STRUCTURAL THEOREMS FOR SYMBOLIC SUMMATION

CARSTEN SCHNEIDER

ABSTRACT. Starting with Karr’s structural theorem for summation —the dis-
crete version of Liouville’s structural theorem for integration— we work out
crucial properties of the underlying difference fields. This leads to new and
constructive structural theorems for symbolic summation. E.g., these results
can be applied for harmonic sums which arise frequently in particle physics.

1. INTRODUCTION

In [21, 22] M. Karr developed a summation algorithm in which indefinite nested
sums and products can be simplified. More precisely, such expressions are rephrased
in a IIY-field F, a very general class of difference fields', and first order linear
difference equations defined over IF are solved by Karr’s algorithm. In this way,
one can decide constructively, if a given indefinite sum or product with a summand
or multiplicand f from [F can be expressed in terms of F. For instance, given
F = Q(k)(S1(k), Sa(k), S3(k)) where S,(k) = Zle 4 denotes the generalized
harmonic numbers of order » > 1 and given

Fky = (S2B) (k1) 4 1) S3(k) + 1 (B) ((k +1)S3(k) = S (k))
Ss(k) (Ss(k)(k +1)% + 1)
Karr’s algorithm decides constructively if there is an antidifference g € F for f, i.e.,

g(k+1) —g(k) = f(k); (1)

In our concrete example, the algorithm produces the solution g(k) = %(%)(k)

clF,

Then summing the telescoping equation (1) over k leads to the simplification

Zk:f@ _ Sa(k)(k+ 1) + S (k) (So(R)(k+1)° +k+1) +1 Ler

Ss(k)(k+1)3+1

This framework and extensions [42, 43, 44, 23, 48, 24, 45, 25] generalize, e.g., the
(¢-)hypergeometric algorithms presented in [1, 18, 54, 34, 32, 35, 33, 5, 20, 3], they
cover as special case the summation of (¢—)harmonic sums [10, 51, 29, 11] arising,
e.g., in particle physics, and they can treat classes of multi-sums that are out of
scope of, e.g., the holonomic approach [53, 52, 15, 14].

Karr’s algorithm can be considered as the discrete analogue of Risch’s algo-
rithm [36, 37] for indefinite integration. Here the essential building blocks of ex-
ponentials and logarithms can be expressed in terms of an elementary differential
field IF, and Risch’s algorithm can decide constructively, if for a given f € IF there
exists an antiderivative g € IF, i.e.,

D(g) = f; (2)
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1Throughout this article all fields contain the rational numbers @ as subfield.
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here D denotes the differential operator acting on the elements of IF. In this regard,
Liouville’s theorem of integration, see e.g. [28, 31, 38], plays an important role. In a
nutshell, it states that for integration with elementary functions it suffices to restrict
to logarithmic extensions, i.e., one can neglect exponential and algebraic function
extensions; for an explicit formulation we refer to Section 2.1. In particular, Risch’s
algorithm provides a constructive version of Liouville’s theorem: his algorithm finds
such an extension in terms of logarithms for a given input integral, or it outputs
that there does not exist such an extension in which the integral is expressible.

Inspired by Rosenlicht’s algebraic proof [38] of Liouville’s Theorem, Karr could
derive a structural theorem for symbolic summation [21, 22]. To be more precise, he
refined his ITX-difference field theory to the so-called reduced and normalized I13-
fields in which a discrete version of Liouville’s theorem is applicable. For instance,
given IF from above and given f(k) € Q(k), any solution g(k) € IF of (1) has the
form

g(k) = w(k) + c151(k) + c2S2(k) + c353(k) (3)

for some w(k) € Q(k) and c1,c2,¢3 € Q.

In the following we consider II1¥*-extensions and II1X*-fields being slightly less
general than Karr’s II¥X-fields [21], but covering all sums and products treated
explicitly by Karr’s work. For such II¥X*-extensions we shall be able to make Karr’s
structural theorem constructive: based on the algorithm given in [40] we show
that any IIX*-field can be transformed to a reduced IIX*-field in which Karr’s
structural theorem can be applied. In addition, we complement Karr’s structural
results by taking into account the nested depth of the recursively defined II3*-
extensions: we present in detail how Karr’s reduced II¥*-extensions can be used
to simplify the nested depth of a given sum expression. Finally, we relate these
results with the difference field theory of depth-optimal IIX*-fields that have been
introduced recently [41, 47, 49]. Comparing Karr’s approach and depth-optimal
[I¥*-extensions we obtain additional insight in IT3-difference field theory and we
derive new structural theorems that contribute in the field of symbolic summation.

We stress that the suggested results and the underlying algorithms implemented
in the summation package Sigma [46] play an important role in the simplification of
d’Alembertian solutions [30, 2, 39], a subclass of Liouvillian solutions [19] of a given
recurrence relation. In this regard, special emphasize is put on the simplification of
harmonic sum expressions that arise frequently in particle physics; we refer to [6,
7, 8] for typical examples in the frame of difference fields.

The general structure of this article is as follows. In Section 2 we state Liouville’s
structural theorem, and we relate it to Karr’s results in terms of reduced ITX*-fields.
In Section 3 we work out the crucial properties of reduced II¥*-extensions, and in
Section 4 we show that any II¥*-field can be transformed algorithmically to a
reduced I1X*-field. In Section 5 reduced extensions are refined to complete-reduced
extensions. In Section 6 we focus on structural theorems that bound the nested
depth of a telescoping solution; it turns out that this is only possible if the reduced
extensions are built up in a particular ordered way. Finally, in Section 7 we relate
depth-optimal II¥*-extensions to reduced and complete-reduced IT¥X*-extensions.
We present structural theorems that are independent of the order of the explicitly
given tower of extensions.
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2. LIOUVILLE’S AND KARR’S STRUCTURAL THEOREMS

We start with a short outline of Liouville’s theorem for differential fields and
relate it to Karr’s achievements for the discrete analogue of difference fields.

2.1. An outline of Liouville’s Theorem. Let (IF, D) be a differential field, i.e.,
IF is a field with a function D: F — [ such that D(a +b) = D(a) + D(b) and
D(ab) = D(a)b+ aD(b) for all a,b € F; D is also called differential operator. The
set of constants is defined by constpF = {c¢ € F|D(c) = 0}; note that constplF
(also called constant field) forms a subfield of IF which contains Q. A differential
field (I, D) is called a differential field extension of a differential field (IF, D) if TF is
a subfield of IE and D(a) = D(a) for all a € IF; subsequently, we do not distinguish
anymore between D and D. Finally, a differential field extension (IF(t), D) of (IF, D)
is called elementary, see, e.g., [12, Def. 5.1.3] if ¢ is algebraic over IF or if ¢ is
transcendental over IF and

(1) D(t) = D(b)/b for some b € F* (a logarithm)

(2) D(t)/t = D(b) for some b € IF (an exponential).

In addition, an extension (F(t1)...(t.),o0) of (IF,0) is called elementary, if it is a
tower of elementary extensions. Then Liouvillian’s Theorem reads as follows.

Theorem 1. [Liouville’s Theorem] Let (IE, D) be an elementary extension of (IF, D)

with constplE = constpF, and let f € F. If there is a g € E with (2), then there
arew €F, ¢1,...,¢, € constplF and f1 ..., fn € F* such that

f=D(w)+ ZczDgZ)

In other words, it suffices to search for a solution g with (2) in logarithmic exten-
sions, and one can neglect algebraic or exponential extensions.

Remark 2. Liouville’s Theorem has been observed already by Laplace [27, p.7] —
but the first precise formulation together with a proof based on analytic arguments
has been given by Liouville [28]. In particular, the first algebraic proof in terms
of differential fields has been provided by [31]; a complete proof dealing also with
algebraic extensions has been accomplished by Rosenlicht [38]. For an extensive
list of literature and generalizations/refinements, like e.g. [50], we refer to [12].

To this end, Risch’s algorithm [36, 37] can be considered as a constructive break-
through of Liouville’s structure theorem. For instance, let (IF, D) be a differential
field with IK = constpIF given by a tower of elementary transcendental extensions
over the differential field (K(z), D) with D(x) = 1. Then Risch’s algorithm can
decide in a finite number of steps, if for a given f € I there exists a tower of
elementary transcendental extensions (IF(t1) ... (t.), D) of (I, D) in which we have
g with (2); in particular, if such an extension exists, it computes such w, f; and ¢;
as given in Theorem 1. For a detailed description of this algorithm see [12].

2.2. Karr’s Summation theorems. M. Karr [21, 22] developed a theory of II3-
difference fields which can be considered as the discrete version of elementary tran-
scendental extensions (whose constant fields remain unchanged). In this context
we need the following definitions. Let (IF,0) be a difference field, ie., T is a
field and o: F — IF is a field automorphism, and define the set of constants by
const,IF := {c € F|o(c) = ¢}; as in the differential case, const,F forms a subfield
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of IF which contains Q; const,F is also called the constant field of (IF, o). In such
a difference field we define the forward difference operator as follows: for a € T,

A(a) :=o(a) — a.

A difference field (IE, ) is a difference field extension of a difference field (I, o) if F
is a subfield of IE and 6(a) = o(a) for all a € IF; subsequently, we do not distinguish
between o and & anymore.

In the following we introduce IIYX*-extensions being slightly less general than
Karr’s TIX-fields [21], but covering all sums and products treated explicitly by
Karr’s work. A difference field extension (IF(t), o) of (IF, o) is a IIX*-extension if ¢
is transcendental over IF, const,IF(¢) = const,F and one of the following holds:

(1) A(t) = b for some b € F* (a X*-extension)

(2) o(t)/t = b for some b € F* (a I-extension).

(F(t1)...(te),0) is a IIX*-extension (resp. L*-extension, II-extension) of (IF, o) if
it is a tower of such extensions (this implies that const,IF(t1) ... (t.) = const,IF).
A difference field (K(¢1)...(t.),o) is a IIX*-field over K if (K(t1)...(t.),0) is a
II¥*-extension of (I, o) and const,K = K.

