Skip to main content
Log in

An algorithm for implicit interpolation

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We study the multivariate polynomial interpolation problem when the set of nodes is a zero-dimensional affine variety \(V \subset {\mathbb {C}}^n\) given as the set of zeros of polynomials \(F_1, \ldots , F_n\) with integer coefficients that generate a radical ideal. We describe a symbolic procedure to construct, from \(F_1,\ldots ,F_n\), a basis \(\{G_1, \ldots , G_D\}\) of a space of interpolants \(\varPi _V\) for \(V\), where \(D\) is the number of nodes. This construction yields a space of interpolants \(\varPi _V\) which is uniquely determined by the sequence \(F_1,\ldots ,F_n\) and such that the degree of the interpolants is at most \(n(d-1)\), where \(d\) is an upper bound for the degrees of \(F_1, \ldots , F_n\). Furthermore, we exhibit a probabilistic algorithm that, from \(F_1, \ldots , F_n\) and a given additional polynomial \(F\), computes the polynomials \(G_1, \ldots , G_D\) and the interpolant \(P_F\) of \(F\) with roughly \({\fancyscript{O}}^{\sim }(L\delta ^3h\deg (F)h(F)h(V))\) bit operations. Here \(L\) is the cost of evaluation of \(F_1, \ldots , F_n\) and \(F,\,\delta \) the degree of the input system \(F_1,\ldots ,F_n,\,h\) an upper bound for the heights of the polynomials \(F_1,\ldots ,F_n,\,h(V)\) the height of \(V,\,\deg (F)\) the degree of \(F\), and \(h(F)\) the height of \(F\). The numbers \(\delta \) and \(h(V)\) are always bounded by \(d^n\) and \(nh+2n\log (n+1)d^n\) respectively and in certain cases of practical interest these numbers are considerably smaller than these bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Boor, C., Ron, A.: On multivariate polynomial interpolation problem. Constr. Approx. 6(3), 287–302 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. de Boor, C., Ron, A.: The least solution for the polynomial interpolation problem. Math. Z. 210(3), 347–378 (1992)

    MATH  MathSciNet  Google Scholar 

  3. Möller, H.M., Sauer, T.: H-bases for polinomial interpolation and system solving. Adv. Comput. Math. 12, 335–362 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12(4), 377–410 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sauer, T.: Gröbner bases, H-bases and interpolation. Trans. Am. Math. Soc. 353, 2293–2308 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Krick, T., Pardo, L.: Une approche informatique pour l’ approximation diophantienne. C. R. Math. Acad. Sci. Paris 318(1), 407–412 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Giusti, M., Heintz, J., Morais, J., Morgenstern, J., Pardo, L.: Straight-line programs in geometric elimination theory. J. Pure Appl. Algebra 124, 101–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Marinari, M., Möller, H., Mora, T.: Gröbner bases of ideals given by dual bases. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation. ISSAC’91, pp. 267–276. ACM Press, Bonn (1991)

  9. Marinari, M., Möller, H., Mora, T.: Gröbner bases of ideals defined by functionals with an application to ideals of projective points. Appl. Algebra Eng. Commun. Comput. 4, 103–145 (1993)

    Article  MATH  Google Scholar 

  10. Hashemi, A., Lazard, D.: Sharper complexity bounds for zero-dimensional Gröbner bases and polynomial system solving. IJAC 21(5), 703–713 (2011)

    MATH  MathSciNet  Google Scholar 

  11. Adams, W., Loustaunau, P.: An Introduction to Gröbner Bases, Graduate Studies in Mathematics, vol. 3. AMS, Providence, RI (1994)

  12. Buchberger, B., et al.: Gröbner bases: an algoritmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Multidimensional System Theory, pp. 374–383. Reidel, Dordrecht (1985)

    Google Scholar 

  13. Möller, H.M., Sauer, T.: H-bases I: the foundation. In: Cohen, A., Rabut, C., Schumaker, L. (eds.) Curve and Surface Fitting: Saint–Malo 1999, pp. 325–332. Vanderbilt University Press Nashville, TN (2000)

