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Abstract. The dynamic algorithm to compute a Gröbner basis is nearly
twenty years old, yet it seems to have arrived stillborn; aside from two initial
publications, there have been no published followups. One reason for this may
be that, at first glance, the added overhead seems to outweigh the benefit;
the algorithm must solve many linear programs with many linear constraints.
This paper describes two methods that reduce both the size and number of
these linear programs.

1. Introduction

Since the first algorithm to compute Gröbner bases was described by [6], they
have become a standard tool for applied, computational, and theoretical algebra.
Their power and promise has stimulated a half-century of research into computing
them efficiently. Important advances have resulted from reducing the number of
pairs considered [6][7][11][16][24], improving the reduction algorithm [5][15][33], and
forbidding some reductions [1][16][34].

The Gröbner basis property depends on the choice of term ordering: a basis can
be Gröbner with respect to one term ordering, but not to another. Researchers
have studied ways to find an ordering that efficiently produces a basis “suitable” for
a particular problem [30][31], and to convert a basis that is Gröbner with respect
to one ordering to a basis that is Gröbner with respect to another [10][13][17][32].

Another approach would be to begin without any ordering, but to compute both
a basis and an ordering for which that basis is Gröbner. Such a “dynamic” algorithm
would change its ordering the moment it detected a “more efficient” path towards
a Gröbner basis, and would hopefully conclude with a smaller basis more quickly.

Indeed, this question was posed nearly twenty years ago, and was studied both
theoretically and practically in two separate papers [9][21]. The first considered
primarily questions of discrete geometry; the dynamic algorithm spills out as a
nice application of the ideas, but the authors did not seriously consider an imple-
mentation. The second described a study implementation that refines the ordering
using techniques from linear programming, and focused on the related algebraic
questions.

Aside from one preprint [20], there has been no continuation of this effort. There
certainly are avenues for study; for example, this observation at the conclusion of
[9]:

In a number of cases, after some point is reached in the refining of
the current order, further refining is useless, even damaging. . . . The

2000 Mathematics Subject Classification. 13P10 and 68W30.
1

ar
X

iv
:1

20
9.

23
79

v3
  [

m
at

h.
A

C
] 

 2
1 

D
ec

 2
01

2



DYNAMIC GRÖBNER BASIS ALGORITHMS 2

exact determination of this point is not easy, and an algorithm for
its determination is not given.

An example of the damage that can occur is that the number and size of the linear
programs grow too large. The temporary solution of [9] was to switch the refiner
off at a predetermined point. Aside from the obvious drawback that this prevents
useful refinement after this point, it also forces unnecessary refinement before it!
This can be especially costly when working with systems rich in dense polynomials.

This paper presents two new criteria that signal the refiner not only to switch
off when it is clearly not needed, but also to switch back on when there is a high
probability of useful refinement. The criteria are based on simple geometric insights
related to linear programming. The practical consequence is that these techniques
reduce both the number and the size of the associated linear programs by significant
proportions.

2. Background

This section lays the groundwork for what is to follow, in terms of both termi-
nology and notation. We have tried to follow the vocabulary and notation of [9],
with some modifications.

Section 2.1 reviews the traditional theory of Gröbner bases, inasmuch as it per-
tains to the (static) Buchberger algorithm. Section 2.2 describes the motivation and
background of the dynamic algorithm, while Section 2.3 reviews Caboara’s spec-
ification. Section 2.4 deals with some geometric considerations which will prove
useful later.

2.1. Gröbner bases and the static Buchberger algorithm. Let m,n ∈ N+,
K a field, and R = F [x1, . . . , xn]. We typically denote polynomials by f , g, h, p,
q, and r, and the ideal of R generated by any F ⊆ R as 〈F 〉. Following [9], we
call a product of powers of the variables of R a term, and a product of a term
and an element of K a monomial. We typically denote constants by letters at the
beginning of the alphabet, and terms by t, u, v. We denote the exponent vector of
a term by its name in boldface; so, if n = 4 and t = x21x3x

20
4 , then t = (2, 0, 1, 20).

An ordering σ on the set Tn of all terms of R is admissible if it is a well-
ordering that is compatible with divisibility and multiplication; by “compatible
with divisibility,” we mean that t | u and t 6= u implies that t <σ u, and by
“compatible with multiplication,” we mean that t <σ u implies that tv <σ uv. We
consider only admissible orderings, so henceforth we omit the qualification.

We write T for the set of all term orderings, and denote orderings by Greek
letters µ, σ, and τ . For any p ∈ R we write ltσ (p) and lcσ (p) for the leading term
and leading coefficient of p with respect with σ. If the value of σ is clear from
context or does not matter, we simply write lt (p) and lc (p). For any F ⊆ R, we
write ltσ (F ) = {ltσ (f) : f ∈ F}.

Let I be an ideal of R, and G ⊆ I. If for every p ∈ I there exists g ∈ G such that
lt (g) | lt (p), then we say that G is a Gröbner basis of I. This property depends
on the ordering; if σ, τ ∈ T , it is quite possible for G to be a Gröbner basis with
respect to σ, but not with respect to τ .

It is well known that every polynomial ideal has a finite Gröbner basis, regardless
of the choice of ordering. Actually computing a Gröbner basis requires a few more
concepts. Let f, p, r ∈ R. We say that p reduces to r modulo f , and write
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algorithm static_buchberger_algorithm
inputs:

• F ⊆ R
• σ ∈ T

outputs: G ⊆ R, a Gröbner basis of 〈F 〉 with respect to σ
do:

(1) Let G = {}, P = {(f, 0) : f ∈ F}
(2) while P 6= ∅

(a) Select (p, q) ∈ P and remove it
(b) Let r be a remainder of spoly (p, q) modulo G
(c) if r 6= 0

(i) Add (g, r) to P for each g ∈ G
(ii) Add r to G

(3) return G

Figure 2.1. The traditional Buchberger algorithm

p −→
f

r, if there exist a ∈ K and t ∈ Tn such that p − atf = r and lt (r) < lt (p).

Similarly, we say that p reduces to r modulo G, and write

p −→
G

r,

if there exist {i1, . . . , i`} ⊆ {1, . . . ,#G} such that p −→
gi1

r1, r1 −→
gi2

r2, . . . , r`−1 −→
gi`

r` = r. If there no longer exists g ∈ G such that lt (g) divides a lt (r), we call r a
remainder of p modulo G.

