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Abstract

The concept of ultraquadric has been introduced by the authors as a
tool to algorithmically solve the problem of simplifying the coefficients of a
given rational parametrization in K(α)(t1, . . . , tn) of an algebraic variety of
arbitrary dimension over a field extension K(α). In this context, previous
work in the one-dimensional case has shown the importance of mastering
the geometry of 1-dimensional ultraquadrics (hypercircles). In this paper
we study, for the first time, the properties of some higher dimensional
ultraquadrics, namely, those associated to automorphisms in the field
K(α)(t1, . . . , tn), defined by linear rational (with common denominator) or
by polynomial (with inverse also polynomial) coordinates. We conclude,
among many other observations, that ultraquadrics related to polynomial
automorphisms can be characterized as varieties K−isomorphic to linear
varieties, while ultraquadrics arising from projective automorphisms are
isomorphic to the Segre embedding of a blowup of the projective space
along an ideal and, in some general case, linearly isomorphic to a toric
variety. We conclude with some further details about the real-complex, 2-
dimensional case, showing, for instance, that this family of ultraquadrics
can be presented as a collection of ruled surfaces described by pairs of
hypercircles.
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1 Introduction

The study and analysis of ultraquadrics was introduced in [2] as a higher di-
mensional generalization of the concept of hypercircle (cf. [1], [8], [9], [10], [14],
[15]) and as a fundamental tool to solve the problem of the optimal algebraic
reparametrization of rational varieties of arbitrary dimension (e.g. rational sur-
faces, see [3] and [4] for applications to some families of surfaces relevant in
computer aided design).

Given a rational variety V, presented by a rational parametrization with n
parameters t1, . . . , tn and coefficients in a certain extension K(α) of a ground
field K, it is natural to ask for the possibility of reparametrizing V over K (i.e.
the problem of the K-algebraic optimality for unirational varieties). The search
for parametrizations with optimal coefficients has been studied by other authors
from different perspectives. For instance [11] analyzes the complex-real case for
surfaces given implicitly, and [12] approached the same problem for the implicit
curve case. A natural context for this type of problems is the field of computer
aided design, where rational surfaces, and their parametrizations, are usually
required to be defined over the reals; different examples of this statement can
be found, for instance, in the papers [6], [7]. The optimality of parametrization
coefficients is also specifically sought in some concrete applications, such as
computing quadrics intersection [5].

In our case, within this research line, we focus on the case of parametrically
given varieties. For this purpose the paper [2] introduces the concept of “ultra-
quadrics” as varieties associated to automorphisms of the field K(α)(t1, . . . , tn),
and describes its application to the reparametrization of V over K, when pos-
sible. The reparametrization problem, in the case of ruled and swung surfaces,
two families of surfaces of interest in CAD, has already been successfully ad-
dressed ([3] and [4]) in the context of our theory of ultraquadrics, in each case
by developing some “ad hoc” methods.

Now, in the case of dimension one varieties, i.e. when ultraquadrics receive
the specific name of hypercircles (cf. [8]), increasingly effective algorithms to
simplify the given parametrization came by hand of a deeper understanding of
the geometry of hypercircles. Likewise, we believe that the detailed study of
ultraquadrics associated to specific families of automorphisms should provide
a similar understanding and, therefore, will allow the design of more efficient
and systematic algorithms for dealing with these varieties in the context of the
search for an optimal reparametrization of a given variety.

Thus, in this paper, we study the ultraquadrics associated to some impor-
tant kind of automorphisms in the field K(α)(t1, . . . , tn), such as those defined
by linear rational (with common denominator) or polynomial (with inverse also
polynomial) coordinates. After introducing (Section 2) the main notation and
general properties of ultraquadrics, we analyze (Section 3) ultraquadrics re-
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lated to polynomial automorphisms, yielding its characterization as varieties
K−isomorphic to linear varieties (cf. Theorem 3.6).

Section 4 is devoted to ultraquadrics derived from linear fractional automor-
phisms with a common denominator, concluding that, projectively speaking,
these ultraquadrics are isomorphic to the Segre embedding of the projective
space along some precise ideal (see Theorem 4.1); in particular, the affine part
of such ultraquadric is always smooth and, in some general case, linearly iso-
morphic to a toric variety. Section 4 concludes with some further details about
the real-complex, 2-dimensional case. In particular, this family of ultraquadrics
is presented as a collection of ruled surfaces described by means of some hyper-
circles (Theorem 4.9).