Ezample 3. We rephrase Q(k)(S1(k), S2(k), S3(k)) from Section 1 in terms of a
II¥*-field (F, o) as follows. Consider the difference field (Q, o) with o(q) = ¢
for all ¢ € @, ie., const, = Q. Now take the rational function field Q(k)
and extend the field automorphism ¢ to o: Q(k) — Q(k) by o(k) = k + 1; note
that o is uniquely determined in this way. Since const,Q(k) = const,Q = @,
(Q(k), o) forms a X*-extension of (Q, o). Similarly, we can define (uniquely) the
difference field extension (Q(k)(s1),0) of (Q(k),o) such that s; is transcendental
and o(s1) = s1 + k%_l Again, since (Q(k)(s1),0) = @, this forms a ¥*-extension.
We can continue in this way and obtain the ¥*-extension (IF,o) of (Q,0) with
the rational function field F = Q(k)(s1)(s2)(s3) and with the field automorphism
o: F — IF uniquely defined by

ok)=k+1, o(s1)= SH‘%H? o(s2) = 82+7(kj1)2, o(s3) = 83+7(kj1)33 (4)
since const,F = @, (IF, o) is a IIX*-field over Q.

Remark 4. Note that, e.g., log(z) with Dlog(z) = 1 and the harmonic num-
bers Si(k) = Zle% with A(S1(k)) = T}H are closely related; in particular
limg 00 (Hy — log(k)) = 7 where v = 0.5772... denotes Euler’s constant. Sim-
ilarities between elementary unimonomial extensions and II¥*-extensions in the
algebraic setting of difference/differential fields are worked out, e.g., in [13].

As it turns out, the discrete version of Liouville’s structural theorem in the
context of IIX*-extensions can be stated in the following surprisingly simple form: a
sum of f € IF is either expressible in IF or it can be represented by one X *-extension;
in particular, one can neglect II-extensions. This follows by the following result.

Theorem 5 ([21]). Let (TF(t), o) be an extension of (F, o) with o(t) = t+f for some
f € F. Then this is a ¥*-extension iff there is no g € F such that o(g) =g+ f.

Namely, let (F,o) be a difference field with f € . Then either there exists a
solution? g € T of the telescoping equation

Alg) = 1 ()

2Note that the telescoping problem (1) is rephrased in the algebraic setting of difference fields.
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or if not, there is the £*-extension (IF(t), o) of (F, o) with o(¢) = t+ f by Theorem 5,
i.e., t forms a solution of (5).

Similarly to Risch, Karr developed an algorithm in [21] which makes these ob-
servations constructive. Given a II¥*-field (IF, o) over K and given f € IF, decide
in finitely many steps if there exists a g € IF such that (5); if yes, output such a g.

Ezample 6. We start with the IIX*-field (T, o) from Example 3. Now take f =
(%) € F. Using, e.g., Karr’s algorithm, or the simplified version [44] imple-
mented in the summation package Sigma, one can check that there is no g € ¥
such that (5). Hence we can construct the X*-extension (F(s1,3),0) of (IF,0)
with o(s13) = s13 + f. Completely analogously, we can construct the differ-
ence field extension (IF(s1,3)(e)(s6,1,3),0) of (I, o) with the rational function field
F(3173)(6)(8671’3) and with

o(s3) o(e) = o(s2) o(s3) o(s13) | (©)
k+1’ k+1 (k+1)8’

in particular, we can check algorithmically that this extension forms a tower of ¥X*-
extensions by verifying iteratively the non-existence of solutions of the correspond-

ing telescoping problems. Note also that one can verify by the same mechanism
that the base field (IF, o) constructed in Ex. 3 forms a IIX*-field over Q.

o(s1,3) =s1,3+ e+ , 0(86,1,3) = S6,1,3+

Remark 7. The extensions s3, s1,3 and sg,1,3 in Example 6 represent the harmonic
sums S3(k), S13(k) and Sg.1,3(k), respectively, which are defined as follows [10, 51]:

for positive integers my,...,m, € N\ {0},
k il 7;7*—1
1 1 1
Smh...,mr(k) = Z i Z ime e Z imT;
=1 1  4p=1 "2 ie=1 "

e.g., the shift Sy s(k + 1) = S1,3(k) + % is reflected by o(s1,3) = s1.3 + @
In this way, also the truncated Euler sum [17] Zle M is rephrased by e.
Similarly, g—analogues of harmonic sums [4, 16, 11] can be formulated in ITX*-fields.

2.3. Karr’s Structural theorem. In [21, 22] Karr arrives at the following con-
clusion: one can predict the structure of a solution g for (5) in a refined version of
IIX-fields; see [22, page 314]. For IIX*-extensions this refinement reads as follows.

Definition 8. A IIX*-extension (F(t1)...(t.),0) of (I, o) is called reduced over TF
or in short reduced if for any Y*-extension ¢; with f := A(t;) € F(t1)... (ti—1) \ F
the following property holds: there do not exist a g € F(¢1)...(¢t;—1) and an f' € F
such that

Alg)+f' =1 (7)

The following special case is immediate.

Lemma 9. Let (IF(t1)...(t.),0) be a IIX*-extension of (F,o) with o(t;) —t; € F
oro(t;)/ti € F for 1 <i<e. Then this extensions is reduced.

In Section 4 we provide an algorithmic approach which enables one to check whether
a IIX*-extension is reduced. In particular, if this is not the case, this machinery
automatically transforms the given extension to an isomorphic difference field which
is built by a tower of reduced II¥*-extensions; see Theorem 24. In other words,
one can always apply the following structural theorem (in a given reduced IT¥*-
extension or in an isomorphic extension which is reduced).
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Theorem 10. [Karr’s structural theorem] Let (IE, o) be a reduced IIX*-extension
of (F,0) with E =TF(t1)...(t.) and o(t;) = a; t; + f;, and define>
S:={1<i<elA(t;) €T} (8)
let f € F. If there is a g € IE with (5), there are w € IF and ¢; € const,IF s.t.
f=Aw)+ Zcz‘fi; (9)
€S
in particular, for any such g there is some c € const,IF such that
g=c+w+Zciti- (10)
€S
For a proof in the context of IIX-fields we refer the reader to [22, Result, page 315],
and for the corresponding proof for reduced I1¥*-extensions as given in Theorem 10
we refer to [39, Thm 4.2.1]; the proofs follow Rosenlicht’s proof strategy [38] of
Liouville’s Theorem.

We emphasize that Karr’s result exceeds Liouville’s theorem in the following
sense: given a reduced ITX*-extension (IE,o) of (IF, o) and given f € IF one can
forecast to a certain extend how the solution g € IE is composed; for a typical
application see e.g. page (4).

FEzample 11. Consider the IIX*-field (F,0) over @ with F = Q(k)(s1)(s2)(s3)
and (4). Note that (TF,0) is a reduced IIX*-extension of (Q(k),o); see Lemma 9.
Hence by Theorem 10 any solution g € IF of (5) for a given f € Q(k) is of the form

g = 1w+ cy 51+ Co 59+ c3 53 for some w € Q(k) and ¢y, ca,c3 € Q. (11)
for a precise formulation, how (3) and (11) are related we refer to [48, 49]

Ezample 12. Start with the IIX*-field (IF, o) over Q from Example 11, and consider
the ¥*-extension (FF(s1,3)(e)(s6,1,3),0) of (IF, o) with (6) from Example 6; later we
can check that this extension is reduced over IF; see Example 30. Hence for any
g € F(s1,3)(e)(s6,1,3) with (5) for some f € I it follows that

g=w+cis13+c2e for some c¢1,c5 € Q and w € F. (12)

Ezample 13. Again, start with the IIX*-field (IF, o) over Q from Example 11, and
consider the X*-extension (IF(s1,3)(e)(s2,1,3),0) of (IF, o) with

- 0'(83) - 0(82) 0'(83) - 0'(8173)
o(s13) =s13+ L ole)=e+ kil S$2,1,3 = 82,13+ E+1)2
In this instance, the extension is not reduced. E.g., for f = % there is
g=—55+2+5 —251350+25213 (13)

s.t. (5): if this extension were reduced, g should be free of s213 and g should
contain s; 3 only in the form cs; 3 for some ¢ € Q by Theorem 10.

Remark 14. Reinterpreting the variables in f and g of the previous example as
harmonic sums and summing (1) over k lead to the following identity: for k > 0,

k .5 k . .

541 S,()S
> ! = —Ss(k)®+2) M + Sy (k) — 2513(k)Sa(k) + 2 521 3(k).
i=1 =1

3Note that S consists of exactly those ¢ such that ¢; with f; = A(¢;) € F is a ¥*-extension.
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Obviously, the obtained right hand side is more complicated (i.e., consists of sums
with higher nesting depth) than the given left hand side. In Sections 6 and 7 we
work out in details why this is the case in general; for our particular case see Ex. 36.

2.4. A simple structure theorem for II¥*-extensions. We conclude this sec-
tion with the following simple “structural theorem” which is valid for any II¥*-
extension. Let (IE,0) be a IIX*-extension of (I, o) with the rational function field
E:=TF(1)...(t) and o(t;) = a;t; or o(t;) =t;+a; for 1 <i <e;let f € E. Then
we define the set of leaf extensions which are free of f by

Leafp<g(f) := {t:|t; does not occur in f and a;y1,...,a.},
and we define the set of inner node extensions or extensions that occur in f by

InnerNodep<g(f) := {t1,...,te} \ Leafp<gr(f);
those extensions which are Y *-extensions are denoted by

SumLeafp<i(f) := {t € Leafp<i(f)|t is a X"-extension}.

We denote all ¥*-extensions being leafs by SumLeafp<p := SumLeafp<g(1).

At this point the following remark is in place. If there is a permutation 7 € S, such
that a ;) € F(t;1)) ... (tr—1)) for all i with 1 <i <e, then (F(t;(1)) ... (tr()), 0)
forms again a IIX*-extension of (IF,o). In particular, one can reorder the IT¥:*-
extension (E, o) of (F,o) with f € E to (F(x1)...(x.)(y1) ... (ys),o) such that

InnerNodep<g(f) = {z1,..., 2} (14)

and Leafr<g(f) = {y1,...,¥s}; note that o(y;)/y; € F(z1)...(2,) or o(yi) —yi €
F(z1)...(z,) for 1 <i <s. Hence by Lemma 9 (F(z1)...(z,)(y1)...(ys),0) is a
reduced ITX*-extension of (IF(z1)...(z,),0). Thus we can apply Theorem 10, and
we arrive at the following result.

