash functions. Again, for a detailed discussion on the different
definitions and application of these “classical” hash families, we refer the
interested reader to [7, 8.

Whilst the above mentioned families are efficiently computable and es-
sentially play the role of protecting the integrity of certain values, we will
focus on a more recent type of hash families, which in addition have a spe-
cial behaviour w.r.t. a certain subset of their domain. So called universal
projective hash families were introduced by Cramer and Shoup [4, 5] as
a valuable cryptographic primitive for deriving provable secure encryption
schemes. We recall (informally) the basic definitions given in [5]:

Let X, II be finite non-empty sets, and K some finite index set. Consider
a family H = {Hy : X — }rex of mappings from X into II, and let
a: K — S be amap from K into some finite non-empty set .S (which may
be seen as a projection).

Definition 1. Let H, K, X,I1,S, and o be as above. Then, for a given
subset L C X, we refer to the tuple H = (H, K, X, L,11, S, «), as projective
hash family (PHF) for (X,L) if for all k € K the restriction of Hy to
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L is determined by a(k), i.e., for all x € L and k1,ke € K the equality
a(ky) = a(ke) implies Hy, () = Hy,(x). Moreover, we say that H is

e c-universal if for any x € X \ L and for k € K (chosen uniformly
at random), the probability of correctly guessing Hy(z) from z and
a(k) is at most ¢.

o c-universaly if for any x,z* € X \ L, © # x*, for k € K chosen
uniformly at random, the probability of correctly guessing Hp(x)
from a(k) and Hy(z*) is at most €.

o c-smooth if the probability distributions of (v, s, Hi(z)) and (x, s, ),
where k, © and 7 are chosen uniformly at random in K, X \ L and
I, respectively, and s = a(k), are e-close.

e strongly universals if for k € K chosen uniformly at random, for
any x,x* € X \ L, x # x* the random variables

: - & = Hy(z), conditioned to a(k)
: - Mg, the variable & conditioned to both a(k) and Hy(z*).
are statistically close to the uniform distribution over I1.2

Note that the concepts above limit the amount of information about
the behaviour of a map Hy on X \ L, given by «(k). Clearly, for each
case a(k) determines Hj, |;, completely. However, a(k) hardly gives any
information about Hy |x\r if the family is universal. If H is universaly,
not even knowing, besides the projection given by «, some information
about the behaviour of H on a fixed (arbitrary) point of X \ L will help on
guessing its action on a new point € X \ L. Smoothness is achieved if, on
average (taken over k € K, x € X \ L), guessing Hy(x) given « is no better
than a random guess. Strongly universaly is roughly speaking worst-case
smoothness, i.e., fixing any € X \ L, Hy(x) is (close to) a uniform random
variable on II, whose distribution is induced by choosing k& uniformly at
random. Moreover, this still holds if the behaviour of H on a given point
of X\ (LU{z}) is known.

2.2. Relations among Different Types of PHFs. Clearly, Definition 1
results on a kind of hierarchy, as it is easy to see that strongly universals
PHSs are smooth, and similarly universaly PHFs are also universal. That
is, roughly speaking, strongly universals, PHFs are the ones in which the
projection gives less information about how {Hj }rex acts on X\ L, whereas
given a PHF that can only be proven universal it may be the case that «
leaks relevant information of what goes on outside L. However, there are

1A stronger notion of smoothness (which we will refer to as worst case smoothness)
may be defined by imposing that, for any z € X \ L the distribution of Hy(z) conditioned
to s is e-close to the uniform distribution over II. This is actually achieved in most cases.
2This definition first appeared in [11].
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efficient generic methods of ‘upgrading’ the weaker types of PHF's to achieve
more robust constructions. More precisely:

e Cramer and Shoup gave a construction for turning any e-universal
PHF into e-universaly (see Lemma 2 of [4]);

e applying the Leftover Hash Lemma [9], Cramer and Shoup also give
a way to construct a smooth® PHF from a given e-universal PHF,
(Lemma 4 of [4]);

e given a concrete universal PHF, it is often possible to find a more ef-
ficient dedicated upgrading method than the ones mentioned above
(see, for instance Section 7.3 of [4]);

e analogously as in Lemma 4 [4], e-universaly, PHFs can be trans-
formed into strongly universal, PHF's, by a similar application of
the Leftover Hash Lemma, since given z,z* € X \ L,z # z*, a(k)
and Hy(z*), the min-entropy of Hy(z) is at least log, L.