Proposition 1 (Buchberger’s Characterization, [6]). G is a Gröbner basis of I if
and only if the S-polynomial of every f, g ∈ I\ {0}, or

spoly (f, g) = lc (g) · lcm (lt (f) , lt (g))

lt (f)
· f − lc (f) · lcm (lt (f) , lt (g))

lt (g)
· g,

reduces to zero modulo G.

For convenience, we extend the definition of an S-polynomial to allow for 0:

Definition 2. Let p ∈ R. The S-polynomial of p and 0 is p.

Buchberger’s Characterization of a Gröbner basis leads naturally to the classical,
static Buchberger algorithm to compute a Gröbner basis; see Algorithm 2.1,
which terminates on account of the Hilbert Basis Theorem (applied to 〈lt (G)〉).
There are a number of ambiguities in this algorithm: the strategy for selecting
pairs (p, q) ∈ P , for instance, or how precisely to reduce the S-polynomials. These
questions have been considered elsewhere, and the interested reader can consult the
references cited in the introduction.

Remark 3. Algorithm 2.1 deviates from the usual presentation of Buchberger’s
algorithm by considering S-polynomials of the inputs with 0, rather than with each
other. This approach accommodates the common optimization of interreducing the
inputs.
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2.2. The dynamic algorithm. Every admissible ordering can be described using
a real matrix M [26]. Terms u, v are compared by comparing lexicographically
Mu and Mv. Two well-known orders are lex and grevlex; the former can be
represented by an identity matrix, and the latter by an upper-triangular matrix
whose non-zero elements are identical.

Example 4. Consider the well-known Cyclic-4 system,

F = (x1 + x2 + x3 + x4, x1x2 + x2x3 + x3x4 + x4x1,

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2,

x1x2x3x4 − 1) .

(1) If we compute a Gröbner basis of 〈F 〉 with respect to lex, we obtain a
Gröbner basis with 6 polynomials made up of 18 distinct terms.

(2) If we compute a Gröbner basis of 〈F 〉 with respect to grevlex, we obtain a
Gröbner basis with 7 polynomials made up of 24 distinct terms.

(3) If we compute a Gröbner basis of 〈F 〉 according to the matrix ordering
1 3 2 4
1 1 1 0
1 1 0 0
1 0 0 0

 ,

we obtain a Gröbner basis with 5 polynomials and 19 distinct terms.

We can order any finite set of terms using a weight vector in Nn, and if necessary,
we can extend a weight vector to an admissible ordering by adding n − 1 linearly
independent rows. In the example above, we extended the weight vector (1 3 2 4)
by adding three more rows.

The goal of the dynamic algorithm is to discover a “good” ordering for given
input polynomials during the Gröbner basis computation. Algorithm 2.2 describes
a dynamic Buchberger algorithm. As with the static algorithm, its basic form
contains a number of unresolved ambiguities:

• How shall we select a pair?
• How do we determine a good ordering?
• How do we choose the ordering?
• When should we select a new ordering?
• Does the algorithm actually terminate?

2.3. Caboara’s implementation. The only implementation of a dynamic algo-
rithm up to this point was that of [9]; it has since been lost. This section reviews
that work, adapting the original notation to our own, though any differences are
quite minor.

2.3.1. How shall we select a pair? Caboara used the sugar strategy, which se-
lects (p, q) ∈ P such that the degree of the homogenization of spoly (p, q) is mini-
mal [4][19]. Pairs were pruned using the Gebauer-Möller algorithm [18].

2.3.2. How do we determine a good ordering? Both [21, 9] suggest using theHilbert-
Poincaré function to evaluate orderings. Roughly speaking, the Hilbert-Poincaré
function of an ideal I in a ring R, denoted HR/I (d), indicates:

• if I is inhomogeneous, the number of elements in R/I of degree no greater
than d;
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algorithm dynamic_buchberger_algorithm
inputs: F ⊆ R
outputs: G ⊆ R and σ ∈ T such that G is a Gröbner basis of 〈F 〉 with respect to
σ
do:

(1) Let G = {}, P = {(f, 0) : f ∈ F}, σ ∈ T
(2) while P 6= ∅

(a) Select (p, q) ∈ P and remove it
(b) Let r be a remainder of spoly (p, q) modulo G
(c) if r 6= 0

(i) Add (g, r) to P for each g ∈ G
(ii) Add r to G

(d) Select τ ∈ T
(e) Let P = P ∪ {(p, q) : p, q ∈ G, p 6= q, ltσ (p) 6= ltτ (p)}
(f) Let σ = τ

(3) return G, σ

Figure 2.2. A basic, dynamic Buchberger algorithm

• if I is homogeneous, the number of elements in R/I of degree d.
The homogeneous case gives us the useful formula

HR/I (d) = dimK (R/I)d ,

where the dimension is of the subspace of degree-d terms of the vector space R/I.
If G is a Gröbner basis, then HR/〈G〉 = HR/〈lt(G)〉, and it is easy to compute
the related Hilbert series or Hilbert polynomial for HR/〈G〉 (d) from 〈lt (G)〉
[2][3][27]. Many textbooks, such as [23], contain further details.

In the homogeneous setting, the Hilbert function is an invariant of the ideal
regardless of the ordering. Thus, we can use it to measure “closeness” of a basis to
a Gröbner basis. Both the static and dynamic algorithms add a polynomial r to
the basis G if and only if 〈lt (G)〉 ( 〈lt (G ∪ {r})〉. (See Figure 2.3.) If we denote
T = 〈lt (G)〉 and U = 〈lt (G ∪ {r})〉, then T ( U , so for all d,

HR/T (d) = dimK (R/T )d ≥ dimK (R/U)d = HR/U (d) .

If the choice of ordering means that we have two possible values for U , we should
aim for the ordering whose Hilbert function is smaller in the long run.

Since G is a Gröbner basis only once we complete the algorithm, how can we
compute the Hilbert function of its ideal? We do not! Instead, we approximate it
using a tentative Hilbert function HR/〈lt(G)〉 (d). This usually leads us in the
right direction, even when the polynomials are inhomogeneous [9].

2.3.3. How do we choose the ordering? A potential leading term (PLT) of r ∈ R
is any term t of r for which there exists an admissible ordering σ such that ltσ (r) =
t. As long as G is finite, there is a finite set of equivalence classes of all monomial
orderings. We call each equivalence class a cone associated to G, and denote by
C (σ,G) the cone associated to G that contains a specific ordering σ. When g ∈ G,
we refer to C (σ, t, g) as the cone associated to G that guarantees ltσ (g) = t.
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1 2 3 4

1

2

3

4

Figure 2.3. Adding r to G makes R/ 〈lt (G)〉, and there-
fore H〈lt(G)〉, smaller. The example here is taken from G ={
x2 + y2 − 4, xy − 1

}
with x > y; running the Buchberger algo-

rithm on the pair (g1, g2) gives us lt (r) = y3, which removes all
multiples of y3 + 〈G〉 from R/ 〈G〉, thereby decreasing H〈lt(G)〉.