Theorem 15. Let (IF,0) be a IIX*-extension of (F,o0) with f € E and define
{z1,..., 2} by (14). If there is a g € B such that (5), then

g= Z coa+w for some ¢, € const,IF and w € F(xq,...,2,.).
a€SumLeafp < (f)

Ezample 16. Consider the II¥*-field (IE,0) over @ from Example 13 with E =
Q(k)(s1)(s2)(s3)(s1,3)(e)(s2,1,3), and have a look at the solution (13) of (5) for
f= (k+1)°+1
(k+1)°
linear combination over @ in terms of the variables SumLeafg<g(f) = {s1,¢€, 52,13}

plus one expression from Q(k, sz, $3,51,3)-

. Then, as predicted in Theorem 15, the solution (13) is given by a

Combining Theorem 20 with Theorem 15 we arrive at
Theorem 17 (A refinement of Karr’s structural theorem). Let (IE, o) be a II3*-
extension of (IF,0), let (E(t1) ... (te),0) be a reduced IIX*-extension of (B, o) and
let f € E. Define S = {1 < i < elA(t;) € E} = {i1,...,i,} and consider
the X*-extension (H,o) of (E,o) with H = E(t;,) ... (t,); define {x1,..., 2.} :=
InnerNodep<m (f). If there is a g € E(t1,...,t.) such that (5), then?

g= Z cea+w  for some ¢, € const,F and w € F(xy,...,2,.).
a€SumLeafp <y (f)

4Note that S C SumLeafg<p(f), i.e., Theorem 17 refines Theorem 20.
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Ezample 18. Consider the II¥*-field (F(s1,3)(€)(S6,1,3),0) from Example 12, and
let

k‘3+3k‘2+3k‘—82—(k—l—l)(ki(/f—‘rQ)(Sg—4)—|—82—5)83+5 c

(k+1)*

Following Theorem 17, we define S = {s; 3, e}, and we get SumLeafq <y (s, 4)(e)(f) =
{51,813, ¢} and InnerNodeg<p(s, 5)(e)(f) = {k,s2,53}. Hence, if there is a g €
F(s1,3)(€e)(s6,1,3) such that (5), then g = w+c1 s1+¢2 51,3+ ¢3 e for some ¢, 2, ¢3 €
Q and w € Q(k, s2, s3). Note that our prediction refines the version given in (12).
Indeed, we find g = s3 + s; + 4s1 3 —e.

F.

f=

3. EQUIVALENT CHARACTERIZATIONS OF REDUCED II¥X*-EXTENSIONS

We work out alternative characterizations whether a II¥*-extension (E, o) of
(F, o) is reduced. Here we need the following lemma.

Lemma 19. Let (F(t),0) be a *-extension of (F, o) with o(t) =t+ f and K :=
const,IF, and let f' € IF. Then there are ¢ € K and g € IF such that

Alg)+cf' =f (15)

iff there is a X*-extension (F(s),0) of (F,o) with o(s) = s+ f' in which we find
g € F(s) such that (5).

Proof. Suppose that there are a ¢ € IF and ¢ € K such that (15), and assume
in addition that there is a ¢’ € TF such that A(¢’) = f’. Then A(q) = f with
q =g+ cg €T, a contradiction that (IF(t),0) is a X*-extension of (IF,o) by
Theorem 5. Hence (F(s),o) is a Y*-extension of (I, o) by Theorem 5. Besides
this, for h:= g+ cs we have A(h) = A(g)+cf = f.

Conversely, suppose that there is a X*-extension (F(s),o) of (F,o) with o(s) =
s+ f’ together with a g € F(s) as in (5). By Theorem 10, g = ¢s + w for some
weET and ¢ € K. Thus, f =A(g)=w+cf'. O

Theorem 20. Let (IE,o0) be a IIX*-extension of (F, o) with & = F(t1)...(t.) and
define S as in (8). Then the following statements are equivalent.

(1) This extension is reduced.

(2) For any g € E with A(g) € F we have (10) for some ¢; € const,F and w € TF.

(8) For any ¥*-extension t; with f := A(t;) and i ¢ S the following property holds:
There does not exist a X*-extension (F(t1) ... (ti—1)(s),0) of (F(t1)...(ti—1),0)
with A(s) € F in which we have g with (5).

Proof. (1) = (2) follows by Theorem 10. Now suppose that (F(t1)...(t.),0) is
not a reduced IIX*-extension of (IF, o). Then there is an ¢ with 1 <4 < e such that
fi=A;) € F(t1,...,t;—1) \IF and (7) for some ' € IF and g € F(t1)... (ti—1)-
Hence, we obtain A(g") = f’ with ¢’ := t; — g, and thus (2) does not hold. This
proves the equivalence of (1) and (2). Equivalence (1) < (3) is an immediate
consequence of Lemma 19. (]

Ezample 21. Consider the IIX*-extension (Q(k)(s1)(s2)(s3)(s1,3)(€)(s2,1,3),0) of
(Q(k)(s1)(s2)(s3),0) from Ex. 13 which is not reduced. Thm. 20 explains why

_ (R1)41 :
we can find, e.g., f = “g3gye with (13) s.t. (5). Equivalently, we can take the

Y*-extension (Q(k)(s1)(s2)(s3)(s1,3)(e)(s),0) of (Q(k)(s1)(s2)(s3)(s1,3)(e),0) with
o(s) = s+ f such that we get A(h) = f with h = (s + s3 — 2e — s1 + 251 352).
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In summary, exactly reduced II¥*-extension guarantee that Theorem 10 holds
(equivalence (1)<(2)). In particular, it relates reduced II¥*-extensions to certain
refined X*-extensions (equivalence (1)<(3)). This observation will be crucial to
relate reduced IIX*-extension to depth-optimal II¥X*-extension; see Section 7.

4. CONSTRUCTIVE ASPECTS OF REDUCED IIYX*-EXTENSIONS

In [21] it has been outlined that any II¥*-extension (IE, o) of (IF, o) can be trans-
formed in principle to a reduced version. Subsequently, we make this more precise
in terms of difference field isomorphisms, and we show how such a transformation
can be carried out algorithmically. As a consequence, one can always apply Karr’s
structural Theorem 10 constructively in the given extension or in the corresponding
transformed one.

7: F — ' is called a o-isomorphism (resp. o-monomorphism) between two
difference fields (IF, o) and (F’,0’) if 7 is a field isomorphism (resp. field monomor-
phism) and 7(o(f)) = o'(7(f)) for all f € F. In particular, let (E,o) and
(E/,¢’) be difference field extensions of (IF,o). Then a o-isomorphism (resp. o-
monomorphism) 7: E — E’ is a an F-isomorphism (resp. F-monomorphism) if
7(a) = a for all a € IF. We start with the following two lemmas.

Lemma 22. Let (F(t),0) be a X*-extension of (F,o0) with o(t) =t + f, and let
/' € and g € F such that (7). Then there is a ¥*-extension (F(s),o0) of (F,o)
with o(s) = s+ f' together with an F-isomorphism 7: F(t) — F(s) with 7(t) = s+g.

Proof. By Lemma 19 there is the X*-ext. (IF(s), o) of (IF, o) with o(s) = s+ f'. Take
the field isomorphism 7: IF(¢) — IF(s) with 7(h) = h for all h € F and 7(¢) = s+g.
By 7(o(t)) =7(t+f)=7(t)+ f=s+g+f=s+cf +olg) =o(s+g) =a(7(t)
it follows that 7 is an IF-isomorphism. ([l

Lemma 23. [[47, Prop. 18]/ Let (F,o), (F',0’) be difference fields with a o-
isomorphism 7: F — T’; let (F(t),0) be a IIX*-ext. of (F, o) with o(t) = at+ S.
Then there is a IIX*-extension (F'(t'),0) of (F',0) with o(t') = 7(a)t’ + 7(5)
together with an o-isomorphism 7": E — E s.t. 7'|p =7 and 7/'(t) = t'.

By iterative applications of Lemmas 22 and 23 each II¥X*-extension can be trans-
formed to an isomorphic reduced II¥*-extension; see Theorem 24. In particular,
this construction can be given explicitly if one can solve the following problem.

Problem RS (Reduced Summation): Given a IIX*-extension (F(¢1)... (t.),o) of
(F,o0), and given f € TF; find g € F(t1)...(t.) and [ € F(t1)...(t;) as in (7)
such that ¢ with 0 <4 < e is minimal.

In the following we call a difference field (IF, o) RS-computable, if one can solve
problem RS for any IT¥*-extension (F(ty)... (te), o) of (IF,o) and for any f € F.

Theorem 24. For any IIX*-extension (H,o) of (F,o) there is a reduced II13*-
extension (E, o) of (F, o) and an F-isomorphism 7: H — E. Such a TIX*-extension
(E,0) of (F,0) and T can be given explicitly, if (F,o) is RS-computable.