2.3. Cryptographic Applications of PHFs. Projective hash families
are essential building blocks in some recent proposals of encryption schemes
that can be proven IND-CCA secure in the standard model. Not only
Cramer and Shoup’s generic design for such schemes has lead to the con-
struction of practical instantiations [3, 4, 5], also recently Kurosawa and
Desmedt [11] have proposed an efficient IND-CCA hybrid encryption scheme
based on strongly universal, PHFs (see also [15]).

Also, a theoretical construction using non abelian groups as a base and
inspired by that of Cramer and Shoup, has been presented in [14].

Roughly speaking, in the encryption scheme proposed by Cramer and
Shoup [4, 5] a message m € II is encrypted by using Hy(z) as a one time
pad; while the value of k is kept secret,  and a(k) are made public. Those
holding k£ have access to a private evaluation algorithm allowing them to
evaluate Hy on any = € X, whereas those holding only the public key can
only access a public evaluation algorithm that computes Hy(z) only for
x € L. IND-CCA security is achieved by appending to the ciphertext a
‘proof of integrity’ obtained from a universal, HPS.

In [11], Kurosawa and Desmedt design a hybrid encryption scheme where
the image Hy(z) of a point x € L is used as input of a key derivation func-
tion supplying keys for both a symmetric encryption scheme and a message
authentication code. Further applications of PHFs will surely appear in
different areas of cryptography and some are actually already arising; for
instance, recently Gennaro and Lindell [16] have proposed a general frame-
work for password-based authenticated key exchange which makes use of

3Actually worst case smoothness is achieved.
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smooth projective hash functions. Also, using smooth projective hash fam-
ilies with some additional properties Kalai designed a 2-out-of-1 oblivious
transfer protocol that has been presented at Eurocrypt 2005 [10].

3. Groupr-AcTIiON BASED PHF

In search of suitable projective hash families that could be used for
their above mentioned scheme, Cramer and Shoup designed a construction
method that took as a starting point certain atomic abelian group theoretic
tools, defined as group systems [4, 5]. We now generalize their definition
in order to capture cases in which no underlying group structure on X is
assumed.

3.1. Group Action Systems. Let X be a finite set and consider a finite
(not necessarily abelian) group H left-acting on X. Thus, each element
¢ € H can be seen as an element of the symmetric group on X, and for all
¢1,¢2 € Hand xz € X, (¢1¢2)x = ¢1(¢21‘)

Take also S some finite group and x : H — S a group homomorphism.
Note that for any ¢ € H, x(¢) gives some (limited) information about ¢,
and thus y provides partial information about the action of H on X. This
partial information will eventually play the role of the information given by
a in the PHFs we will be constructing.

Definition 2. Let X, H, S and x be defined as above. Then the tuple
(X, H,x,S) is called a group action system.

Let us consider the action of ker x in X, defined by the action of H. For
any z € X, let us denote by [z] the (ker x)-orbit of z, i.e.,

[a] == {6z & € ker x}.
Note that the action of H on the set of points that remain fixed by ker x
is completely determined by x. Let us thus define

Li={zeX ||l =1},

that is L := {z € X | [z] = {z}}.

Observe that ker xy C Stab(L) although they are not necessarily equal.
Also, H leaves L invariant, as for any ¢ € H and = € L, ¢z is fixed by all
1 € ker y, as there exists p € ker x s.t. ¥¢ = ¢p and thus Yor = dppr = ¢x.

As our aim is to construct cryptographically useful PHFs, the systems
above will be useful for us if x gives little information about the action of
H on X \ L; thus, we will be particularly interested in those systems for
which the (ker x)-orbits of elements in X \ L are large.

Definition 3. Let p > 1 be a positive integer. The group action system
(X, H,x,S) is p-diverse if |[z]| > p for all z € X \ L.
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Lemma 1. Let (X,H,x,S) be a group action system, and let p be the
smallest prime dividing |ker x|. Then (X, H,x,S) is p-diverse.