2 Notation and Preliminaries

In this section we introduce the main notation used throughout the paper and
we recall the basic notion and properties of ultraquadrics.

2.1 Notation

In the sequel, K is a field of characteristic zero, α is an algebraic element over
K, L is the field extension K(α) and F is the algebraic closure of L. So K ⊂ L =
K(α) ⊂ F. We assume that [K : L] = r. We use the notation

t = (t1, . . . , tn) and T = (t0 : . . . : tn)

for affine –respectively, projective– coordinates.
On the other hand, we will consider the following three groups of automor-

phisms under composition:

1. BL is the group of all L-birational transformations (i.e. L-definable) of
Fn onto Fn.

2. AL is the group of all L-automorphism of the affine space Fn; that is,
the subgroup of BL where the transformation and its inverse are both
described through polynomial coordinates.

3. PGLL(n) is the group of all L-automorphism of the projective space
Pn(F). Elements in PGLL(n) are represented by a (n + 1) × (n + 1)
regular matrix L

Pn(F)→ Pn(F); T 7→ L · (T t) = [L0(T ) : · · · : Ln(T )] (1)

where the rows Li of L represent linear forms.

In addition, let BK be the group of all K-birational transformations of Fn
onto Fn. We consider the following binary relation in BL: for Ψ1,Ψ2 ∈ BL, we
say that Ψ1RΨ2 iff there exists φ ∈ BK such that Ψ1 ◦φ = Ψ2. We observe that
R is in fact an equivalence relation, and we denote by [Φ] the equivalence class
of Φ ∈ BL.
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2.2 Ultraquadrics

Let us start with the notion of hypercircle; for further details on hypercircles
see [8]. Let Φ be a L-birational map from F onto F. Then, if we denote by u
a generic point in F, the transformation Φ(u) is described by a linear rational
function with coefficients in L. That is

Φ(u) =
au+ b

cu+ d
where ad− cb 6= 0.

Now, express Φ in the basis {1, . . . , αr−1} of the algebraic extension, as follows

Φ(u) = φ0(u) + · · ·+ αr−1φr−1(u),

where φi ∈ K(u). We define the hypercircle associated with Φ, and we denote it
by Hyper(Φ), as the rational curve of Fr parametrized by (φ0(u), . . . , φr−1(u)).
Furthermore, we denote by H(Φ) the parametrization (φ0(u), . . . , φr−1(u)) of
Hyper(Φ).

A similar construction can be done when the L-birational map is taken from
Fn onto Fn yielding to the notion of ultraquadrics (see [2] for further details).
More precisely, let Ψ = (ψ1, . . . , ψn) ∈ BL. Then, we express Ψ in the basis
{1, . . . , αr−1} as

Ψ( t ) =

r−1∑
j=0

ψ1,jα
j , . . . ,

r−1∑
j=0

ψn,jα
j

 ,

where ψij ∈ K( t ). Then, using this notation, we consider the expansion map

U : BL → K( t )nr

Ψ( t ) 7→ U(Ψ( t )) =
(ψ10( t ), . . . , ψ1(r−1)( t ), . . . , ψn0( t ), . . . , ψn(r−1)( t ))

(2)

We define the ultraquadric associated with Ψ, and we denote it by Ultra(Ψ), as
the rational variety of Fnr parametrized by U(Ψ( t )).

If Ψ ∈ PGLL(n), say Ψ(T ) = [L0(T ) : . . . : Ln(T )], we will denote as
Ultra(Ψ) the (affine) ultraquadric generated by the associated affine mapping

Ψa( t ) =

(
L1(1, t1, . . . , tn)

L0(1, t1, . . . , tn)
, . . . ,

Ln(1, t1, . . . , tn)

L0(1, t1, . . . , tn)

)
(3)

That is, Ultra(Ψ) = Ultra(Ψa).
Note that Ultra(Ψ) is the same variety for all maps in [Ψ]. So, we will write

either Ultra(Ψ) or Ultra([Ψ]). Furthermore, we observe that

F( t ) = F(Ψ( t )) ⊂ F(U(Ψ( t )) ⊂ F( t ).