Proof. The induction base is trivial. Suppose that we are given a II¥*-extension
(H,o0) of (F,0) with H := F(x1)...(z.) and a reduced II¥X*-extension (I, o) of
(F,0) with I := F(t1) ... (te) together with an F-isomorphism 7: H — . Now
consider the ITX*-extension (H(x),c) of (H,o) with o(z) = axz + 3, and take
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Algorithm 1 ToReducedField(F(ty)... (te), k)
In: A II¥X*-extension (F(t1)...(te),0) of (F,0) with o(t;) = a;t; + b; for 1 <i < e;
(F, o) is RS-computable.
Out: A reduced I1X*-extension (F(z1)...(xc),0) of (IF, o), and an F-isomorphism
T:F(t1) ... (te) = F(z1) ... (ze).
1 Let 7: F — IF be the identity map.
2FOR i =1 to e DO
3 Set a:=7(a;); f:=7(bs); h = ;.
4 IF t; is a X" -extension (a; = a = 1) THEN
5 Let f' € F(z1)...(z;) \F(z1)...(zj-1) and g € F(z1) ... (xi—1)
be the result of problem RS for f and (F(z1)...(xi-1),0).
IF j =0, THEN Set f := f'; h:=x; + g FI

(=]

7 FI

8 Construct the ITX*-extension (F(x1)...(x;),0) of (F(z1)...(xi—1),0) with
o(z;)) =ax;+ f;extend 7: F(t1) ... (tic1) = F(z1) ... (zi—1) to the
F-isomorphism 7: F(¢1) ... (¢;) — F(z1) ... (z;) by 7(t;) = h. OD

9 RETURN ((F(z1) ... (ze),0),7).

the II¥*-extension (E(t),o0) of (E,o0) with o(t) = 7(a)t + 7(8) by Lemma 23; in
particular, we can take the F-isomorphism 7': H(z) — E(¢) with 7(z) = ¢ and
7/(h) = 7(h) for all h € H. If (E(t),0) is a reduced IIX*-extension of (IF, o), we are
done. If not, & = 1, and for f := 7(8) € E there are g € [E and [’ € I such that (7).
Note: if (IF, o) is RS-computable, we can solve problem RS, and we get such f’ and
g explicitly. Then by Lemma 22 there is a X*-extension (IE(t'),0) of (IE,o) with
o(t") = '+ f' together with an F-isomorphism 7" : E(t) — E(t') with 7/ (t) = ct'+g
and 7"(h) = 7/(h) for all h € E. Note that by construction (E(t),0) is a reduced
[T *-extension of (I, o), and p := 7" o 7’ is an F-isomorphism from H(z) to E(t').
In particular, if 7: IH — IE and ¢ are given explicitly, also p: H(x) — E(¢') can be
given explicitly with p(z) = ¢ + g and p(h) = 7(h) for all h € H. O

As a consequence, we obtain Alg. 1; the correctness follows by the proof of Theo-
rem 24. From the applicational point of view we rely on the following algorithm [40,
Algorithm 1]. Namely, due its generic specification, e.g., the following classes of
difference fields (IF, o) are RS-complete, i.e., Algorithm 1 can be executed in the
summation package Sigma [46]: (IF, o) is a II¥*-field or it is II¥X*-extension over a
free difference field [23] or over a difference field containing radicals [24], like V/&.

Ezample 25. Consider the IT¥*-field (Q(k)(s1)(s1,1)(51,1,1),0) over Q with

k=k+1, o(s1) = s1+ 5, o(s10) = s11+582, o(s11.0) = 5100+ 22 (16)
By Thm. 20 the extension is not reduced: we find, e.g., for f = ﬁ the solution

g = .5:1s — 35171 S1 + 35171,1 (17)
of (5). We transform this extension to a reduced one as follows.

(1) We start with the IIX*-field (Q(k), o) over Q with o(k) = k + 1 and take the

Q-isomorphism 7: Q(k) — Q(k) with 7(f) = f for all f € Q(k).
(2) Now we apply our algorithm for problem RS with f = %H: since we do not
find f/ € Q and g € Q(k) (by executing the implementation of Sigma), it
follows that (Q(k)(s1),0) is a reduced IIX*-extension of (Q(k),o). Hence we
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keep (Q(k)(s1),0) and extend the Q-isomorphism from Q(k) to 7: Q(k)(s1) —
Q(k)(s1) with 7(s1) = s1, i.e., 7(h) = h for all h € Q(k)(s1).

(3) We apply our algorithm for problem RS for f = % in (Q(k)(s1),0) and
find f/ = 2(k_7+11)2 and g = %s% By Lemma 22 we can take the ¥*-extension
(Q(k)(s1)(s2),0) of (Q(k)(s1),0) with s5 = s9 + ﬁ; by construction it
follows that (Q(k)(s1)(s2),0) is a reduced extension of (Q(k), o). Moreover, we
can extend the isomorphism 7 to 7: Q(k)(s1)(s1,1) — Q(k)(s1)(s2) with

1
’7'(8171) = 5 (S% + 82) . (18)
(4) Finally, we solve RS for f = T(Ué‘}f)) in (Q(k)(s1)(s2),0) and find f’ = m

and g = & (s} + 3s251). Hence we can define the S*-ext. (Q(k)(s1)(s2)(s3), o) of
(QUE)(51)(52). ) with (55) = 53+ by by construction, (QK)(s1)(52)(53). )
is a reduced extension of (Q(k), o), and we can extend our Q-isomorphism to

70 Q(k)(s1)(s1,1)(51,1,1) — Q(k)(51)(s2)(s3) With

1
T(s111) = g (51 + 3s251 +2s3) . (19)
Note that h = s3 is a solution of A(h) = ﬁ and consequently, 771(h) (which

is nothing else than (17)) is a solution of A(r~1(h)) = T’l(ﬁ) = ﬁ

Remark 26. Reinterpreting s1,51,1,51,1,1 in Ex. 25 as harmonic sums leads to the
following identities which are reflected by (18) and (19): for k € N,

1 1
S1a(k) = 3 (S1(k)* + Sa(K)), Siaa(k) = 6 (S1(k)? + 355 (k) Sy (k) + 2S3(k)) ;
these identities occur, e.g., in [10] or in [16, Cor. 3] combined with [26, Prop. 2.1].

We remark that any F-isomorphism is of this shape due to the following lemma;
note that the product case is analogous, see [43, Prop. 4.4 and 4.8].

Lemma 27. Let (F(t),0) and (F(s), o) be X*-extensions of (IF, o) with o(t) = t+ f
and o(s) = s+ f', and let K := const,F. If 7: F(t) — F(s) is an F-isomorphism,
there are g € F and ¢ € K* as in (15) such that 7(t) = cs+g.

Proof. Let 7: F(t) — F(s) be an F-isomorphism. Note: A(7(t)) = 7(A(t)) =
7(f) = f. By Thm. 10 7(t) = ¢s+ g for some g € F and ¢ € K, and thus (15). O

Application: Suppose we are given a II¥*-extension (F(x1)...(x.), o) of a IT¥*-
field (TF, o) over K, and one has to compute solutions g € F(xy) ... (z.) of (5) for
various instances of f € IF. Then the following strategy is straightforward. Com-
pute once and for all a reduced IIX*-extension (F(t1). .. (t.),0) of (IF, o) together
with an F-isomorphism 7: (z1) ... (z.) — F(¢1) ... (te); define S as in (8) and set
fi == A(t;) € F fori € S. Then for each summand f € F we can apply Theorem 10
as follows: it suffices to look for ¢; with i € S and w € FF such that

Aw)=f+ cifi
icS
note that this problem (among others) can be solved with Karr’s algorithm [21] or
our simplified version [44]. Then given such a solution, one gets the solution (10)
for (5). Hence with ¢’ := 771(g) € F(z1)...(x,) we get the required solution
Ag') = £, since A(g') = A(r7H(g)) =771 (A(g)) =7"1(f) = £.
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5. COMPLETE-REDUCED IIX*-EXTENSIONS

We refine reduced I1X*-extension to complete-reduced ITX*-extensions as follows.

Definition 28. A TIX*-extension (IF(t1)...(te),0) of (IF,o) is called complete-re-
duced over TF or in short complete-reduced if for any ¥*-extension ¢; (1 < i < e)
with f := A(t;) and r with f € F(t1) ... (t)\IF(¢1) ... (t,—1) the following property
holds: there are no g € F(¢1) ... (t;—1) and f’ € F(t1) ... (fr—1) such that (7).

The proof of the following theorem is analogously to the proof of Theorem 24. The
resulting algorithm is just Alg. 1: the only difference is that one always executes
line (6) independently whether j is 0 or not.

Theorem 29. For any IIX*-extension (H, o) of (IF, o) there is a complete-reduced
II%*-extension (E,o) of (F,o0) and an F-isomorphism 7: H — E. Such a IIX*-
extension (IE,0) of (F,o0) and 7 can be given explicitly, if (IF,o) is RS-computable.

Ezample 30. (1) In Ex. 25 we got for the IIX*-field (Q(k)(s1)(s1,1)(s1,1,1),0)
with (16) the isomorphic II¥*-field (Q(k)(s1)(s2)(s3),0) with (4). Since in each
step we solved problem RS, the resulting extension is complete-reduced.

(2) Take the II¥*-field (Q(k)(s1)(s2)(s3)(s1,3)(e)(s6,1,3),0) with (4) and (6). Solv-
ing problem RS for each extension shows that the extension is complete-reduced.

Theorem 20 can be carried over to complete-reduced extensions as follows.

Theorem 31. Let (IE,0) be a [IX*-extension of (IF,0) with E := F(t1)...(te).
Then the following statements are equivalent.

(1) This extension is complete-reduced.

(2) For anyi,j with1 <i<j<e, (F(t1)...(t;),0) is a reduced IIE*-extension of
(F(t1) ... (t:),0).

(3) For any j (1 <j<e) with

S=80{)={ilj <i<eand A(t;) € F(t1)...(tj—1)} (20)

and for any g € B with A(g) € F(t1)...(tj—1) we have (10) for some ¢; €
const,IF and w € F(ty)...(tj—1).

(4) For any X*-extensiont; (1 <i<e)with f .= A(t;) andr s.t. f € F(t1)...(t)\
F(t1) ... (ty—1) the following holds: There is no X*-ext. (IF(t1) ... (ti—1)(s),0) of
(F,0) with A(s) € F(t1) ... (tr—1) in which we have g with (5).

Proof. This extension is not complete-reduced if and only if there is a j, 1 < j <
e, such that for f := A(¢t;) with f € F(t1)...(t,) \ F(¢1)...(ty—1) for some r
(1 < r < j) we have the following property: there are f' € F(t1)...(¢t,—1) and
g € F(t1)...(tj—1) with (7). But this is equivalent to the fact that there are 7, j
with 1 <7 < j < e such that (IF(¢1)...(¢;),0) is not a reduced II¥*-extension of
(F(t1)...(tr),0). Hence (1) is equivalent to (2). The other equivalences are an
immediate consequence of Theorem 20. (Il

We emphasize the equivalence (1)<(3) of Theorem 31: For any f € E we can
apply Theorem 10. Namely, let j be minimal such that f € F(¢1) ... (¢;) and define
S = 5(j) by (20). Then for any solution g € IE of (5) it follows that (10) for some
w € F(t1)...(tj—1) and ¢; € const,F.
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6. THE DEPTH AND REORDERING OF COMPLETE-REDUCED II¥X*-EXTENSIONS

As indicated in the introduction, reducing the nested depth of a given indefinite
sum expression, like e.g., d’Alembertian solutions [30, 2, 39] of a linear recurrence,
is an important issue in the context of II3*-fields. In order to measure the nested
depth, we introduce the following depth function [47].