Proof. Note that ker x acts on X, and thus |[z]| divides | ker x|, so if x € X\L
(i.e., if |[z]| # 1) then |[z]| is at least p. O

3.2. Group Action PHFs. Asin [4, 5, 14], we outline the construction of
a projective hash family from a group action system plus some additional
elements:

Let us consider a group action system (X, H,,S), and denote by 7 :
K — H a bijection from a suitable index set K (which will later serve as
the private key space). Noting that x(h(k)) determines the action of Ai(k)
on L completely, it is easy to see that the tuple (H, K, X, L, X, S, x o h) is
a projective hash family.

Definition 4. Any PHF constructed from a group action system as de-
scribed above is called group action projective hash family (AcPHF). Such
a projective hash family is made explicit by the tuple (X, H, K, S, x, h).

It is our aim to prove that, if the group action projective hash family
has certain nice properties, the resulting AcPHF will be e-universal for
some € > 0. We start by demonstrating that for any x € X, choosing k € K
uniformly at random (that is, choosing uniformly at random a group element
in H), given x(h(k)), there are exactly |[z]| equally probable candidates for
k).

Lemma 2. Let (X, H,x,S) be a group action system and let x € X. If
¢ € H is chosen uniformly at random, once s = x(¢) is given then ¢ is
uniformly distributed on the coset x~1(s) and ¢z is uniformly distributed
on the set {¢x | € x71(s)}, that is, on a set of cardinality equal to |[z]|.

Proof. Clearly, as ¢ is chosen uniformly at random, once we fix s = x(¢),
the resulting distribution is uniform on x~!(s). Moreover, for any = € X,
¢z is uniformly distributed on

{vz]y e x'(s)}
provided that the sets
Sy ={v e x7'(s) | Yo =y}
are of the same size for all y € {1z, € x~*(s)}. But this is straightforward
to see, as all Sy, are left cosets modulo ker x N Stab({z}). O

Proposition 1. Let H = (X, H, K, S, x,h) be a group action projective
hash family. If the underlying group action system (X, H, x,S) is p-diverse
then H is 1/p-universal.
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Proof. From Lemma 2, for any « € X \ L, the probability of guessing the
right value of h(k)z for a random choice of k € K given x(hi(k)) is 1/|[z]|,
that is at most 1/p. |

Once a universal projective hash family is constructed choosing the right
elements according to the results above, the generic method of [5] may be
used in order to transform it into a smooth projective hash family. More-
over, this transformation is sometimes superfluous: in some special cases,
smoothness can even be guaranteed directly.

Proposition 2. Let H = (X, H, K, S, x, k) be a group action projective
hash family. If the whole set X \ L is a single orbit under the action of ker x
then H is |L|/|X|-smooth.

Proof. Let x € X \ L. From Lemma 2, i(k)x is uniformly distributed on a
set of size |[z]| = |X \ L|. Then, the statistical distance between fi(k)x and
the uniform distribution on X is

1 1 1| 1 1L

_ - |4+ = —_— =

) 3w wl S
thus the probability distribution of Ai(k)x is |L|/|X|-close to the uniform
distribution on X O

Thus, from a universal PHF one can derive a smooth PHF. Similarly, a
simple extension of a universal PHF leads to the construction of a universals
PHF.

3.3. Universal, Extended AcPHFs. In [5], the authors outline a gene-
ric transformation from any e-universal projective hash family to an e-
universaly extended projective hash family. As done in [4, 5, 14] we give a
more efficient extension for the case of AcPHFs.

Let H= (X,H, K, S, x,h) be a group action projective hash family such
that the underlying group action system (X, H,x,S) is p-diverse. Let ¢
be the smallest prime factor of |H|. Further on, denote by n a positive
integer and by F a finite set. Let us define a new extended projective hash
family H by means of n+ 1 independent copies of H and a “gluing” function
g H**! — H defined by:

95(9250, oy On) = Gop]t I

where v = (71,...,7.) € Z™.
Similarly, we define g5 : S"*! — S by

g,‘f(so, ceey8p) = x(gf(d)o, ceyOn)) = S087t s,
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where ¢; € y~!(s;) forall j =0,...,n

At this point, K = K"+ § = §7*1 and the natural extensions ¥ of
and h of h are considered. The set X is extended to X = X x E. Further
on, given k, we define ¢, XX E— X by