  14. Peña, J.M., Sauer, T.: Efficient polynomial reduction. Adv. Comput. Math. 26(1–3), 323–336 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Giusti, M., Hägele, K., Heintz, J., Morais, J., Montaña, J., Pardo, L.: Lower bounds for Diophantine approximation. J. Pure Appl. Algebra 117(118), 277–317 (1997)

    Article  MathSciNet  Google Scholar 

  16. Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system solving. J. Complex. 17(1), 154–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Heintz, J., Matera, G., Waissbein, A.: On the time-space complexity of geometric elimination procedures. Appl. Algebra Eng. Commun. Comput. 11(4), 239–296 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Durvye, C., Lecerf, G.: A concise proof of the Kronecker polynomial system solver from scratch. Expos. Math. 26(2), 101–139 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Faddeev, D., Faddeeva, V.: Computational Methods of Linear Algebra. Freeman, San Francisco (1963)

    Google Scholar 

  20. von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

  21. Shoup, V.: Efficient computation of minimal polynomials in algebraic extension fields. In: ISSAC’99: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, pp. 53–58. ACM, New York (1999)

  22. Krick, T., Pardo, L., Sombra, M.: Sharp estimates for the arithmetic Nullstellensatz. Duke Math. J. 109(3), 521–598 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory, Grundlehren der Mathematischen Wissenschaften, vol. 315. Springer, Berlin (1997)

    Google Scholar 

  24. Balcázar, J., Díaz, J., Gabarró, J.: Structural Complexity I, Monograph Theoretical Computer Science EATCS Series, vol. 11. Springer, Berlin (1988)

    Google Scholar 

  25. Schwartz, J.: Probabilistic algorithms for verification of polynomial identities. EUROSAM ’79: Proceedings of International Symposium on Symbolic and Algebraic Computation. Marseille 1979, Lecture Notes in Computer Science, vol. 72, pp. 200–215. Springer, Berlin (1979)

  26. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: EUROSAM ’79: Proceedings of International Symposium on Symbolic and Algebraic Computation. Marseille 1979, Lecture Notes in Computer Science, vol. 72, pp. 216–226. Springer, Berlin (1979)

  27. Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields. Theoret. Comput. Sci. 24(3), 239–277 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hodge, W., Pedoe, D.: Methods of Algebraic Geometry. Cambridge Mathematical Library, vol. I. Cambridge University Press, Cambridge (1968)

    Google Scholar 

  29. Samuel, P.: Méthodes d’algèbre abstraite en géométrie algébrique. Springer, Berlin (1967)

    MATH  Google Scholar 

  30. Shafarevich, I.: Basic Algebraic Geometry: Varieties in Projective Space. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  31. Bini, D., Pan, V.: Polynomial and Matrix Computations. Progress in Theoretical Computer Science. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  32. Knuth, D.: The Art of Computer Programming: Semi-Numerical Algorithms, vol. 2. Addison-Wesley, Reading, MA (1981)

    Google Scholar 

  33. Dixon, J.: Exact solution of linear equations using \(p\)-adic expansions. Numer. Math. 40, 137–141 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  34. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, Graduate Texts in Mathematics, vol. 185. Springer, New York (1998)

    Book  Google Scholar 

  35. Giusti, M., Heintz, J., Morais, J., Pardo, L.: When polynomial equation systems can be solved fast? In: Cohen, G., Giusti, M., Mora, T. (eds.) Applied Algebra, Algebraic Algorithms and Error Correcting Codes, Proceedings AAECC-11, Lecture Notes in Computer Science, vol. 948, pp. 205–231. Springer, Berlin (1995)

  36. Pardo, L.: How lower and upper complexity bounds meet in elimination theory. In: Cohen, G., Giusti, M., Mora, T. (eds.) Applied Algebra, Algebraic Algorithms and Error Correcting Codes, Proceedings of AAECC-11, Lecture Notes in Computer Science, vol. 948, pp. 33–69. Springer, Berlin (1995)

  37. Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Grössen. J. Reine Angew. Math. 92, 1–122 (1882)