Let (IE,0) be a IIX*-extension of (IF,o) with the field E := F(¢1)...(t.) and
with o(t;) = a; t; or o(t;) = t; + a; for 1 <i < e. The depth function for elements
of IE over IF, ép: IE — N, is defined as follows.

(1) For any g € IF, dr(g) := 0.
(2) If df is defined for (F(¢1) ... (ti—1),0) with ¢ > 1, we define dF (¢;) := op(a;)+1;
for g=9L € F(t1)...(t;), with g1, g2 € Flty, ..., t;] coprime, we define

Or(g) == max({dr(¢;)|1 < j < and t; occurs in g, or go} U {0}).
The extension depth of a IIX*-extension (E(x1)...(z,),0) of (IE,0) is defined by
max(O, 5]F(x1)a R 5F(‘TT))

Ezample 32. For the IIX*-field (I, o) with F = Q(k)(s1)(s2)(s3)(s1,3)(€)(s6,1,3)
and with (4) and (6) we have

(k) =1, dq(s1) = dgq(s2) = dq(ss) = 2, dg(s13) = dale) =3, dg(ss3) = 4
The extension depth of the II¥*-extension (IF, o) of (Q,0) is 4.

If one wants to simplify the nested depth of sums in a IIX*-extension (I, o) of
(F, o), the following property is crucial: for any f,g € IE with (5) we have

Or (f) < 0r(g) < ow(f) + 15 (21)

in other words, if we find a sum representation g for a summand f with (5), the
depth of g should be bounded by (21).

Subsequently, we show that property (21) is closely related to reduced and
complete-reduced T1>*-extensions. For this task we assume that the II3*-extension
(F(t1) ... (te),0) of (F, o) with o(t;) = a; t;+ f; for all i with 1 <4 < e is F-ordered,
i.e., the extensions are built in the order of their depths:

Op(t1) < Op(te) < -+ < Ip(te); (22)
we remark that any II¥X*-extension can be reordered in this form.

Theorem 33. Let (E,0) be an F-ordered IIX*-extension of (F, o) with the tower
of II¥* -extensions
F=Fy<F <---<Fy=E, (23)

such that for 1 < ¢ < d the following holds: TF; = IF,'_l(xgi)) o (x(el)) with e; > 0 and
6F(x§l)) =1 for all 1 < j <e;. Then the following two statements are equivalent:
(1) For 0 <i < j <d, the IIY*-extension (F;,0) of (F;,0) is reduced.

(2) For any f,g € E as in (5) we have (21).

Proof. Let (IE,0) be an F-ordered II¥*-extension of (IF, o) as claimed above such
that statement (1) holds. Let f € E with j := ép(f) and ¢g € E with (5). If j = d,
(21) clearly holds. Otherwise, let j < d. Since the extension (E,o) of (IF;,0) is
reduced, we can apply Theorem 10 and it follows that g = > ;2 cixz(-J 1) 4w where
w € F; and ¢; € const,IF. Since op(g) < j + 1, statement (2) holds.
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Conversely, let (IE,0) be an F-ordered IIX*-extension of (IF,o) such that state-
ment (1) does not hold. Then there are I, > 1 such that (FF,,o) is not a re-

duced IIX*-extension of (IF;,0). In particular, there is a X*-extension xq(f) for

some | < v < rand 1l < u < e, with f := A(xq(f)) ¢ TF; s.t. the following
property holds: there are f’ € F;, and g € Fv_l(mgv))...(xiv_)l) such that (7).
Note that op(f') < dr(f). Hence for h := 2P — g, A(h) = f—A(g) = f' and
Or(h) > dr(f) > 0p(f’). Thus, or(h) > ér(f’) + 1, and (2) does not hold. O

[F-ordered complete-reduced II¥*-extensions are covered by IF-ordered IT¥X*-exten-
sions of the form (23) for which statement (2) of Thm. 33 holds. Hence we get

Corollary 34. Let (IE, o) be an IF-ordered I1¥* -extension of (IF, o). If the extension
is complete-reduced, then for any f,g € E with (5) we have (21).

Ezample 35. As pointed out in Ex. 30.2 the Q-ordered ITX*-extension (F, o) of
(Q,0) with IF = Q(k)(s1)(s2)(s3)(s1,3)(€)(s6,1,3) and with (4) and (6) is complete-
reduced. Hence we can apply Corollary 34: for any f,g € F with (5) we have (21).
E.g., if p(f) > 2, i.e., f € F, then (12). If ép(f) =1, i.e., f € Q(k), then (11).

Ezample 36. The IT1X*-field from Ex. 13 is not reduced. Hence, as predicted in
Theorem 33 we could find f and g in this field with (5) such that dr(g) > dr (f)+1.

In order to exploit Corollary 34 in full generality, it is necessary to transform a
II3*-extension to an F-ordered complete-reduced extension. It turns out that this
task is not straightforward®. We start with the following illustrative example.

Ezample 37. Given (IF, o) as in Ex. 35, we consider the X*-extension (IF(s21,3),0)

of (F, o) with o(s21,3) = s2.1,3 + ‘(’k(jl;g Subsequently, we try to transform this
extension such that it is again a Q-ordered completed-reduced extension of (@, o).
First, we verify that sz 13 is not a complete-reduced extension: by solving prob-

lem RS with f = ?éj_ll‘;’g we arrive at f/ = m and g = 3 (s3 — 2e+2s1359).
Hence we can construct the X*-extension (F(sg),0) of (F, o) with o(sg) = s¢ +

ﬁ. In particular, we get

1
A(§ (sg —2e+ 251352+ 86)) = m. (24)

Next, we rearrange the II¥*-field (IF(sg),0) and obtain the Q-ordered II¥X*-ex-
tension (Q(k)(s1)(s2)(s3)(s6)(s1,3)(€)(s6,1,3),0) of (Q, o). In addition, we find the
Q-isomorphism

p: Q(K)(s1)(s2)(s3)(51,3)(€)(56,1,3)(52,1,3) — Q(k)(51)(52)(53)(56)(51,3)(€)(56,1,3)
by keeping all variables fixed except
p(8271,3) = % (8?5 —2e + 28173 So + 56) . (25)

Due to this change, we have to check if the extensions s; 3,e, 561,53 on top of sg
are still complete-reduced. It turns out that sg ;.3 is not complete-reduced. Simi-
larly as above, we obtain the Y*-extension (Q(k)(s1)(s2)(s3)(s6)(s1,3)(e)(E),0) of

5In Section 7.1 we shall propose another solution by embedding a IIX*-extension into a depth-
optimal II¥*-extension; see also Ex. 45 which is related to Ex. 37.
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QU (1) (52) (35 (56) (51.6) (€), ) with o(E) = B + AT 2y g g
Alsiase — B) = 121, (20)

In particular, we get the QQ-isomorphism

p: Q(K)(s1)(s2)(s3)(s6)(51,3)(€)(56,1,3) = Q(K)(s1)(s2)(53)(56)(51,3)(e)(E)

by keeping all variables fixed except

/1,(86’173) = 51,356 — FE. (27)
To sum up, we managed to transform the IIX*-field (IF, o) to the Q-ordered com-
plete-reduced IIX*-extension (Q(k)(s1)(s2)(s3)(s6)(s1,3)(e)(E),0) of (Q,0) with

J(k):k-l-l 0'(81)2814-%_‘_1, 0(82)2824-@,

o(s3) = s3+ g 0(s6) = $6 + Gy o(s1,3) = s1.3 + 522,

g a o(s3)(o(sg)(k+1)°—
ole) = e+ 2e202bs) - o(py = B+ (s3)( Ezﬁ:i;l) 1)

(28)
together with the Q-isomorphism 7 := p o p with

7: Q(k)(s1)(s2)(s3)(s1,3)(€)(56,1,3) (52,1,3) — Q(k)(sl)(82)(53)(56)(51,3)(6)(]5()59)
here all variables are fixed except

1
T(Sg,lyg) = 5 (S% — 2e + 28173 So + 56) and T(S5,173) = 51,356 — FE. (30)

Remark 38. Reinterpreting the variables of the previous example as indefinite sums
yields the following identities (Which are reflected by (30)): for all k € IN,

Sa15(k) = 3 Ss(k Z D 1 Sy a(k) Sa(k) + 5Ss(k)

i=1

k J—
S6,1,3(k) = S1.3( Z Sali )i 1) (31)

i=1

Subsequently, we will make this transformation more precise. In order to deal
with IT-extensions (see case 2 in the proof of Thm. 40), we need the following lemma.

Lemma 39. Let (E,0) with E = F(t1)...(t.) be a IIX*-extension of (F,o0) and
let f € E; moreover let (E(x), o) be a Il-extension of (IE, o) with @ e IF. If there
are f' € F(z) and g € E(x) s.t. (7), then there are g € E and f' € F s.t. (7).

Proof. Let f € E, g € E(z) and f' € F(z) as claimed above. For convenience,

denote by E(z) PP (resp. by F(z)®*") all proper rational functions from E(z)
(resp. from TF(x)), i.e., for each element the degree of the numerator (w.r.t. x)
is smaller than the degree of the denominator. By polynomial division we can
write ¢ = p1 + q1 and f' = py + q2 such that p; € E[z], ¢1 € ]E(:c)(pmp) and
p2 € Flz], ¢ € F(x)®°P). Since @ € I, it is immediate that o(p;) € E[x],
and consequently, A(p;) € E[z]. Moreover, since o(q1) € IE(a:)(pmp) (the degrees
of polynomials in z do not change under the action of o), A(q) € E(z)®P.

Analogously, A(p,) € Flz] and A(ge) € F(z) ). Since E(z) = E[z] @ E(z) ™
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forms a direct sum (as vector spaces over ), (7) implies A(py) + p2 = f and
A(q1) + g2 = 0. Now let v € E and ¢’ € TF be the constants of the polynomials
p1 and po, respectively. Then by coefficient comparison in A(py) +ps — f = 0,
A(y) + ¢ — f = 0; this completes the lemma. |

Theorem 40. For any IX*-extension (B, o) of (F,o) there is a complete-reduced
F-ordered TIX* -extension (B, o) of (F, o) together with an F-isomorphism 7: [E —
IE/; in particular,

O (T(h)) < or(h) (32)
for allh € H. Such (E',0) and T can be given explicitly, if (F, o) is RS-computable.