Oz, €) 7= iy, ((R)),
where I' : (z,¢e) — (I'1(z,e),..., I (z,e)) is an injective map from X x E
into {0,...,q— 1} L ke K
The soundness of our construction will rely on the commutativity of the
following diagram:

H
g
Hn+1 4’Y> H

We will now proof that

H=(H,K,XxE LxE,X,S,xoh)

is a 1/p-universaly projective hash family. Recall that this actually means
that for any z € X \ L and e € F if k € K is chosen uniformly at random
and R(A(k)), ®; (z*,e*) are known (for some 2* € X\ (LU{x}) and e* € E),
the probability of guessing ®; (x,e) correctly is at most 1/p. Let us start by
obtaining an analogue of Lemma 2.

Lemma 3. Let H be as above, x € X and e € E. Then, zfgg € H™! s
chosen uniformly at random, once § = ((Z)) is fized, then ¢ = gF )(QAS) is
uniformly distributed on the coset x~*(s), where s = gF(Le)( 3). Moreover,
oz is uniformly distributed on the set {yx |1 € x"1(s)}, that is, on a set
of cardinality equal to |[x]|.

Proof. Tt is clear that in the conditional probability space, ¢ is uniformly
distributed on the set gF 1(8)). Let us show that this set is just the

o(X™
coset x~1(s). Clearly, gF(x o ( 1(3)) C x~1(s) since
X900y (R (3) = gRaey (RTHR(3))) = 5.
)

Conversely, gF($ o (X~ 1(8)) contains a whole coset modulo ker y. To see
this, pick an element 1) € gr(m,e)( —1(3)).
Then, there exists 1) = (0,91, -+ ,Pn) €X1(8) such that ¢ = Ifl(z ¢ (1@)

For each n € kery, ny = g‘;[(m e)(mpo,¢1, ovy1by) is also in ¢71(8). From
this point, the proof proceeds exactly as in Lemma 2. a
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Proposition 3. If (X, H,x,S) is p-diverse then Hisa 1/p-universal pro-
jective hash family.

Proof. From Lemma 3, for any x € X \ L and e € E, the probability of
guessing the right value of ®;(x,e) = gﬁ(z e)(ﬁ(k))x for a random choice of

k e K given x(h(k)) is 1/|[z]|, that is at most 1/p. O

Next, we show that H is also universals.

Lemma 4. Let (X, H,x,S) be a p-diverse AcPHF. For any e,e* € E,
x € X\L and z* € X\ {z}, if & € H"L is chosen uniformly at random,
once § = () is fized, then the random variables ¢ = gﬁ(%e)(dg) and ¢* =
gllf(m*7e*)(<5) are independent.

Proof. From Lemma 3, ¢ and ¢* are uniformly distributed on x~!(s) and
X~ !(s*), respectively, where s := gf?(z’e)(é) and s* := gl“?(x*’e*)(é). Now
let i be the smallest integer such that T';(z,e) # T';(z*,e*), that surely
exists since I' is injective. Now, for any fixed values ¢; € x~!(s;) for
j=1,...;i—1,941,...,n let us consider the map

Nis xTHso) x xTHsi) — xTHs) x xTH(sY)
(¢0, ¢i) — (¢, 0%),

where, as above, ¢ = g#(x’e)(gzg) and ¢* = ngI( )(gb). By defining

* o
T*,e

¢L _ ¢F1(I,e) o ¢F7¢_1(xve) _ qsll"l(l*,e*) o ¢Fi—1(m*,e*)

Fii(ee) | Tulae) H ’
i z,e n(z,e
Yp = ‘%ﬁl( .). - bn and
Tiiq(x*e* Ty(z*,e*
b = ¢t (@)

we can write

Ai(go, 61) = (dovrdr vn, dovrey T P).
The map 4\; is injective. Indeed, consider two pairs (¢o, ;) and (¢g, ¢;) in

X~ 1(50) X x~(s:) such that (¢, ¢1) = Ai(o, ¢;). Then, poyprey " =
(;BOqugfi(x’e) and ¢0wL¢fi(m*’e*) = qgoqugfi(x*’e*). Combining these two
equalities, we obtain
PRI )@ | gRue o) Tu(we)
that leads to ¢; = ¢; and then to ¢y = ¢o.* Thus, A\; is injective.
Then, as x " 1(so) x x (s;) and x~1(s) x x~!(s*) have the same (finite)
cardinality, A; is a bijection. So, if (¢g, ¢;) is chosen uniformly at random in