So, F(U(Ψ( t ))) = F( t ). In addition, it also holds that F( t ) = F(U(Ψ∗( t ))) for
all Ψ∗ ∈ [Ψ]. Thus we have the following result.
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Lemma 2.1. Let Ψ ∈ BL. For every Ψ∗ ∈ [Ψ], U(Ψ∗( t )) is a proper parame-
trization of Ultra(Ψ∗).

This, in particular, implies that dim(Ultra(Ψ)) = n. Furthermore, the fol-
lowing lemma holds.

Lemma 2.2. Let P( t ) = (P10, . . . , P1(r−1), . . . , Pn0, . . . , Pn(r−1)) be a K-de-
finable proper parametrization of an ultraquadric Ultra(Ψ). Then,

Q( t ) :=

r−1∑
j=0

P1,jα
j , . . . ,

r−1∑
j=0

Pn,jα
j

 ∈ [Ψ] ⊆ BL.

Proof. Observe that Ψ, U(Ψ) (see Lemma 2.1) and P are invertible; the inverse
map goes, respectively, from Fn to Fn and from Ultra(Ψ) to Fn. Moreover,
Ψ−1 is L-definable and P−1 and U(Ψ)−1 are K-definable. Furthermore, since
U(Ψ) and P are proper parametrizations over K of the same variety, there exist
automorphisms R,S ∈ K( t ) such that

P(S( t )) = U(Ψ)( t ), U(Ψ)(R( t )) = P( t );

indeed, S = P−1 ◦ U(Ψ) and R = U(Ψ)−1 ◦ P. In addition, since R,S ∈ K( t )
one has that Q(S( t )) = Ψ( t ), Ψ(R( t )) = Q( t ) and Q ∈ [Ψ] ⊆ BL.

Finally, we recall the relationship from U(Ψ) to the conjugate parametriza-
tions of Ψ (see [2]). Let α = α1 and let α1, α2, . . . , αr be the conjugates of α over
K in F. And let σ1 = Id, σ2, . . . , σr be K-automorphims of F such that σi(α) =
αi. Let Ψ = (ψ1, . . . , ψn) ∈ BL and U(Ψ) the parametrization of Ultra(Ψ) (see
(2)). Let V be the variety of Fnr parametrized by Ψ( t )×Ψσ2( t )×· · ·×Ψσr ( t ),
where Ψσi denotes the conjugate birational map that is obtained from Ψ by sub-
stituting α by αi in Ψ. Then it is easy to conclude the following.

Lemma 2.3. Ultra(Ψ) and the variety V of Fnr parametrized by Ψ( t )×Ψσ2( t )×
· · ·×Ψσr ( t ), are L-isomorphic by the linear transformation induced by the Van-
dermonde matrix

ψ1 . . . ψn
ψσ2
1 . . . ψσ2

n

· · ·
ψσr1 . . . ψr−1n

 =


1 α . . . αr−1

1 α2 . . . αr−12

· · ·
1 αr . . . αr−1r




ψ10 . . . ψn0
ψ11 . . . ψn1

· · ·
ψ1(r−1) . . . ψn(r−1)


where the ψij are as in (2).

3 Ultraquadrics associated to AL

In this section we analyze the properties of ultraquadrics associated to auto-
morphisms from AL. For hypercircles (i.e. one-dimensional ultraquadrics) we
proved in [8] that being a hypercircle defined by a polynomial automorphism is

5



equivalent to being defined by an automorphism defined by a linear polynomial
and is also equivalent to being a K-definable line; indeed the K-parametrizable
line (at + b, ct + d) is the hypercircle Hyper((a + αc)t + (b + αd)). Thus, be-
fore dealing with the central question of this section, it is natural to analyze
whether every K-definable linear variety of dimension n in Fnr –a n-plane– is
an ultraquadric (for a suitable algebraic element α of degree r).

Contrary to the one-dimensional case, we conclude here that this fact, in
general, is not true. Let us provide a simple example. We take α = i (the
imaginary unit), K = R, and we consider the real plane in C4

P( t ) = (1, 1, 1, 5)s+ (1,−1, 5,−1)t.