Proof. Let (IE,0) with IE = F(t1)...(te) be a [IX*-ext. of (IF,0). We show the
theorem by induction on the depth. If dp(¢;) = ...dr(te) = 1, the claim follows
by Lemma 9. Now suppose that we have shown the assumption for any extension
whose extension depth is < d+1 and r > 0 or less extensions have depth d+1. Now
consider our II¥*-extension (IE, o) of (IF, o) with extension depth d+1 where exactly
r 4+ 1 extensions have depth d + 1. W.l.o.g. we may assume that this extension is
[F-ordered, i.e., 0p(t.) = d + 1. By our assumption we get an F-ordered complete-
reduced II¥X*-ext. (F(z1)...(xe—1),0) of (IF,0) with an F-isomorphism 7 from
F(t1)...(te—1) to F(x1) ... (xe—1) such that (32) for all h € F(t1)... (te—1).

Case 1: Ift. is a ll-ext., define o := T(U(tt:)), and take the Il-ext. (IF(z1) ... (x.),0)
of (F(z1)...(xe—1),0) with o(z.) = az, and extend the F-isomorphism 7 with
T(te) = x; this is possible by Lemma 23. Note that op(z.) < dp(7(x.)) = op(te) =
d+ 1 by (32); in particular, (32) for all h € F(x1)... (z.).

Case 1.1: If op(z.) = d+ 1, (F(z1)...(2zc),0) forms an F-ordered complete-
reduced IIX*-extension of (IF, ), and we are done.

Case 1.2: Otherwise bring it to an F-ordered form: for some ! with 0 <[ < e, we
obtain® (F(zy) ... (z1)(ze)(z151) - .. (Te—1),0). Suppose x; (i > 1) is not complete-
reduced; let j be minimal s.t. f := A(z;) € F(z1) ... (@1)(@e)(@i41) ... (x;). Then
there are g € F(z1) ... (xi—1)(ze) and f' € F(z1)...(zj-1)(xe) s.t. (7). Hence by
Lemma 39 we find such f’ and g which are free of z., and thus (IF(z1)...(x;),0)
is not a complete-reduced extension of (IF,0); a contradiction to the assumption.
This completes this part of the proof.

Case 2: Suppose that z. is a Y*-extension with f := A(z.). Let j be minimal
such that there are f' € F(z1)...(x;) and g € F(z1)...(2zc—1) as in (7). Note:
If (I, o) is RS-computable, such f’ and g can be computed explicitly. Then there
is a Y*-extension (H,o) of (F(z1)...(xe—1),0) with H = F(x1)...(ze—1)(s) and
o(s) = s+ f'; in particular, there is the F-isomorphism p: F(z)...(z.) — H with
p(h) = h for all h € F(z1)...(xe—1) and p(z.) = s + g by Lemma 22. Clearly,
dr(p(h)) < dp(h) for all h € F(x1)...(z.). By construction, (H, o) is a complete-
reduced IT¥*-extension of (IF, o).

Case 2.1: If dp(f’) = 6r(f) = d, then (H,0) is an F-ordered complete-reduced
II¥*-extension of (IF, o). Finally, with 7/ = p o 7 we get an F-isomorphism from
F(t1)...(t) to F(z1)...(x) such that dp(7/(h)) < op(h) for all h € F(t1)... (t.);
this completes this part of the induction.

Case 2.2: If §p(f') < op(f), rearrange the extension (H, o) to an F-ordered IT¥:*-
extension (H',0) of (IF,o) with H' = F(x1)...... (z)(8)(x141) - - - (e—1) for some

6Note that the extensions below of x;41 are [F-ordered and complete-reduced; this fact will be
exploited in Alg. 2.
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Algorithm 2 ToCompleteReducedOrderedField((IE, o), k)
In: A IIX*-extension (E, o) of (F, o) with E = F(t1) . .. (te) s.t. (F, o) is RS-computable;
k € N s.t. (F(t1)...(tx), o) is an [F-ordered complete-reduced extension of (I, o).
Out: An F-ordered complete-reduced IT3*-extension (E', o) of (IF, o) together with an
F-isomorphism 7: [E — E'.

L 1F &k > e, THEN RETURN ((E, o), idg) FI

2 (F(z1) ... (xe=1),0),7):=ToCompleteReducedOrderedField((FF(t1) ... (te—1),0), k);

3IF t. is a II-extension, i.e., a := T(%t:)) € F(z1)...(ze—1) THEN

4 Take the IT-ext. (F(x1) ... (ze),0) of (F(z1)...(xe-1),0) with o(ze) = a z.; bring

it to an F-ordered form with ' := F(z1) ... (z:)(xe)(zi41) - . . (Te—1) for some [
with 0 <1 < e. Take the [F-isomorphism 7’: F(t1) ... (t.) — E’ with 7'(h) = 7(h)
forall h € F(t1)...(te—1) and 7'(te) = .. RETURN ((E',0),7").

5 FI

6Let f' € F(z1)...(z;) \F(z1)...(zj—1) and g € F(x1)...(ze—1) be the result of
problem RS for f := 7(A(te)) and (F(x1)...(Te—1),0).

7 Define the ¥*-extension (H, o) of (F(z1)...(ze—1),0) with H := F(z1) ... (te—1)(s)
and o(s) = s + f’ together with the F-isomorphism p: F(z1)...(z.) — H with
p(h) =hfor all h € F(z1)...(xe—1) and p(ze) = s+ g.

8 IF 6r(f') = 6r(f) THEN RETURN ((H,0),po ) FI

9 Bring (H, o) to an F-ordered ext. (H', o) with H = F(z1) ... (z1)(s)(xi41) - - . (Te—1)
for some | > j. As pointed out in Footnote 6 we can execute
((E', o), u):=ToCompleteReducedOrderedField((H',o),l + 1).

10 RETURN ((E',0),popoT).

[ > j (see again footnote 6). Note that in this case the number of extensions with
depth d + 1 have been reduced by 1. Consequently, we can apply our induction
assumption: we can transform (H', o) to an F-ordered complete-reduced extension
(E',0) of (F,0) with E' = F(2}) ... («]) together with an F-isomorphism p: H —
E/ such that dp (pu(h)) < 0 (h) for all A € H'. Hence with 7/ := popor we get an IF-
isomorphism 7/: F(¢1) ... (te) — E' with op(7/(h)) < dp(h) forallh € F(t1)... (t.).
This finishes the induction step. 0

Extracting the reduction steps of the inductive proof of Theorem 40 and taking into
account Footnote 6 lead to Algorithm 2. For instance in Example 37 the algorithm
is carried out for the input ((F(s2,1,3),0),7). In particular, given a IIX*-extension
(E,0) of (IF,0) one computes with the input ((IE,c),1) an isomorphic F-ordered
complete-reduced extension.

Remark 41. Note that we could proceed differently. Step 1: Bring a II¥*-extension
to the form (23) such that statement (2) in Theorem 33 holds; then we are already
in the position to exploit property (1) given in Theorem 33.

Step 2: The computation of an F-ordered complete-reduced extension is imme-
diate: just apply the underlying algorithm of Theorem 29 (it is easy to see that
the depth of the extensions cannot be reduced further, and hence the output is
an [F-ordered complete-reduced extension). However, in order to perform Step 1,
our arguments lead to the same algorithm as given in Algorithm 2; only subprob-
lem RS can be slightly modified /simplified. Since these modifications do not lead
to any substantial improvement, we just presented Algorithm 2, and we set aside a
detailed presentation of the variation sketched in this remark.
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7. DEPTH-OPTIMAL IIYX*-EXTENSIONS AND REFINED STRUCTURAL THEOREMS

In [41] ITX*-extensions have been elaborated to depth-optimal ITX*-extensions.
As it turns out, such extensions are closely related to reduced and complete-
reduced II¥*-extensions. But, there are also major differences: depth-optimal
IIX*-extensions satisfy in general additional properties that are highly relevant
in the field of symbolic summation; see [47, 49]. Subsequently, we present in detail
how the derived properties of reduced and complete-reduced IIYX*-extensions can
be carried over to depth-optimal I13*-extensions. Besides this, we work out their
crucial differences in the context of symbolic summation. As a spin off we obtain
refined structural theorems that are preferable, e.g., to Theorems 10 and 17.

In the context of reduced ITYX*-extensions depth-optimal II¥*-extensions can
be introduced as follows. Let (IE,0) be a IIX*-extension of (F,o) with E =
F(z1)...(x;). Then by Theorem 20 there is the following alternative characteriza-
tion for a reduced IIX*-extension (E(t1) ... (te),0) of (E,0): for any X*-extension
t; with f:= A(t;)) € E (1 < i < e) there is no X*-extension (E(s),0) of (E,0) in
which we have g € E(s) with (5). Now suppose in addition the following ordering:

max(é]p(xl), - ,(5]}?(3?[)) +1= (S]F(tl) = 5F(t2) =...= 5]F(te)-

Then the following property holds: For for any ¥*-extension f := A(t;) there does
not exist a single-nested Y *-extension E(s) with dp(s) < 0r(f) which provides us
with a solution g € IE(s) for (5).

Essentially, depth-optimal II¥*-extension follow up this construction with the
constrained that there does not exist a tower of ¥*-extensions $ = E(sy1)...(s,)
with dp(s;) < 0p(f) for 1 < i < r which provides us with a solution g € $ for (5).
To be more precise, we introduce depth-optimal ITX*-extensions as follows.

Definition 42. Let (IE, o) be a IIX*-extension of (IF, o). A difference field extension
(E(s),0) of (E,o0) with o(s) = s+ f is called depth-optimal ¥*-extension, in short
Y-extension, if there is no Y*-extension ($,0) of (IE,o) with extension’ depth
< Or(f) and g € § such that (5). A IIX*-extension (E(t1)...(t.),0) of (E,0) is
depth-optimal, in short a II¥%-extension, if all ¥*-extensions® are depth-optimal.
A TI¥%-field is a II¥*-field which consists of TI- and Y°-extensions.

Then IIX%-extensions can be related to reduced extensions in the following way.