4Note that, as |T;(z*, e*) — T';(z, )| < ¢, we have ged(I';(z*, e*) — Ty(z, e), |H|) = 1.
So there are a,b € {0,...,|H| — 1} such that a(I";(z*,e*) — I';(z,e)) = 1 + b|H]|, and,

consequently, ¢?(Fi($ ) —Ti(z.e)) — ¢21+b|H| — ¢z
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X (s0) x x"1(s;) then (¢, ¢*) is uniformly distributed on x~*(s) x x ~1(s*),
for any choice of ¢, j = 1,...,i—1,7+1,...,n. Then, the same occurs when
the whole tuple ¢ is chosen uniformly at random in ¥ ~1(3). Consequently,
¢ and ¢* are independent uniformly distributed random variables. a

Proposition 4. If (X, H, x,S) is p-diverse then Hisa 1/p-universaly pro-
jective hash family.

Proof. The independence from Lemma 4 in particular implies that knowl-
edge of ®;(2*,e*) = ¢*2* does not affect the probability distribution of
®;(z,e) = ¢x. Thus, bAy Lemma 3, ®;(z,e) is uniformly distributed on a
set of size |[z]|. Then, H is 1/p-universals. O

Proposition 5. If (X, H, x,S) is p-diverse and then H is e-smooth (worst-
case), then, H is strongly e-universaly projective hash family.

Proof. Clearly, by lemmas 3 and 4, ®;(z,e) is uniformly distributed on a
set of size |[z]|, independently of the value of ®;(z*,e*). As H is e-smooth
then ®;(z,e) = ¢x is e-close the uniform distribution in X, for any choice
ofxe X\ LandeckE. O

Recall that Cramer and Shoup’s construction for an IND-CCA encryp-
tion scheme required a hard subset membership problem M and two suit-
able HPSs. From the above results it follows that these may be derived from
suitable group action systems. Similarly, diverse group action systems pro-
vide strongly universaly projective hash families for the Kurosawa-Desmedt
encryption scheme.

4. A SPEcCIAL CASE: AUTOMORPHISM GROUP PHF's

Let us suppose we consider a group action system consisting of a group
X and a suitable subgroup H < Aut(X), together with a homomorphism
x : H — S, for a suitable group S. Note that, in this case, the set L
defined in Section 3.1 is actually a group. Such group action systems are
exactly the so called automorphism group systems defined in [14]. Accord-
ing to the corresponding terminology of [14], we will refer to the PHFs
constructed from this special type of group action system as automorphism
projective hash families (APHF). Even though it may seem plausible to
look for p-diverse automorphism group systems leading to PHF's suitable
for cryptographic applications, no concrete examples are, to the best of our
knowledge, at hand. We will try to make a step further in this direction
along this section.
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Clearly, the natural starting point is a group X together with a special
subgroup L which fulfills some special properties®. For the moment, let us
keep in mind we aim at constructing a family of hash functions which will
be easy to evaluate in L, provided some extra information (given by x) that
should however not help outside L. Thus, we may consider a projection y
so that L is stabilized by all elements of ker y. Moreover, for achieving p-
diversity we should aim at examples in which actually L is maximal with
respect to this condition, that is, for any K C X, if ker x C Staby (K), then
K C L. It is easy to see that with these conditions, L must exactly be the
subgroup defined as in 3.1, i.e. L is exactly the set of points with singleton
(ker x)-orbits.

Also, we would like that non-singleton (ker x)-orbits are as large as pos-
sible. A naive way to do so is selecting a group X s.t. |Aut(X)| has
only large prime divisors. Actually, many known results relating |X| and
| Aut(X)| could be used for that purpose, for instance:

e if a group X is complete®, then Aut(X) = X. Examples of complete
groups are Sy, (n # 2,6), automorphism groups of nonabelian simple
groups, etc. (see, for instance, Chapter 7 of [13]).

e if S is a simple group with trivial outer automorphisms group, and
7 is the set of prime divisors of |S| then X = S x II,c,.C, satisfies
| Aut(X)| = ¢(]X]|), where ¢ is the Euler totient function (¢(n) =
|Z/nZ*]), see [2].

