Skip to main content
Log in

Representation-theoretical properties of the approximate quantum Fourier transform

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Among the transformations used in quantum computing the discrete Fourier transform (DFT) plays a key role. A striking fact is that the computational complexity of the DFT with respect to the quantum gate model is polylogarithmic in the length of the input data. In this paper we consider approximate Fourier transformations which are obtained by pruning the twiddle factors of DFT. A parameter is used which determines the level of pruning. The extreme cases are no pruning, which leads to the DFT, and complete pruning, which leads to the Hadamard transform. Our main result is to give a representation-theoretical interpretation of the transformation obtained for all intermediate levels of pruning. We show that the resulting approximate quantum Fourier transforms are basefield transformations, i. e., they decompose the regular representation of the cyclic group over non-splitting fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharonov, D., Landau, Z., Makowsky, J.: The quantum FFT can be classically simulated. ArXiv quant-ph/0611156 (2006) (preprint)

  2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  Google Scholar 

  3. Barenco, A., Ekert, A., Suominen, K.-A., Törmä, P.: Approximate qantum Fourier transform and decoherence. Phys. Rev. A 54(1), 139–146 (1996)

    Article  MathSciNet  Google Scholar 

  4. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beth, Th.: Verfahren der Schnellen Fourier transformation. Teubner (1984)

  6. Beth, Th.: On the computational complexity of the general discrete Fourier transform. Theor. Comput. Sci. 51, 331–339 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beth, Th., Fumy, W., Mühlfeld, R.: Zur algebraischen diskreten Fourier-Transformation. Arch. Math. 40, 238–244 (1983)

    Article  MATH  Google Scholar 

  8. Beth, Th., Rötteler, M.: Quantum algorithms: applicable algebra and quantum physics. In: Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, vol.173, Springer Texts in Modern Physics, pp. 96–150. Springer, Heidelberg (2001)

  9. Brassard, G., Høyer, P.: An exact polynomial-time algorithm for Simon’s problem. In: Proceedings of Fifth Israeli Symposium on Theory of Computing and Systems (ISTCS), pp. 12–23. IEEE Computer Society Press (1997)

  10. Cheung, D.: Using generalized quantum Fourier transforms in quantum phase estimation algorithms. PhD thesis, University of Waterloo (2003)

  11. Cheung, D.: Improved bounds for the approximate QFT. In: Proceedings of the Winter International Symposium on Information and Communication Technologies (WISICT’04), vol.58. ACM International Conference Proceeding Series, pp. 1–6, Cancun, Mexico (2004)

  12. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A 454(1969), 339–354 (1998)

    MATH  MathSciNet  Google Scholar 

  13. Cleve, R., Watrous, J.: Fast parallel circuits for the quantum Fourier transform. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS’00), pp. 526–536. IEEE Computer Society (2000)

  14. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  15. Coppersmith, D.: An approximate Fourier transform useful in quantum factoring. Technical Report RC 19642, IBM Research Division, see also ArXiv preprint quant-ph/0201067 (1994)

  16. Curtis, W.C., Reiner, I.: Representation Theory of Finite Groups and Algebras. Wiley, London (1962)

    MATH  Google Scholar 

  17. Golub, G., Van Loan, Ch.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  18. Griffiths, R., Niu, C.: Semiclassical Fourier transform for quantum computation. Phys. Rev. Lett. 76(17), 3228–3231 (1996)

    Article  Google Scholar 

  19. Grohmann, B.: Slim normal bases and basefield transforms. Appl. Algebra Eng. Commun. Comput. 18, 397–406 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hales, L., Hallgren, S.: Quantum Fourier sampling simplified. In: Proceedings of the Symposium on Theory of Computing (STOC’99), pp. 330–338 (1999)

  21. Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and applications. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS’00), pp. 515–525. IEEE Computer Society (2000)

  22. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. J. ACM 54(1), 1–19 (2007)

    Article  MathSciNet  Google Scholar 

  23. Hong, J., Vetterli, M., Duhamel, P.: Basefield transforms with the convolution property. Proc. IEEE 82(3), 400–412 (1994)

    Article  Google Scholar 

  24. Jozsa, R.: Quantum algorithms and the Fourier transform. Proc. R. Soc. Lond. A 454, 323–337 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kitaev, A.Yu.: Quantum measurements and the abelian stabilizer problem. ArXiv quant–ph/9511026 (1995) (preprint)

  26. Kitaev, A.Yu.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52(6), 1191–1249 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Klappenecker, A.: Basefield transforms derived from character tables. In: Proceedings of the 1997 International Conference on Acoustics, Speech, and Signal Processing (ICASSP’97), pp. 1997–2000 (1997)

  28. Lang, S.: Algebra. Addison-Wesley, Reading (1993)

    MATH  Google Scholar 

  29. Mosca, M., Ekert, A.: The hidden subgroup problem and eigenvalue estimation on a quantum computer. In: Quantum Computing and Quantum Communications, QCQC’98, Palm Springs, vol. 1509, Lecture Notes in Computer Science, pp. 174–188. Springer, Heidelberg (1998)

  30. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Shor, P.W.: Algorithms for quantum computation: discrete logarithm and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, Los Alamitos. Institute of Electrical and Electronic Engineers Computer Society Press (1994)

  32. Steidl, G.: Generalization of the algebraic discrete Fourier transform with application to fast convolutions. Linear Algebra Appl. 139, 181–206 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yoran, N., Short, A.J.: Efficient classical simulation of the approximate quantum Fourier transform. ArXiv quant–ph/0611241 (2006) (preprint)

  34. Zilic, Z., Radecka, K.: Scaling and better approximating quantum Fourier transforms by higher radices. IEEE Trans. Comput. 56(2), 202–207 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rötteler.

Additional information

Thomas Beth passed away on August 17, 2005. The results presented here had been obtained in joint work with him and had been included into the first author’s Ph.D. thesis. These results have not been published yet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rötteler, M., Beth, T. Representation-theoretical properties of the approximate quantum Fourier transform. AAECC 19, 177–193 (2008). https://doi.org/10.1007/s00200-008-0072-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-008-0072-2

Keywords

Navigation