Lemma 43. Let (IE,0) be an F-ordered 11X’ -extension of (IF, o) with (23) s.t. for
1 <i<d wehaveF; = Fi,l(xgi)) e (méi)) with e; > 0 and (5]1:(;10?)) =1 for all
1 <j<e;. Thenfor0<i<j<d, the IL-extension (Fy,0) of (F;,0) is reduced.
Proof. Suppose that the lemma holds with depth d > 0 and consider a IIX°-
extension (Fyy1,0) of (Fg,0) with Fayq = Fg(t1)... (L) and dp(t;) = d+ 1 for
1 <i <e. Clearly, (F441,0) is a reduced extension of (IF4,0) by Lemma 9. For
any j (1 < j < e) with f; :== A(t;) € Fq and for any r (0 < r < d) we con-
clude as follows. Since ¢; is a X%-ext., there is no ¥*-ext. (F4(t1) ... (tj—1)(s),0) of
(Fa(t1)...(tj—1),0) with A(s) € [F,. s.t. A(g) = f; for some g € Fq(t1) ... (tj—1)(s).
By Thm. 20 ((1)<(3)),(F4(t1) ... (te),0) is a reduced extension of (F,,o). This
completes the induction. O

"Note that IIN%-extensions are defined relatively to the ground field (I, o) over which the
depth-function dp is defined. Throughout this section we assume that this ground field is IF.
8In addition, note that Z%-extensions belong to the class of Y*-extensions by Theorem 5.
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7.1. Embeddings of II¥*-extensions into IIX’-extensions. Similarly to re-
duced and complete-reduced IT¥X*-extensions, we can apply Lemmata 22 and 23
iteratively in order to translate a IIX*-extension into a II¥.%-extension. In particu-
lar, this construction can be given explicitly, if one can solve the following problem.

Problem DOS (Depth Optimal Summation): Given a IIX°-extension (IE, o) of
(F,0), and given f € IE; compute, if possible, a %%-extension (E(x1)...(z,),0)
of (E, o) with extension depth< op(f) s.t. there is a g € E(xq) ... (x,) with (5).

Namely, assume that the difference field (IF, o) is DOS-computable, i.e., for any
[I¥%-extension (IE, o) of (IF,o) and any f € IE one can solve problem DOS algo-
rithmically. E.g., due to [47, Algorithm 1] implemented in Sigma any II¥*-field is
DOS-computable. In fact a difference field is RS-computable if and only if it is
DOS-computable; for further difference field examples see page 10.

Then the embedding mechanism works as follows. Suppose we are given a I13*-
extension (I, o) of (IF, o) which we managed to embed into a IIX?-extension (IE, o)
of (F,o) with 7: H — E. Now consider the Y*-extension (H(¢),0) of (H, o) with
o(t) = t+ f. Then one can either find a X%-extension (IE/, o) of (I, o) with g € E’
such that A(g) = 7(f) (by solving problem DOS). In this case, one can embed
(H(¢),0) into (I, o) by extending the IF-monomorphism 7 to 7: H(t) — E’ with
7(t) = g; the correctness follow by o(7(t)) = o0(g) =g+ 7(f) =7+ f) = 7(c(¢)).
Otherwise, if there is no solution for problem DOS, we can adjoin the %%-extension
(E(s),0) of (IE,0) with o(s) = s+ 7(f) and we can extend the [F-monomorphism
7 to 7: H(t) — E(s) by 7(¢) = s. Similarly, one can treat a IT-extension o(t) = at
for some a € H*. Summarizing, we arrive at the following result.

Theorem 44. For any IIX*-extension (E,0) of (F,o) there is a IIX°-extension
(E',0) of (F,0) and an F-monomorphism 7: E — E'. Such (E',0) and T can be
constructed explicitly if (F, o) is DOS-computable.

Example 45. We take the IIX*-field (Q(k)(s1)(s2)(s3)(s1,3)(€)(s6,1,3)(52,1,3),0)
with (4), (6) and o(s2,1,3) = s2.1,3 + ((Tk(ill?g from Example 37 and embed it into
a [I¥0-field. It is easy to see that (IF,o) with F = Q(k)(s1)(s2)(s3) is already a
I1%%-field; see also [47, Prop. 17]. We continue as follows.

(1) We apply our algorithms implemented in Sigma and verify that there is no 3*-
extension (IE, o) of (IF, o) with extension depth< 2 in which we find g € E with
A(g) = Uk(fl). Hence the X*-extension (F(s13),0) of (F, o) is depth-optimal.

(2) Similarly, we check that (IF(s;.3)(e), o) is a X-extension of (F(s13),0).

(3) Now, we check sg 1,5 by looking at problem DOS with f ols1.3) . we find the

BRGE%N
Yo-extension (F(s13)(e)(s6)(E), o) of (F(s13),0) with

1 o(s3) (o(se)(k+1)°+1
0(56):56+7<k+1>6 and E=FE-+ (s3) ( ((kzﬁ)-£1)7 ) )
with dp(s3),0r(E) < 3 s.t. (26); the Q-monomorphism p: F(s1.3)(e)(s6,1,3) —
F(s1,3)(e)(s6)(E) can be defined by u(h) = h for all h € F(s13)(e) and (27).
(4) We treat so 1.3 by solving problem DOS for f = ?,fillig This time no extension
is needed, since we find (24); we can extend the Q-monomorphism as in (25).
Summarizing, we arrive at the II%-field (Q(k)(s1)(s2)(s3)(s1.3)(€)(s6)(E), ) with
(28) together with the @Q-isomorphism (29) given by (30).
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Usually, one obtains difference field monomorphisms where the transcendental de-
gree of the embedding extension is larger than the embedded extension. For in-
stance, in step 3 of Ex. 45 we embedded a Q-ordered complete-reduced extension
with degree 7 into a depth-optimal extension with degree 8.

Remark 46. Note that in Ex. 45 we rediscovered identity (31): we simplified the
sum Sg13(k) of depth 4 to a sum expression with depth 3 by introducing the
tower of sum extensions Sg(k) and Zle i77S3(@) (S6(7)i® — 1). In a nutshell, in
ordered complete-reduced II1¥*-fields like (Q(k)(s1)(s2)(s3)(s1,3)(€)(S6,1,3),0) from
the Examples 35 and 45 one might fail to produce sum representations with smallest
possible depth. But, transformations of IIX*-fields to IIX?-fields lead always to sum
representations with optimal nested depth; see [49].

7.2. Structural theorems. Comparing reduced and complete-reduced II¥*-ex-
tensions with depth-optimal II¥.*-extensions, the following theorem? summarizes
one of the decisive differences.

Theorem 47. [[47, Result 2]/ Let (IE, o) be a 1Y -eatension of (F, o). Any possible
reordering (as a IIS*-extension) is again a IIX°-extension.

Namely, if one adjoins a IIX-extension ¢ on top of a IIX°-extension (IE,o) of
(F, o) and if one reorganizes, e.g., this extension to an IF-ordered version, then this
[F-ordered extension is again depth-optimal. This flexibility is completely different
to reduced and complete-reduced IT¥X*-extensions: as worked out in Algorithm 2
and illustrated in Example 37, one has to reorganize the whole difference field in
order to get back an F-ordered complete-reduced II>*-extension.

Ezample 48. The IIX%-extension (Q(k)(s1)(s3)(51,3)(€)(s6)(E)(s2),0) of (Q,0)
with (28) (see Example 45) can be rearranged, e.g., to the Q-ordered II¥*-extension
(Q(k)(s1)(s2)(s3)(s1,3)(€e)(s6)(E), o) of (R, o), which we constructed already in Ex-
ample 37. Then due to Theorem 47 this extension is again a II¥%-extension.

As an immediate consequence, we end up at structural properties which do not
depend on the order of the extensions; compare, e.g., Corollary 34.

Theorem 49. [I1X-structural theorem] Let (I, o) be a IIX°-extension of (F,o).
Then for any f,g € E with (5) we have (21). In particular, if E = F(t1) ... (te)
and

S={1<i<elop(t;)) =0r(f)+1 and t; is a X*-extension},
then (10) for some c,c¢; € K and w € E with op(w) < dp(f).

Proof. Take any II%%-extension (IE, o) of (IF, o). Then by Theorem 47 we can bring
this extension to an F-ordered I1¥%-extension of the form (23). By Lemma 43 the
II¥*-extension (Fj,o) of (IF;,0) is reduced for any 0 < ¢ < j < d. Hence by
Theorem 33 the first part follows. The second part follows by Theorem 10. O

Ezample 50. Take the IX°-field (I, o) with E = Q(k)(s1)(s3)(s1.3)(€)(s6)(E)(s2)
and with (28), and let f € E with dg(f) = 2. Then for any g € E with (5) we have

g=w+cis13+coe+czE  for some w € Q(k, s1,3,52) and ¢1,¢2,¢3 € Q.

Combining this result with Theorem 15 we end up at the following refinement.

9The proof of Thm. 47 relies on additional properties of IIZ%-extensions elaborated in [47].
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Theorem 51. [Refined 11X0-structural theorem] Let (IE,a) be a TIX°-eatension of
(F,0) with f € E; suppose’® that B = F(s1) ... (su)(t1) .. (te) such that ép(s;) <
Or(f)+1 for all 1 < i <wu and such that 0p(t;) > op(f) + 1 for all 1 <i <e; let
{x1,..., 2.} = InnerNodep <y (s,)...(s,,) (f). If there is a g € E with (5), then

g= Z cqa+w  for some ¢, € const,F and w € F(xq,...,x,).
a€SumLeafpcrp(s,)...(sy) (f)
Ezample 52. Take again the IIX?-field (IE, o) as in Example 50, and take on top
the X%-extension (E(t), ) of (I, o) with o(t) =t + %W, let
f- k? (k*(s2 + k(s3 + k(s3(s2 +2s6 +3) + 1)) — 1) — 2s3
k7
with dg(f) = 2. Following Theorem 51, we reorder the IIX°-field to the Q-

ordered T1X%-field (D(t), o) with D = Q(k)(s1)(s2)(s3)(s6)(51.3)(e)(E). Then we
get InnerNodeg<p (f) = {k, s2, s3} and SumLeafp<p (f) = {s1, s1,3,¢, E}. Hence,

g=w+cis1+casi3+cezetceqs B for some ¢, ¢, c3,¢4 € Q and w € Q(k, s2, 83);

note that we could exclude t. Indeed, we find

5283k — (s3(82 4 256 +3) + 1)k6 — s3k® — sok* + k2 + 253
k7 ’

Note that these results lead to fine-tuned telescoping algorithms that enables one

to handle efficiently a tower of up to 100 X°-extensions in the summation package
Sigma; for an example from particle physics see [9]. Besides this, we emphasize

Theorem 53. [[47, Result 6]/ Let (E, o) be a 1Y% -eat. of (F,0); let f € E. If there
is a TIZ*-extension (H, o) of (F, o) with g € H s.t. (5), then there is a ¥ -eatension
(E',0) of (F,0) with a solution g’ € B of (5) s.t. dr(g") < or(g).