    MATH  Google Scholar 

  38. König, J.: Einleitung in die allgemeine Theorie der algebraischen Grözen. Druck und Verlag von B.G. Teubner, Leipzig (1903)

    Google Scholar 

  39. Schost, E.: Sur la résolution de systèmes à paramètres. Ph.D. Thesis. École Polytechnique, France (2000)

  40. Kunz, E.: Kähler Differentials. Advanced Lectures in Mathematics. Vieweg, Braunschweig (1986)

    Book  Google Scholar 

  41. Elkadi, M., Mourrain, B.: Introduction à la résolution des systèmes polynomiaux. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  42. Giusti, M., Heintz, J.: La détermination des points isolés et de la dimension d’une variété algébrique peut se faire en temps polynomial. In: Eisenbud, D., Robbiano, L. (eds.) Computational Algebraic Geometry and Commutative Algebra, Symposium Mathematics, vol. XXXIV, pp. 216–256. Cambridge University. Press, Cambridge (1993)

  43. Becker, E., Cardinal, J.P., Roy, M.F., Szafraniec, Z.: Multivariate Bezoutians, Kronecker symbol and Eisenbud–Levine formula. In: Algorithms in Algebraic Geometry and Applications. Proceedings of MEGA’94, Progress in Mathematics, vol. 142, pp. 79–104. Birkhäuser, Boston (1996)

  44. Fitchas, N., Giusti, M., Smietanski, F.: Sur la complexité du théorème des zéros. In: Guddat, J., et al. (eds.) Approximation and Optimization in the Caribbean II, Proceedings 2nd International Conference on Non-Linear Optimization and Approximation, Approximation and Optimization, vol. 8, pp. 247–329. Peter Lange Verlag, Frankfurt am Main (1995)

  45. Alonso, M., Becker, E., Roy, M.F., Wörmann, T.: Zeroes, multiplicities and idempotents for zerodimensional systems. In: Algorithms in Algebraic Geometry and Applications. Proceedings of MEGA’94, Progress in Mathematics, vol. 143, pp. 1–15. Birkhäuser, Boston (1996)

  46. Elkadi, M., Mourrain, B.: Approche effective des résidus algébriques. Rapport de Recherche 2884, INRIA, Sophia Antipolis (1996)

  47. Iversen, B.: Generic Local Structure of the Morphisms in Commutative Algebra, Lecture Notes in Mathematics, vol. 310. Springer, New York (1973)

  48. Kronecker, L.: Über Einige Interpolationsformeln für Ganze Functionen Mehrer Variabeln. Monatsberichte der Königlich Preussischen Akademie der Wissenschafften zu Berlin, pp. 686–691 (1865)

  49. Gasca, M., Sauer, T.: On the history of polinomial interpolation. J. Comput. Appl. Math 122(1–2), 23–35 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  50. Giusti, M., Heintz, J., Sabia, J.: On the efficiency of effective Nullstellensätze. Comput. Complex. 3, 56–95 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  51. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

    Article  MATH  Google Scholar 

  52. Storjohann, A.: Algorithms for Matrix Canonical Forms. Ph.D. thesis. ETH, Zürich (2000)

  53. Hägele, K., Morais, J., Pardo, L., Sombra, M.: On the intrinsic complexity of the arithmetic Nullstellensatz. J. Pure Appl. Algebra 146(2), 103–183 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. Jelonek, Z.: On the effective nullstellensatz. Invent. Math. 162(1), 1–17 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  55. Baur, W., Strassen, V.: The complexity of partial derivatives. Theor. Comput. Sci. 22, 317–330 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  56. Lang, S.: Algebra, 3rd edn. Addison-Wesley, Reading, MA (1993)

    MATH  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the many helpful suggestions of Joos Heintz, Guillermo Matera, Pablo Solernó and Antonio Cafure during the preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nardo Giménez.

Additional information

Research partially supported by the following grants UNGS 30/3180, PIP 11220090100421 CONICET.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giménez, N. An algorithm for implicit interpolation. AAECC 25, 119–157 (2014). https://doi.org/10.1007/s00200-014-0213-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-014-0213-8

Keywords

Mathematics Subject Classification (2010)

Navigation