Suppose t ∈ supp (r) and we want to choose σ such that ltσ (r) = t. For each
u ∈ supp (r) \ {t}, we want t > u. This means σt > σu, or σ (t− u) > 0. A vector
will suffice to determine σ; and we can find such a vector using the system of linear
inequalities

lp (y, t, r) = {yk > 0}nk=1 ∪

{
n∑
k=1

yk (tk − uk) > 0

}
u∈supp(r)\{t}

.

(Here, tk and uk denote the kth entry of t and u, respectively. To avoid confusion
with the variables of the polynomial ring, we typically use y’s to denote the unknown
values of linear programs.) Since every cone C (σ,G) is defined by some system
of linear inequalities, this approach successfully turns a difficult geometric problem
into a well-studied algebraic problem that we can solve using techniques from linear
programming.

Proposition 5 (Propositions 1.5, 2.3 of [9]). The cone C (σ, F ) can be described
using a union of such systems, one for each f ∈ F .

Example 6. In Cyclic-4, the choice of leading terms

{x1, x1x2, x1x2x3, x1x2x3x4}

can be described by the system of linear inequalities

{yi > 0}4i=1 ∪ {y1 − yi > 0}4i=2

∪ {y1 − y3 > 0, y1 + y2 − y3 − y4 > 0, y2 − y4 > 0}
∪ {y1 − y4 > 0, y2 − y4 > 0, y3 − y4 > 0}
∪ {y1 + y2 + y3 + y4 − 0 > 0} .

The last inequality comes from the constraint x1x2x3x4 > 1, and is useless. This
illustrates an obvious optimization; if u | t and u 6= t, the ordering’s compatibility
with division implies that u cannot be a leading term of r; the corresponding linear
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inequality is trivial, and can be ignored. This leads to the first of two criteria to
eliminate terms that are not potential leading terms.

Proposition 7 (The Divisibility Criterion; Proposition 2.5 and Corollary of [9]).
Let r ∈ R and t, u ∈ supp (r). If u divides t properly, then t >τ u for every τ ∈ T .
In other words, u is not a potential leading term of r.

Caboara also proposed a second criterion based on the notion of refining the
order. If σ and τ are such that C (τ,G) ⊆ C (σ,G), then we say that τ refines
σ, or that τ refines the order. Caboara’s implementation chooses an ordering
τ in line 2d so that ltτ (g) = ltσ (g) for all g ∈ G\ {r}, so that τ refines σ. This
allows the algorithm to discard line 2e altogether, and this is probably a good idea
in general.

Proposition 8 (The Refining Criterion; Proposition 2.6 of [9]). Let G = {g1, . . . , g`} (
R and t1, . . . , t` be potential leading terms of g1, . . . , g`, respectively. The system

{tk > u : u ∈ supp (gk)}`k=1

is equivalent to the system

{tk > u : u a PLT of gk consistent w/tj = lt (gj) ∀j = 1, . . . , k − 1}`k=1 .

Proposition 8 implies that we need only compare tk with other potential leading
terms u of gk that are consistent with the previous choices; we will call such u,
compatible leading terms.1 From a practical point of view, refining the cone
in this way is a good idea, as the technique of refining the order allows one to
warm-start the simplex algorithm from a previous solution using the dual simplex
algorithm, lessening the overhead of linear programming. It does require some
record-keeping; namely, retaining and expanding the linear program as we add new
polynomials. This motivates the definition of

lp (σ,G) = lp (σ, {(ltσ (g) , g) : g ∈ G}) :=
⋃
g∈G

lp (y, ltσ (g) , g) .

This burden on space is hardly unreasonable, however, as these systems would have
to be computed even if we allow the order to change. That approach would entail
a combinatorial explosion.

Example 9. Let F be the Cyclic-4 system. Suppose that, in the dynamic al-
gorithm, we add spoly (f1, 0) = f1 to G, selecting x1 for the leading term, with
σ = (2, 1, 1, 1). Suppose that next we select spoly (f2, 0) = f2, reduce it modulo G
to r2 = x22 − 2x2x4 − x24, and select x22 as its leading term, with σ = (3, 2, 1, 1). We
have

lp
(
σ,
{

(x1, f1) ,
(
x22, f2

)})
= {yk > 0}4k=1 ∪ {y1 − yk > 0}4k=2

∪ {y2 − y4 > 0, 2y2 − 2y4 > 0} .

Remark 10. In a practical implementation, it is important to avoid redundant
constraints; otherwise, the programs quickly grow unwieldy. One way to avoid re-
dundant constraints is to put them into a canonical form that allows us to avoid

1This notion is essentially Caboara’s notion of a potential leading term with respect to F ,
lt (F ). Our choice of different vocabulary is allows us to emphasize that a “potential” leading term
for one polynomial is not usually “compatible” with previous choices.
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σ

τ τ

σ

µ

Figure 2.4. The cones associated to a basis G narrow as we add
polynomials to the basis. Here, G =

{
x2 + y2 − 4, xy − 1

}
; the

two possible orderings are τ and σ, which give ltσ (G) =
{
x2, xy

}
and ltτ (G) =

{
y2, xy

}
. Suppose we choose σ and compute the

S-polynomial. This adds r = y3 +x−4y to the basis, and the cone
containing σ splits, giving us two choices for lt (r).

adding scalar multiples of known constraints. Unfortunately, even this grows un-
wieldy before too long; one of this paper’s main points is to describe a method of
minimizing the number of required constraints.

2.3.4. When should we select the ordering? As noted in the introduction, Caboara’s
implementation refines the ordering for a while, then permanently switches the
refiner off. Making this activation/deactivation mechanism more flexible is the
major goal of this investigation.

2.3.5. Does the algorithm actually terminate? Termination is easy to see if you
just refine orderings. In the more general case, termination has been proved by
Golubitsky [20]. He has found systems where it is advantageous to change the
ordering, rather than limit oneself to refinement.

2.4. The geometric point of view. Here, we provide a visual interpretation of
how the property C (τ,G) ( C (σ,G) affects the algorithm. This discussion was
originally inspired by [21], but we state it here in terms that are closer to the notion
of a Gröbner fan [25].