P( t ) is a real proper parametrization of a plane but it can not parametrize an
i-ultraquadric since (notation as in Lemma 2.2) Q( t ) = ((1 + i)s+ (1− i)t, (1 +
5i)s+ (5− i)t) /∈ BR; note that∣∣∣∣ 1 + i 1− i

1 + 5i 5− i

∣∣∣∣ = 0.

More generally, let P( t ) = (a1, . . . , a4)s + (b1, . . . , b4)t + (c1, . . . , c4) be a real
plane in C4; that is, ai, bi, ci ∈ R and (a1, . . . , a4), (b1, . . . , b4) linearly indepen-
dent. Let Q( t ) = ((a1 + ia2)s+ (b1 + ib2)t+ (c1 + ic2), (a3 + ia4)s+ (b3 + ib4)t+
(c3 + ic4)). Then, Q ∈ BR iff∣∣∣∣a1 + ia2 b1 + ib2

a3 + ia4 b3 + ib4

∣∣∣∣ 6= 0.

But, this condition is not equivalent to the property of (a1, . . . , a4), (b1, . . . , b4)
being linearly independent. This fact motivates the following definition.

Definition 3.1. We say that a K-definable n-plane Π in Fnr is non-degenerated
(w.r.t. α) if there exists a basis {(a110, . . . , a1n(r−1)), . . . , (a

n
10, . . . , a

n
1(r−1))} ⊂ Knr

of Π such that {(
∑r−1
j=0 a

1
`,jα

j)1≤`≤n, . . . , (
∑r−1
j=0 a

n
`,jα

j)1≤`≤n} is a basis of Fn.

As a consequence of 2.2, we can rephrase the above definition as follows:

Lemma 3.2. A K-definable n-plane in Fnr is a ultraquadric if and only if the
n-plane is non-degenerated.

Notice that, by the same Lemma 2.2, the existence of just one basis, with
the properties described in the definition of non-degenerate n-planes, implies
the same property holds for all bases.

Now let us state the main characterization of ultraquadrics associated to
polynomial automorphisms. First we consider the case of ultraquadrics defined
by automorphisms with linear polynomials as coordinates:

Lemma 3.3. Let Ψ ∈ BL. The following statements are equivalent:

1. Ultra(Ψ) is a K-definable n-plane in Fnr.
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2. There exists a linear automorphism in [Ψ].

Proof. (1) implies (2) follows by taking a linear parametrization, over K, of the
n-plane, and applying Lemma 2.1. On the other hand (2) implies (1) is a direct
consequence of Lemma 2.2.

Corollary 3.4. Let Ψ = [L0 : . . . : Ln] ∈ PGLL(n) such that L0 ∈ K[T ].
Then Ultra(Ψ) is an n-plane.

Proof. Let L0(T ) = f0t0 + f1t1 + · · · + fntn. If f1 = · · · = fn = 0 the result
follows from Lemma 3.3. Let us assume w.l.o.g. that f1 6= 0. Then, we observe
that (see (3) for the notation Ψa) the denominator of Ψ∗( t ) = Ψa(t1 − f2t2 −
· · · − fntn− f0, t2, . . . , tn) ∈ [Ψa( t )] is t1. Now, Ψ∗∗ = Ψ∗( 1

t1
, t2t1 , . . . ,

tn
t1

) ∈ [Ψa]
and it is polynomial. So, the result follows from Lemma 3.3.

Corollary 3.5. Let Ψ ∈ BL ∩K( t )n, then Ultra(Ψ) is an n-plane.

Proof. Note that ( t ) ∈ [Ψ].

Unlike the hypercircle case, for general ultraquadrics it is not true that being
defined by a linear polynomial automorphism is equivalent to being defined by
a polynomial automorphism. Still, there is a close relationship, as stated in the
following result that generalizes Lemma 3.3.

Theorem 3.6. Let Ψ ∈ BL. The following statements are equivalent

1. Ultra(Ψ) is K-isomorphic to Fn.

2. [Ψ] ∩AL 6= ∅.

Proof. If (1) holds, then there exists a polynomial proper parametrization Φ( t ),
over K, of Ultra(Ψ). Now, from Lemma 2.2, we know that Φ( t ) defines an
element, say ϕ( t ), in BL. By construction, ϕ is polynomial. Let us see that
ϕ−1 is also polynomial. By Lemma 2.3 (see also Theorem 6 in [2]) it holds that

V −1α ◦ Φ−1 ◦ Vα = (ϕ× ϕσ1 × · · · × ϕσr−1)−1

where ϕσi denotes each of the conjugates of ϕ w.r.t. α, and Vα is the Vander-
monde matrix in Lemma 2.3. Therefore, since Φ has polynomial inverse, the
inverse of ϕ is polynomial, too.