In short, II-extensions are not needed to find a telescoping solution with optimal
depth. This result is connected to Liouville’s Theorem 1 where exponential exten-
sions can be excluded if one looks for a solution of the integration problem.

g = s1+3s1,3+et+2 B+

Finally, we work out alternative characterizations as given in Theorems 20 and 31
for reduced and complete-reduced ITX*-extensions. Here we need

Lemma 54. Let (IE,0) be a IIX*-extension of (F,o) with f € E. If there is a
Y*-extension (8,0) of (E, o) with extension depth< d such that there is a g € $\E
with (5), then there is a X*-extension ($'(s),0) of (E, o) with extension depth< d
and with SumLeafp<g () = {s} such that there is a w € $' with A(s + w) = f.

Proof. Subsequently we construct the desired extension from the given extension
($,0) of (E,0). Let SumLeafg<g = {s1,...,s,}. Then we can reorder the dif-
ference field ($,0) to (B(x1) ... (x1)(s1) ... (sr),0) such that this is a ¥*-extension
of (E,0). W.lo.g. we may assume that g ¢ E(x;)...(x,): otherwise, we neglect
the leaf extensions s; and repeat the construction from above. If r = 1, we are
done. Otherwise, we continue as follows. Since A(s;) € E(x1)...(x;) for 1 < i <
r, (E(z1)...(x)(s1)...(sr),0) is a reduced X*-extension of (E(x1)...(x;),0) by
Lemma 9. Applying Theorem 10 it follows that g = w+ Z:Zl c;s; for ¢; € const,F
and w € E(xy)...(x); wlo.g. we may assume that ¢, # 0, otherwise we re-
order the extensions s; accordingly. Define ¢ := Y ¢;A(s;) € E(x1)... (z).

1OVV,I.o,g;. any extension can be brought to this form by Theorem 47.
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Then observe that there is no v € E(z1) ... (z;) such that A(y) = ¢. Otherwise,
for h := (v — Z::_ll cisi)/cr € Blxy) ... (x)(s1) ... (sp—1) we get A(h) = A(s,),
and thus s, is not a ¥*-extension by Theorem 5; a contradiction. Consequently,
we can apply Theorem 5 and construct the ¥*-extension (E(zq)...(x;)(s),0) of
(E(z1)...(x1),0) with o(s) = s + ¢ and dr(s) < d. Note that for h := w+ s €
E(s1)...(sk)(s) we have A(h) = A(g) = f. If SumLeafg<g(s,)...(2,)(s) contains
only s, we are done. Otherwise we repeat the construction from above. ([

Theorem 55. Let (E,o0) be a IIX*-extension of (IF,0) with E = F(t1)... (te).
Then the following statements are equivalent:

(1) This extension is depth-optimal.

(2) For any ¥*-extension t; with f := A(t;) € F(t1) ... (ti—1) and 1 < i < e there
does not exist a IIX*-extension (H, o) of (F(t1) ... (ti—1),0) with extension depth
< O (f) in which we find g € H such that (5).

(8) For any ¥*-extension ($,0) of (E, o) with extension depth d the following holds:

Vi, g€8: Ag=f A dr(f) >0 = dr(g) <or(f) +1. (33)

Proof. (1)<(2) follows by Theorem 53. We show the implication (1)=(3). Con-
sider a ¥*-extension ($,0) of (E, o) with $ = E(s1) ... (s,) such that dp(s;) <
for 1 <i < r;let f,g € $ with (5) and 0p(f) > 9. By Theorem 47 we may
suppose that the I1X%-extension (IE, o) of (IF, o) is ordered with |E = H(t1) ... (t.)
where op(H) = 0 and @ < 0p(t1) < --- < dp(te); note that f € H. If e = 0,
nothing has to be shown. Otherwise, by reordering we get the IIYX*-extension
(H(s1)...(sr)(t1)...(te),0) of (H,o). Now suppose that a X*-extension ¢; for
some 1 < | < e is not depth-optimal; set ¢ := A(¢;). Then there is a X*-
extension (H(s1)...(s;)(t1)...(ti=1)(z1) ... (24),0) of H(s1)...(sr)(t1) ... (ti—1)
with dp(x;) < dp(¢) for 1 < i <wand vy € H(s1)...(s)(t1) .. (ti—1)(x1) ... ()
such that A(y) = ¢. Since dF(t.) > 0, we have dp(¢) > 0, and thus it follows that
(H(t1) ... (ti=1)(s1) - - - (8p)(21) . . . (m0), 0) is & X*-extension of (H(ty)... (t;—1),0)
with extension depth < 0p(¢). Hence (H(t1)...(t;),0) is not a X°-extension of
(H(t1) ... (ti—1),0), a contradiction. We conclude that (H(s1) ... (sy)(t1) ... (te),0)
is a [IX%-extension of (H(sy)...(s,),o). In particular, it is a reduced extension of
(H, o) by Lemma. 43. Hence by Thm. 10 g depends only on those t; with A(¢;) € H,
Finally, we show the implication (3)=-(1). Suppose that the IIX*-extension (IE, o)
of (F,0) with E = F(¢1)...(t.) is not depth-optimal. We may suppose that &
is ordered, i.e., dp(t;) < Op(ti+1) for all i. Then there is a ¥*-extension ¢, with
f = A(t,) and 0 := ép(f) with the following property: there is a Y*-extension
(F(t1) ... (tu—1)(81) ... (8),0) of (F(t1)...(tu—1),0) with dop(s;) < 0 and f; :=
A(s;) for all i s.t. thereisa g € F(t1) ... (tu—1)(s1) - .. () with (5); w.l.o.g. we may
assume that 0p(s1) < --- < dp(s,). Suppose we can adjoin all s; as X*-extensions to
F(t1)...(ty): by reordering we get the X*-ext. (F(¢1)... (tu—1)(s1)...(sr)(tu),0)
of (F,o); since g € F(t1) ... (tu—1)(81) ... (s,) with (5), ¢, is not a X*-extension by
Theorem 5; a contradiction. Consequently there is a j with 1 < j < r such that we
can construct the Y*-extension (E(s1)...(sj-1),0) of (IE,o) with A(s;) = f; for
1 <i < j, but we fail to construct the ¥*-extension s; with f; = A(s;) on top. By
Lemma 54 we can assume that dp(s1) < -+ < 0p(sj—2) < 0r(s;—1) < 0. Define
o' := dp(s;_1); note that ép(f;) = ?’. By the choice of j it follows with Thm. 5



STRUCTURAL THEOREMS FOR SYMBOLIC SUMMATION 23

that there is a ¢’ € E(s1)...(sj_1) such that
Alg) = f;.
Since (F(t1) ... (tu—1)(s1)...(sj),0) is a L*-extension of (F(¢1)... (tu—1),0), ¢’

. ¢
F(t1)...(tu—1)(s1)-..(sj-1), i.e., ¢’ depends on a t; with ¢ > w. Thus, dp(g’) >
Op(ty) =0p(f) +1>0>6p(s;) =0r(f;)+ 1. Hence, (33) does not hold. O

To sum up, the structural properties given in Theorems 49 and 51 are valid, even
if one adjoins X*-extensions (up to a certain depth) which are not depth-optimal
((1)=(3)). Conversely, exactly property (3) characterizes IT%-extensions in con-
trast to reduced and complete-reduced extensions; see Theorems 20 and 31.

8. CONCLUSION

Starting with Karr’s structural theorem, we obtained various refined versions for
reduced, complete-reduced and depth-optimal IIX*-extensions. In particular we
worked out one essential draw back of Karr’s version of reduced II¥*-extensions
if one wants to reduce, e.g., the nested depth of sum expressions: his optimality
depends on the order how the elements are adjoined in the field. In particular, if one
reorders the tower of extensions w.r.t. the nested depth given by the shift-operator,
Karr’s structural theorem usually cannot be applied: only if the difference field is
reorganized by expensive transformations, one gets back a reduced II¥*-extension
of the desired ordered shape; compare Theorem 40. In contrast to that, in the
recently defined depth-optimal IT¥*-fields any possible reordering (as a II¥X*-field)
gives again a depth-optimal IIX*-field. As a consequence we could show structural
properties that are independent of the extension order.

We emphasize that the presented theorems for the telescoping problem (1) can
be immediately carried over to Zeilberger’s creative telescoping paradigm [54] used
for definite summation; for more details in the setting of II3¥*-fields we refer to [46].
More generally, we obtain structural results for parameterized telescoping. For
illustrative purposes we rephrase Theorems 10 and 57 explicitly.

Theorem 56. [Karr’s structural theorem for parameterized telescoping] Let (IE, o)
be a reduced TIX* -extension of (F, o) with E = F(t1) ... (te) where o(t;) = a; t;+ fi,
and define S by (8); let f1,..., fn € F. If there are cq, ..., ¢, € const,IF and g € E
such that the parameterized telescoping equation

A(g):C1f1+~"+Cnfn (34)

holds, then there are w € F and ¢; € const,IF such that (9); in particular, for any
such g there is some ¢ € const T such that (10).

Theorem 57. [[IX?-structural theorem for parameterized telescoping] Let (I, o) be
a TIX?-extension of (F,0); let fi,..., fn with d := max(6p(f1),...,0r(fn)). Then
for g € E with (34) we have 6r(g) < d+ 1. In particular, if E =TF(t1)...(te) and
S={1<i<elop(t;) =d+1 and t; is a X*-extension},

then (10) for some c,¢; € K and w € E with dp(w) < d.

By concluding, we remark once more that Karr’s structural theorem in [21, 22]
(Theorem 10) is closely related to Liouville’s Theorem (Theorem 1) and Rosenlicht’s
algebraic proof [38] in the language of differential fields. A natural question is how

our new results can be carried over to the differential field case. A positive answer
should throw new light on the differential theory of elementary extensions.
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