Any feasible solution to the system of linear inequalities corresponds to a half-
line in the positive orthant. Thus, the set of all solutions to any given system
forms an open, convex set that resembles an infinite cone. Adding polynomials to
G sometimes splits some of the cones. (See Figure 2.4). This gives a geometric
justification for describing Caboara’s approach as a narrowing cone algorithm.

Even though some cones can split when we add new polynomials, not all clones
must split. In particular, the cone containing the desired ordering need not split,
especially when the algorithm is nearly complete. For this, reason, it is not neces-
sary to refine the cone every time a polynomial is added. The methods of the next
section help detect this situation.

3. Exploiting the narrowing cone

The main contribution of this paper is to use the narrowing cone to switch the
refiner on and off. We propose two techniques to accomplish this: one keeps track
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of cones known to be disjoint (Section 3.1); the other keeps track of “boundary
vectors” that prevent the refiner from leaving the cone (Section 3.2).

3.1. Disjoint Cones. The Disjoint Cones Criterion is based on the simple premise
that if we track inconsistent constraints of linear programs, we can avoid expanding
the program later.

3.1.1. Geometric motivation. Let
• CT be the cone defined by the selection of T = {t1, . . . , t`} as the leading

terms of G = {g1, . . . , g`},
• Cu be the cone defined by the selection of u as the leading term of g`+1,

and
• CT ′ be the cone defined by the selection of T ′ = {t1, . . . , t`+k} as the leading

terms of G′ = {g1, . . . , g`+k}.
Suppose the current ordering is σ ∈ CT , and CT ∩Cu = ∅. It is impossible to refine
the current ordering in a way that selects u as the leading term of g`+1, as this
would be inconsistent with previous choices. On the other hand, if τ ∈ CT ′ and
CT ′ ⊆ CT , then it is possible to refine σ to an ordering τ .

Now let
• Cv be the cone defined by the selection of v as the leading term for g`+k+1.

If Cv ⊆ Cu, then Cv ∩ CT ′ ⊆ Cu ∩ CT = ∅, so we cannot refine σ to any ordering
that selects v as the leading term of g`+k+1. Is there some way to ensure that the
algorithm does not waste time solving such systems of linear inequalities? Yes! If
we record the cone Cu, we can check whether Cv ⊆ Cu, rather than going to the
expense of building a linear program to check whether Cv ∩ CT ′ 6= ∅.

3.1.2. Algebraic implementation. We could determine whether Cv ⊆ Cu by building
a linear program, but we will content ourselves with determining when one set of
inconsistent linear constraints is a subset of another set.

Theorem 11 (Disjoint Cones Criterion). Let LT , LU , and LV be sets of linear con-
straints. If LT is inconsistent with LU and LU ⊆ LV , then LT is also inconsistent
with LV .

Proof. Assume LT is inconsistent with LU and LU ⊆ LV . The first hypothesis
implies that LT ∩ LU = ∅. The second implies that LV has at least as many
constraints as LU , so that the feasible regions CU and CV , corresponding to LU and
LV , respectively, satisfy the relation CU ⊇ CV . Putting it all together, CV ∩CT ⊆
CU ∩ CT = ∅. �

In our situation, LU and LV correspond to different choices of leading terms of
a new polynomial added to the set, while LT = lp (σ,G). We want to consider
both the case where LV is a set of new constraints, and the case where LV is
some extension of LT . Rather than discard the inconsistent linear program LU , we
will retain it and test it against subsequent sets of constraints, avoiding pointless
invocations of the simplex algorithm.

We implement the geometric idea using a global variable, rejects. This is a set
of sets; whenever LT is known to be consistent, but the simplex algorithm finds
LT ∪ LU inconsistent, we add LU to rejects. Subsequently, while creating the
constraints in an extension LV of LT , we check whether LU is contained in either
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LV or LT ∪ LV ; if so, we reject LV out of hand, without incurring the burden of
the simplex algorithm.

Again, we are not checking whether the cones are disjoint, only the necessary
condition of whether the linear constraints are a subset. With appropriate data
structures, the complexity of determining subset membership is relatively small;
with hashed sets, for example, the worst-case time complexity would be the cost of
the hash function plus O (|rejects|).

3.2. Boundary Vectors. Unlike the Disjoint Cones Criterion, the Boundary Vec-
tors Criterion can prevent the construction of any constraints.

3.2.1. Geometric motivation. Let C (G, σ) be a cone associated with G, containing
the ordering σ.

Definition 12. The closure of C (G, σ) is the feasible region obtained by rewriting
lp (σ,G) as inclusive inequalities (≥ in place of >). Let d ∈ R be positive. We say
that ω ∈ Rn is a boundary vector of C (G, σ) if it is an extreme point of the
intersection of the closure of C (G, σ) and the additional constraint

∑n
k=1 xk = d.

For a fixed d, we denote the set of all boundary vectors of C (G, σ) by ΩG,σ,d.
When the value of d is not critical to the discussion, we simply write ΩG,σ. Likewise,
if the values of G and σ are not critical to the discussion, or if they are understood
from context, we simply write Ω.

Example 13. Suppose σ = (18, 5, 7) and C (G, σ) is defined by
2y1 − y2 > 0
−y1 + 4y2 > 0

y1 + y2 − 3y3 > 0
−y2 + y3 > 0

.

When d = 30, we have Ω = {(15, 7.5, 7.5) , (20, 5, 5) , (18, 4.5, 7.5)}. Not all inter-
sections of constraints are boundary vectors; one intersection that does not border
the feasible region is (22.5, 0, 7.5), which satisfies all but the third constraint.

Boundary vectors possess the very desirable property of capturing all possible
refinements of the term ordering.

Theorem 14 (Boundary Vectors Criterion). Let r ∈ R and Ω the set of boundary
vectors of C (σ,G). Write t = ltσ (r). If there exists τ ∈ C (σ,G) such that ltτ (r) =
u 6= t — that is, there exists τ that refines the order differently from σ — then there
exists ω ∈ Ω such that ω (u− t) > 0.

Two observations are in order before we prove Theorem 14. First, the converse
of Theorem 14 is not true in general. For example, let ω = (2, 1), r = x2 + x + y,
v = x2, u = x, and t = y. Even though ω (u− t) > 0, the fact that u | v implies
that no admissible ordering τ chooses ltτ (r) = u.

Nevertheless, the theorem does imply a useful corollary:

Corollary 15. If we know the set Ω of boundary vectors for C (σ,G), then we can
discard any term u such that ω (t− u) > 0 for all ω ∈ Ω. That is, u is not a
compatible leading term.