However, once the group X (and thus its order) is fixed, there are plenty
of other factors influencing the soundness of this construction. Much re-
search should be devoted in order to be able to provide concrete examples
in this setting.

5. EXAMPLES

As we have already argued, it seems indeed hard to achieve new concrete
constructions of PHFs making use of so called automorphism group systems.
In the hope that the notion of action group systems introduced in this
contribution may yield new ideas, we sketch some possible lines of future
research. However, let us first see that at least our setting does not yield an
empty theory, namely, that the known (abelian) constructions also fit our
framework.

Known Constructions. Cramer and Shoup presented in [4] group theoretic
constructions of universal projective hash families based on abelian groups.
Their main building blocks are so called group systems;

5Recall, again the notion of hard subset membership problem.
6Centerless, and such that Aut(X) = Inn(X).
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Definition 5. Let X, L and II be finite abelian groups, where L is a proper
subgroup of X and consider H a suitable subgroup of the homomorphism
group between X and II. Then the tuple (H, X, L, 1) is called a group sys-
tem.

Abelian group systems also yield natural examples of automorphism
group projective hash families as defined in Section 4. Let us consider
an abelian group system (H, X, L, II).

Note that for any h € Hom(X,II) the mapping ¢(z,7) := (z, h(x)7) is
actually an element of Aut(X x IT). Denote by ¥ the group monomorphism
defined by:

¥: Hom(X,II) — Aut(X xII)
h — o '

Now clearly, (X xII, W(H), xo¥~1,S) is an automorphism group system

from which a projective hash family can be derived as described in [14] (see
also Section 4). Thus, all concrete constructions from [4, 5] yield examples
in our new setting.
An Example Using Linear Groups. Let us consider the vector space X = IF‘Z,
with ¢ prime, and {a1,...,a,} a IF-basis of X. Consider H a subgroup of
GL(n,q), leaving a d-dimensional subspace L invariant. For a given M €
GL(n,q), denote by M, the matrix representing the linear transformation
induced by M on L. Clearly,

x: H — GL(d,q)
M — Md,
is a group homomorphism.

Now, diversity of the corresponding group action system (X,H,x,GL(d, q))

can be proven if H is chosen with care (ideally, |H| should only have large
prime divisors).
A Geometric Example. Let 7 be a finite projective plane over a prime finite
field IFy. Automorphisms of 7 are usually called collineations, it is easy to
see that the action of a collineation is faithful both on the point-set and on
the line-set of m. An elation is a collineation fixing both each point of a fixed
line I (called the axis) and each line through a point C in ! (C' is usually
referred to as the center). Recall that the fixed points of a non-identical
elation are exactly the points on the axis, while the only fixed lines are those
incident in the center. Let X be the point-set of 7, L a fixed line in 7 and
C a fixed point on L. Take H as the group consisting of all elations with
center C. Notice that every elation in H induces a permutation of the points
of L, since the center C' is contained in L. For basic notions on collineation
groups of finite planes, see [1].
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Let us define x as the group homomorphism translating each elation in
H into the corresponding permutation of L.

x: H — 5S¢

C — <|L7
Clearly, ker x is exactly the subgroup of all elations in H with axis L.
Note that, moreover, the points in L are exactly the points of X stabilized
by ker x. On the other hand, if A is an arbitrary point outside L, each elation
in ker x is uniquely determined by the image of A, that can be any point
in the line defined by C' and A, except for C (as an elation is completely
determined giving its center, axis and the image of a point outside the
axis). Hence, |ker x| = ¢ and therefore ¢-diversity is guaranteed in this

construction.

6. CONCLUDING REMARKS

We presented a general method for deriving cryptographically useful uni-
versal projective hash families based on group actions. Group action sys-
tems, our main building blocks, are inspired and also generalize so-called
group systems introduced by Cramer-Shoup. We point out how simple prop-
erties of the underlying group action system translate into security qualities
of the derived cryptographic construction. In addition, our arguments allow
for the use of nonabelian groups and may shed some light into the design
of group-based cryptographic tools with sound security guarantees.
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