Skip to main content
Log in

The isomorphism problem for abelian projective planes

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We settle the isomorphism problem for finite cyclic projective planes by proving the following analogue of the Bays–Lambossy theorem: two cyclic projective planes of order n are isomorphic if and only if they are multiplier equivalent, that is, if and only if the associated difference sets in \({\mathbb{Z}_{n^2+n+1}}\) are equivalent. In fact, we establish a more general result for abelian groups, where multipliers are replaced by group automorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bays, S.: Sur les systèmes cycliques des triples de Steiner différents pour N premier (ou puissance du nombre premier) de la forme 6n + 1, I. Comment. Math. Helv. 2, 294–305 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Dembowski, P.: Finite Geometries. Springer, Berlin (1968, reprint 1997)

  4. Hirschfeld, J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  5. Ho, C.Y.: Finite projective planes with transitive abelian collineation groups. J. Algebra 208, 533–550 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, Y., Schmidt, B.: Uniqueness of some cyclic projective planes (submitted)

  7. Huffman, W.C., Job, V., Pless, V.: Multipliers and generalized multipliers of cyclic objects and cyclic codes. J. Comb. Theory Ser. A 62, 183–215 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hughes, D.R., Piper, F.C.: Projective Planes, 2nd edn. Springer, New York (1982)

    MATH  Google Scholar 

  9. Kantor, W.M.: 2-Transitive symmetric designs. Graphs Comb. 1, 165–166 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lambossy, P.: Sur une manière de différencier les fonctions cycliques d’une forme donnée. Comment. Math. Helv. 3, 69–102 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  11. Muzychuk, M.: On the isomorphism problem for cyclic combinatorial objects. Discret. Math. 197/198, 589–606 (1999)

    MathSciNet  Google Scholar 

  12. Muzychuk, M.: A solution of the isomorphism problem for circulant graphs. Proc. Lond. Math. Soc. 3(88), 1–41 (2004)

    Article  MathSciNet  Google Scholar 

  13. Ott, U.: Endliche zyklische Ebenen. Math. Z. 144, 195–215 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pálfy, P.P.: Isomorphism problem for relational structures with a cyclic automorphism. Eur. J. Comb. 8, 35–43 (1987)

    MATH  Google Scholar 

  15. Singer, J.: A theorem in finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 43, 377–385 (1938)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jungnickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungnickel, D. The isomorphism problem for abelian projective planes. AAECC 19, 195–200 (2008). https://doi.org/10.1007/s00200-008-0070-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-008-0070-4

Keywords

Navigation