We turn now to the proof of Theorem 14. Figure 3.1 illustrates the intuition;
here, τ and σ select different leading terms, and ω lies on the other side of τ from
σ. By linearity, ω gives greater weight to ltτ (r) than to ltσ (r).
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1 2 3 4

1

2

3

4

ω(j)

τ

σ

Figure 3.1. If ltτ (r) 6= ltσ (r), convexity and linearity imply that
we can find a boundary vector ω such that ω would give ltτ (r) more
weight than ltσ (r).

Figure 3.2. We approximate Ω by computing boundary vectors
corresponding to points that maximize and minimize the value of
an objective function. The cone at the left has seven boundary
vectors, as we see in the cross section on the right. In this case,
four vectors maximize and minimize the variables; they define a
“sub-cone” whose cross-section corresponds to the dashed line.

of Theorem 14. Suppose that there exists τ ∈ C (σ,G) such that ltτ (r) = u. By
definition, τ (u− t) > 0. Let d =

∑
τk; if τ = ω for some ω ∈ ΩG,σ,d, then we are

done. Otherwise, consider the linear program defined by maximizing the objective
function

∑
yk (uk − tk) subject to the closure of lp (σ,G) ∪ {

∑
yk =

∑
τk}. This

is a convex set; the well-known Corner Point Theorem implies that a maximum
of any objective function occurs at an extreme point [12][29]. By definition, such
a point is a boundary vector of C (σ,G). Let ω ∈ C (σ,G) be a boundary vector
where

∑
yk (uk − tk) takes its maximum value; then ω (u− t) ≥ τ (u− t) > 0. �

Computing Ω can be impractical, as it is potentially exponential in size. We
approximate it instead by computing corner points that correspond to the maximum
and minimum of each variable on a cross section of the cone with a hyperplane,
giving us at most 2n points. Figure 3.2 illustrates the idea.

Example 16. Continuing Example 13, maximizing y1, y2, and y3 gives us the
boundary vectors listed in that example. In this case, these are all the boundary
vectors, but we are not always so lucky.
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σ

µ

σ

µ

(a) (b)

Figure 3.3. Although σ and µ lie within the same cone, the choice
of border vectors in (a) could mean the algorithm at first does not
add a constraint to guarantee ltσ (g`) > ltµ (g`). If the narrowed
cone splits later on, as in (b), and the algorithm moves into a sub-
cone that does not contain σ, a subsequent choice of µ is possible,
causing a change in the leading terms. We can try adding the
previously-overlooked constraint, and continue if we find a feasible
solution. The unlabeled dot could represent such a compromise
ordering.

Approximating Ω has its own disadvantage; inasmuch as some orderings are
excluded, we risk missing some refinements that could produce systems that we
want. We will see that this is not a serious drawback in practice.

3.2.2. Minimizing the number of constraints. While boundary vectors reduce the
number of linear programs computed, the size of the linear programs can remain
formidable. After all, we are still adding constraints for every monomial that passes
the Divisibility Criterion. Is there some way to use boundary vectors to minimize
the number of constraints in the program?

We will attempt to add only those constraints that correspond to terms that the
boundary vectors identify as compatible leading terms. As we are not computing
all the boundary vectors, the alert reader may wonder whether this is safe.

Example 17. Suppose
• µ ∈ C (τ, {g1, . . . , g`+k}) ( C (σ, {g1, . . . , g`}),
• t = ltσ (g`), and
• u = ltµ (g`).

Suppose further that, when g` is added to the basis, the algorithm selects σ for the
ordering.

For some choices of boundary vectors, the algorithm might not notice that
µ ∈ C (σ, {g1, . . . , g`}), as in Figure 3.3(a). Thus, it would not add the constraint
(y1, . . . , yn) · (t− u) > 0. A later choice of boundary vectors does recognize that
µ ∈ C (τ, {g1, . . . , g`+k}), and even selects µ as the ordering. We can see this in
Figure 3.3(b). In this case, the leading term of g` changes from t to u; the ordering
has been changed, not refined!

Since the Gröbner basis property depends on the value of the leading terms,
this endangers the algorithm’s correctness. Fortunately, it is easy to detect this
situation; the algorithm simply monitors the leading terms.

It is not so easy to remedy the situation once we detect it. One approach
is to add the relevant critical pairs to P , and erase any record of critical pairs
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Figure 3.4. Estimation of the corner points of C (σ,G) by a
perturbation of the inequalities. Each diagram shows a two-
dimensional cross-section of a three-dimensional cone. The dashed
lines on the connect actual boundary vectors. The diagram on the
right connects boundary vectors of a perturbation of the system of
linear inequalities. The perturbation is designed to give us interior
points of the cone that are close to corner points.

computed with g`, or discarded because of it. Any practical implementation of the
dynamic algorithm would use criteria to discard useless critical pairs, such as those
of Buchberger, but if the polynomials’ leading terms have changed, the criteria
no longer apply. Recovering those pairs would require the addition of needless
overhead.

A second approach avoids these quandaries: simply add the missing constraint
to the system. This allows us to determine whether we were simply unlucky enough
to choose σ from a region of C (σ,G) that lies outside C (µ,G), or whether really
there is no way to choose both ltσ (g`) and ltµ (g`+k) simultaneously. In the former
case, the linear program will become infeasible, and we reject the choice of µ; in
the latter, we will be able to find τ ∈ C (σ,G) ∩ C (µ,G).

3.2.3. Implementation. Since the constraints of lp (σ,G) consist of integer polyno-
mials, it is possible to find integer solutions for the boundary vectors; one simply
rescales rational solutions once they are found. However, working with exact arith-
metic can be quite slow, techniques of integer programming are very slow, and for
our purposes, floating-point approximations are quite suitable. Besides, most linear
solvers work with floating point numbers.

On the other hand, using floating point introduces a problem when comparing
terms. The computer will sometimes infer ω · (u− t) > 0 even though the exact
representation would have ω · (u− t) = 0. We can get around this by modifying
the constraints of the linear program to ω · (u− t) ≥ ε for some sufficiently large
ε > 0. As we see in Figure 3.4, the polygon no longer connects extrema, but points
that approximate them. We might actually reject some potential leading terms u
on this account, but on the other hand, we never waste time with terms that are
incompatible with the current ordering.

This modified linear program is in fact useful for computing feasible points to
the original linear program as well.

Theorem 18. Let ε > 0 and J a finite subset of N. The system of linear inequalities

lp (σ,G) =
{

a(j) · (y1, . . . , yn) > 0
}
j∈J
∪ {yj > 0}nj=1
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is feasible if and only if the linear program{
a(j) · (y1, . . . , yn) ≥ ε

}
j∈J
∪ {yj ≥ ε}nj=1

is also feasible.

Proof. A solution to the linear program obviously solves the system of linear in-
equalities. Thus, suppose the system of linear inequalities has a solution σ. Let
τ = bσ, where b ∈ N is chosen large enough that τk ≥ ε for k = 1, . . . , n. For each
j ∈ J , define

γj =

n∑
k=1

a
(j)
k τk,

then choose cj ≥ 1 such that cjγj ≥ ε. Put d = max {cj}j∈J . Let ω = dτ . We have
ωk ≥ τk ≥ ε for each k = 1, . . . , n, and

a(j) · ω =

n∑
k=1

a
(j)
k ωk = d

n∑
k=1

a
(j)
k τk = dγj ≥ cjγj ≥ ε

for each j ∈ J . We have shown that ω is a solution to the linear program, which
means that the linear program is also feasible. �

Based on Theorem 18, we take the following approach:
(1) Replace each constraint a(j) · y > 0 of lp (σ,G) with a(j) · y ≥ ε, add

constraints yk ≥ ε for k = 1, . . . , n, and take as the objective function the
minimization of

∑
yk. We denote this new linear program as mlp (σ,G).

(2) Solve mlp (σ,G). This gives us a vector τ that can serve as a weighted
ordering for the terms already computed.

(3) Identify some d ∈ R such that mlp (σ,G) intersects the hyperplane
∑
yk =

d, giving us a cross-section K of the feasible region. This is trivial once we
have a solution τ to mlp (σ,G), since we can put d = 1 +

∑
τk.

(4) Compute an approximation to Ω by maximizing and minimizing each yk
on K.

Algorithm compute_boundary_vectors (Figure 3.5) gives pseudocode to do this; it
generates a set of boundary vectors Ψ that approximates the set Ω of boundary
vectors of C (σ,G).

Once we have an approximation Ψ to the boundary vectors Ω, we use it to elim-
inate terms that cannot serve as leading terms within the current cone. Algorithm
identify_clts_using_boundary_vectors (Figure 3.6), accomplishes this by looking
for u ∈ supp (r) \ {ltσ (r)} and ψ ∈ Ψ such that ψ (u− t) > 0. If it finds one, then
u is returned as a compatible leading term.

In Section 3.2.2, we pointed out that creating constraints only for the terms
identified as potential leading terms by the use of boundary vectors can lead to
an inconsistency with previously-chosen terms. For this reason, we not only try to
solve the linear program, but invokes algorithm monitor_lts (Figure 3.7) to verify
that previously-determined leading terms remain invariant. If some leading terms
would change, the algorithm obtains a compromise ordering whenever one exists.

Theorem 19. Algorithm monitor_lts of Figure 3.7 terminates correctly.

Proof. Termination is evident from the fact that G is a finite list of polynomials,
so the while loop can add only finitely many constraints to L. Correctness follows
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algorithm compute_boundary_vectors
inputs:

• L = mlp (σ,G)
• τ ∈ Rn that solves L

outputs: Ψ ( Rn, a set of vectors that approximates the boundary vectors of
mlp (σ,G)
do:

(1) let Ψ = {}
(2) let d = 1 + τ1 + · · ·+ τn
(3) let L = L ∪ {y1 + · · ·+ yn = d}
(4) for k ∈ {1, . . . , n}

(a) add to Ψ the solution ω of L that maximizes ωk
(b) add to Ψ the solution ω of L that minimizes ωk

(5) return Ψ

Figure 3.5. Algorithm to compute approximate boundary vec-
tors to C (G, σ)

algorithm identify_clts_using_boundary_vectors
inputs:

• σ ∈ T , the current term ordering
• t = ltσ (r), where r ∈ R
• U = supp (r) \ {t}
• Ψ ( Rn, approximations to the boundary vectors of C (G, σ)

outputs: V , where v ∈ V iff v = t, or v ∈ U and ψ (v − t) > 0 for some ψ ∈ Ψ
do:

(1) let V = {t}
(2) for u ∈ U

(a) if ψ (u− t) > 0 for some ψ ∈ Ψ
(i) add u to V

(3) return V

Figure 3.6. Eliminating terms using approximation to boundary vectors

from the fact that the algorithm adds constraints to mlp (τ,G) if and only if they
correct changes of the leading term. Thus, it returns (True, µ) if and only if it
is possible to build a linear program L whose solution µ lies in the non-empty set
C (τ,G) ∩ C (σ,G). �

It remains to put the pieces together.

Theorem 20. Algorithm dynamic_algorithm_with_geometric_criteria termi-
nates correctly.

Proof. The only substantive difference between this algorithm and the dynamic
algorithm presented in [9] lies in line 3(c)iii. In the original, it reads �
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algorithm monitor_lts
inputs

• G, the working basis
• σ ∈ T , the old ordering
• τ ∈ T , a new ordering
• L = mlp (τ,G)

outputs
• (True, µ) if there exists µ ∈ L refining C (G, σ) and ltµ (glast) = ltτ (glast),

where glast is the newest element of G
• False otherwise

do:
(1) let µ = τ
(2) while there exists g ∈ G such that ltµ (g) 6= ltσ (g)

(a) for each g ∈ G whose leading term changes
(i) let t = ltσ (g), u = ltµ (g)
(ii) let L = L

⋃
{y · (t− u)}

(b) if L is infeasible return False
else let µ be the solution to L

(3) return (True, µ)

Figure 3.7. Ensuring the terms remain invariant

algorithm dynamic_algorithm_with_geometric_criteria
inputs: F ⊆ R
outputs: G ⊆ R and σ ∈ T such that G is a Gröbner basis of 〈F 〉 with respect to
σ
do:

(1) Let G = {}, P = {(f, 0) : f ∈ F}, σ ∈ T
(2) Let rejects = {}, Ψ = {ek : k = 1, . . . , n}
(3) while P 6= ∅

(a) Select (p, q) ∈ P and remove it
(b) Let r be a remainder of spoly (p, q) modulo G
(c) if r 6= 0

(i) Add (g, r) to P for each g ∈ G
(ii) Add r to G
(iii) Select σ ∈ T , using identify_clts_using_boundary_vectors to

eliminate incompatible terms and monitor_lts to ensure consis-
tency of τ , storing failed linear programs in rejects

(iv) Remove useless pairs from P
(d) Let Ψ = compute_boundary_vectors(L, mlp (σ,G))

(4) return G, σ

Figure 3.8. A dynamic Buchberger algorithm that employs the
Disjoint Cones and Boundary Vectors criteria
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σ := RefineCurrentOrder (ft+1, F, σ) .

Theorems 14, 18, and 19 are critical to correctness and termination of the modified
algorithm, as they ensures refinement of the ordering, rather than change. In par-
ticular, the compatible leading terms identified by boundary vectors are indivisible
by previous leading terms; since refinement preserves them, each new polynomial
expands 〈lt (G)〉, and the Noetherian property of a polynomial ring applies.

4. Experimental results

The current study implementation, written in Cython for the Sage computer
algebra system [28], is available at

www.math.usm.edu/perry/Research/dynamic_gb.pyx
It is structured primarily by the following functions:
dynamic_gb is the control program, which invokes the usual functions for a Buch-

berger algorithm (creation, pruning, and selection of critical pairs using the
Gebauer-Möller algorithm and the sugar strategy, as well as computation and
reduction of of S-polynomials), as well as the following functions necessary for
a dynamic algorithm that uses the criteria of Disjoint Cones and Boundary
Vectors:
choose_an_ordering, which refines the ordering according to the Hilbert

function heuristic, and invokes:
possible_lts, which applies the Boundary Vectors and Divisibility cri-

teria;
feasible, which tries to extend the current linear program with con-

straints corresponding to the preferred leading term; it also applies
the Disjoint Cones criterion, and invokes
monitor_lts, which verifies that an ordering computed by feasible

preserves the previous choices of leading terms;
boundary_vectors, which computes an approximation Ψ to the boundary

vectors Ω.
The dynamic_gb function accepts the following options:

• static: boolean, True computes by the static method, while False (the
default) computes by the dynamic method;

• strategy: one of ’sugar’, ’normal’ (the default), or ’mindeg’;
• weighted_sugar: boolean, True computes sugar according to ordering,

while False (the default) computes sugar according to standard degree;
• use_boundary_vectors: boolean, default is True;
• use_disjoint_cones: boolean, default is True.

At the present time, we are interested in structural data rather than timings. To
that end, experimental data must establish that the methods proposed satisfy the
stated aim of reducing the size and number of linear programs constructed; in other
words, the algorithm invokes the refiner only when it has high certainty that it is
needed. Evidence for this would appear as the number of linear programs it does
not construct, the number that it does, and the ratio of one to the other. We should
also observe a relatively low number of failed linear programs.

Table 1 summarizes the performance of this implementation on several bench-
marks. Its columns indicate:

• the name of a polynomial system tested;
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• the number of linear programs (i.e., potential leading terms)
– rejected using approximate boundary vectors,
– rejected using disjoint cones,
– solved while using the two new criteria,
– solved while not using the new criteria, and
– failed;

• the ratio of the linear programs solved using the new criteria to the number
solved without them; and

• the number of constraints in the final program, both using the new criteria,
and not using them.

Both to emphasize that the algorithm really is dynamic, and to compare with
Caboara’s original results, Table 1 also compares:

• the size of the Gröbner basis generated by the dynamic algorithm, in terms
of
– the number of polynomials computed, and
– the number of terms appearing in the polynomials of the basis;

• the size of the Gröbner basis generated by Singular’s std() function with
the grevlex ordering, in the same terms.

The systems “Caboara i” correspond to the example systems “Es i” from [9], some
of which came from other sources; we do not repeat the details here. We verified
by brute force that the final result was a Gröbner basis.

The reader readily sees that the optimizations introduced in this paper accom-
plish the stated goals. By itself, the method of boundary vectors eliminates the
majority of incompatible leading terms. In the case of dense polynomial systems,
it eliminates the vast majority. This means that far, far fewer linear programs are
constructed, and those that are constructed have far fewer constraints than they
would otherwise. While the number of inconsistent linear programs the algorithm
attempted to solve (the “failed” column) may seem high in proportion to the number
of programs it did solve (“solved”), this pales in comparison to how many it would
have attempted without the use of boundary vectors; a glance at the “div only”
column, which consists of monomials that were eliminated only by the Divisibility
Criterion, should allay any such concerns.

Remark 21. In two cases, the new criteria led the algorithm to compute more linear
programs than if it had used the Divisibility Criterion alone. There are two reasons
for this.

• One of the input systems (Caboara 2) consists exclusively of inhomoge-
neous binomials with many divisible terms. This setting favors the Divisi-
bility Criterion. The other system (Caboara 5) also contains many divisible
terms.

• For both systems, the sample set of boundary vectors wrongly eliminates
compatible monomials that should be kept. While this suggests that the
current strategy of selecting a sample set of boundary vectors leaves much
to be desired, the dynamic algorithm computes a smaller basis than the
static, and with fewer S-polynomials, even in these cases.

It should not startle the reader that the dynamic algorithm performs poorly on
the homogeneous Katsura-n systems, as Caboara had already reported this. All
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*This system was terminated when using only the Divisibility Criterion, as the
linear program had acquired more than 1000 constraints.

Table 1. Dynamic algorithm with sugar strategy, applying Divis-
ibility Criterion after boundary vectors. Data for static algorithm
included for comparison.
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the same, boundary vectors and disjoint cones minimize the cost of the dynamic
approach.

Many of our Gröbner bases have different sizes from those originally reported by
Caboara. There are several likely causes:

• The original report had typographical errors. We have verified and cor-
rected this in some cases, but some results continue to differ.

• The static ordering used here may order the variables differently from [9],
which did not documented this detail. For example, Caboara reports a basis
of only 318 polynomials for Caboara 2 when using the static algorithm with
grevlex, but Sage (using Singular) finds 553.

• Several choices of leading term can have the same tentative Hilbert function,
but one of the choices is in fact better than the others in the long run.
The original implementation may have chosen differently from this one. In
particular [9] gave a special treatment to the input polynomials, considering
the possible leading term choices for all of them simultaneously, and not
sequentially, one-by-one.

We conclude this section with a word on complexity. While the worst case time
complexity of the simplex algorithm is exponential [22], on average it outperforms
algorithms with polynomial time complexity. The computation of boundary vec-
tors increases the number of invocations of simplex, but the large reduction in the
number of monomials considered more than compensates for this. The space re-
quirements are negligible, as we need only 2n boundary vectors at any one time,
and the reduction in the number and size of the linear programs means the algo-
rithm needs to remember only a very few disjoint cones. Considering how rarely
the disjoint cones are useful, it might be worthwhile not to implement them at all,
but we have not observed them to be a heavy burden at the current time.

5. Conclusion, future work

We set out to reduce the size and number of linear programs used by a dynamic
algorithm to compute a Gröbner basis. Geometrical intuition led us to two methods
that work effectively and efficiently. While the effect with the systems tested by
Caboara was only moderate, and in some cases counterproductive, the story was
different with the dense benchmark systems. In these cases, the number of refine-
ments approached insignificance, and we continued to achieve good results. The
final Gröbner basis was always of a size significantly smaller than grevlex; only a
few refinements were required for the algorithm to be very effective.

A significant restraint imposed by many computer algebra systems is that a term
ordering be defined by integers. As Sage is among these, this has required us to
solve not merely linear programs, but pure integer programs. Integer programming
is much more intensive than linear programming, and its effect was a real drag on
some systems. There is no theoretical need for this; we plan to look for ways to
eliminate this requirement, or at least mitigate it.

An obvious next step is to study various ambiguities in this approach. This
includes traditional questions, such as the effect of the selection strategy of critical
pairs, and also newer questions, such as generating the sample set of boundary vec-
tors. We followed Caboara’s approach and used the sugar strategy. We expect the
normal strategy [8] to be useful only rarely, while signature-based strategies [14][16],
which eliminate useless pairs using information contained in the leading terms of a
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module representation, could combine with the dynamic algorithm to expand sig-
nificantly the frontiers of the computation of Gröbner bases, and we are working
towards such an approach.

Another optimization would be to use sparse matrix techniques to improve the
efficiency of polynomial reduction in a Gröbner basis algorithm, a la F4. Combining
this with a dynamic algorithm is comparable to allowing some column swaps in the
Macaulay matrix, something that is ordinarily impossible in the middle of a Gröbner
basis computation.

The authors would like to thank Nathann Cohen for some stimulating conversa-
tions, and his assistance with Sage’s linear programming facilities.

Appendix

Here we give additional information on one run of the inhomogeneous Cyclic-6
system. Computing a Gröbner basis for this ideal with the standard sugar strategy
requires more S-polynomials than doing so for the ideal of the homogenized system;
in our implementation, the number of S-polynomials is roughly equal to computing
the basis using a static approach. (In general, the dynamic approach takes fewer
S-polynomials, and the weighted sugar strategy is more efficient on this ideal.)
Information on timings was obtained using Sage’s profiler:

• for the static run, we used
%prun B = dynamic_gb(F,static=True,strategy=’sugar’);

• for the dynamic run, we used
%prun B = dynamic_gb(F,static=False,strategy=’sugar’).

We obtained structural data by keeping statistics during a sample run of the
program.

While Cython translates Python instructions to C code, then compiles the result,
the resulting binary code relies on both the Python runtime and Python data
structures; it just works with them from compiled code. Timings will reflect this;
we include them merely to reassure the reader that this approach shows promise.

Our implementation of the dynamic algorithm uses 377 S-polynomials to com-
pute a Gröbner basis of 20 polynomials, with 250 reductions to zero. At termination,
rejects contained 43 sets of constraints, which were never used to eliminate linear
programs. As for timings, one execution of the current implementation took 25.45
seconds. The profiler identified the following functions as being the most expensive.

• Roughly half the time, 11.193 seconds, was spent reducing polynomials.
(All timings of functions are cumulative: that is, time spent in this func-
tion and any other functions it invokes.) This is due to our having to
implement manually a routine that would reduce polynomials and compute
the resulting sugar. A lot of interpreted code is involved in this routine.

• Another third of the time, 8.581 seconds, was spent updating the critical
pairs using the Gebauer-Möller update algorithm. Much of this time (3.248
seconds) was spent computing the lcm of critical pairs.

The majority of time (5/6) was spent on functions that are standard in the Buch-
berger algorithm! Ordinarily, we would not expect an implementation to spend
that much time reducing polynomials and updating critical pairs; we are observing
a penalty from the Python runtime and data structures. The size of this penalty
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naturally varies throughout the functions, but this gives the reader an idea of how
large it can be.

Other expensive functions include:
• About 4.6 seconds were spent in choose_an_ordering. Much of this time

(2.4 seconds) was spent sorting compatible leading terms according to the
Hilbert heuristic.

• The 238 invocations of Sage’s hilbert_series and hilbert_polynomial
took 1.5 seconds and 0.8 seconds, respectively. As Sage uses Singular
for this, some of this penalty is due to compiled code, but Singular’s
implementation of these functions is not state-of-the-art; techniques derived
from [3] and [27] would compute the Hilbert polynomial incrementally and
quickly.

• The 57 invocations of feasible consumed roughly 1.2 seconds. This in-
cludes solving both continuous and pure integer programs, and suffers the
same penalty from interpreted code as other functions.

It is worth pointing out what is not present on this list:
• Roughly one quarter of a second was spent in monitor_lts.
• The boundary_vectors function took roughly one and a half tenths of a

second (.016).
• Less than one tenth of a second was spent applying the Boundary Vectors

Criterion in possible_lts.
If we remove the use of the Boundary Vector and Disjoint Cones criteria, the relative
efficiency of feasible evaporates; the following invocation illustrates this vividly:

%prun B = dynamic_gb(F, strategy=’sugar’,
use_boundary_vectors=False,
use_disjoint_cones=False)

Not only is the Divisibility Criterion unable to stop us from solving 2,820 linear
programs, but the programs themselves grow to a size of 247 constraints. At 41
seconds, feasible takes nearly twice as long as entire the computation when us-
ing the new criteria! This inability to eliminate useless terms effect cascades;
hilbert_polynomial and hilbert_series are invoked 3,506 times, taking 12.6
and 28.6 seconds, respectively; choose_an_ordering jumps to 92.7 seconds, with
44 seconds wasted in applying the heuristic. By contrast, the timings for reduction
of polynomials and sorting of critical pairs grow much, much less, to 20 seconds and
12.9 seconds, respectively. (The increase in reduction corresponds to an increase
in the number of S-polynomials, probably due to a different choice of leading term
at some point – recall that the approximation of boundary vectors excludes some
choices.) The optimizations presented here really do remove one of the major bot-
tlenecks of this method.

We conclude by noting that when we use the Disjoint Cones criterion alone,
1,297 invalid monomials are eliminated, but the number of constraints in the final
linear program increases to 250; this compares to 4,080 monomials that Boundary
Vectors alone eliminates, with 56 constraints in the final linear program.
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