Conversely, let (2) hold. Because of Lemma 2.1, we can assume w.l.o.g. that
Ψ ∈ AL. Let ᾱ = (1, α, . . . , αr−1). Now, we consider the map

ξ : Ultra(Ψ) ⊂ Fnr −→ Fn
(x̄1, . . . , x̄n) 7→ Ψ−1(ᾱ · x̄1, . . . , ᾱ · x̄n),

where x̄i = (xi0, . . . , xi(r−1)). Since Ψ ∈ AL, ξ is polynomial and defines an
F-isomorphism, being its inverse U(Ψ) : Fn → Ultra(Ψ). Let ξ be expressed as

ξ(x̄) = (ᾱ · (ξ10(x̄), . . . , ξ1(r−1)(x̄)), . . . , ᾱ · (ξn0(x̄), . . . , ξn(r−1)(x̄))),
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where ξij(x̄) ∈ K[x̄]. If we prove that, for all i, for j > 0 and x̄ ∈ Ultra(Ψ),
ξij(x̄) = 0, then we will get that ξ is in fact a K-isomorphism from Ultra(Ψ)
and Fn. Indeed, since ξ ◦Ultra(Ψ) = IdFn it holds that for each i

r−1∑
j=0

ξij(U(Ψ)( t ))αj = ti.

Therefore, since ξij(U(Ψ)( t )) ∈ K[ t ], then, for j > 0, ξij(U(Ψ)( t )) = 0.

4 Ultraquadrics associated to PGLL(n)

In this section, we assume that the birational transformation Ψ = L is an
element of PGLL(n), and we describe the structure of Ultra(Ψ) as a blowup of
Pn(F). We write Ψ as

Ψ(T ) = L · T t = [L0(T ) : L1(T ) : . . . : Ln(T )]

where Li is the linear form represented by the i-th row of L. In addition,
let σ1, . . . , σr be as in Lemma 2.3, and let gi be the form of degree r − 1
that is the product of all conjugate forms {Lσ1

0 , . . . , Lσr0 } with the exception
of Lσi0 . Furthermore, let I = (g1, . . . , gr) be the homogeneous ideal generated
by {g1, . . . , gr} in F[t0, . . . , tn].

In the following theorem we relate the ultraquadric associated to Ψ with the
blowup of the projective space Pn(F) along the ideal I (see e.g. Section 7.4. in
[13], for the notion of blowup along an ideal).

Theorem 4.1. The projective closure of the ultraquadric Ultra(Ψ) is L-linearly
isomorphic to the Segre embedding of the blowup of Pn(F) along the ideal I.

Proof. We consider the map

η : Pn(F) −→ Pn(F)× Pr−1(F)
T 7→ (T ; (g1(T ) : g2(T ) : . . . : gr(T )))

which is a blowup of Pn(F) along I. Now, we compose this map with the Segre
embedding of Pn(F)× Pr−1(F) to get the blowup of Pn(F) as isomorphic to the
subvariety W of Prn+r−1(F) parametrized by

P := [t0g1 : . . . : t0gr : . . . : tng1 : . . . : tngr] (4)

On the other hand, Ultra(Ψ) is (linearly) L-isomorphic to the affine variety V
parametrized by Ψa ×Ψσ2

a × · · · ×Ψσr
a (see Lemma 2.3 and (3) for the notation

Ψa). Projectively, the parametrization Ψa ×Ψσ2
a × · · · ×Ψσr

a can be expressed
as

[L0g1 : L1g1 : . . . : Lng1 : Lσ2
1 g2 : . . . : Lσ2

n g2 : . . . : Lσr1 gr : . . . : Lσrn gr].
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This variety is isomorphic to the subvariety of Pnr+r−1 parametrized by

Q := [L0g1 : . . . : Lng1 : Lσ2
0 g2 : . . . : Lσ2

n g2 : . . . : Lσr0 gr : . . . : Lσrn gr]

since Lσi0 gi = L0g1, and we are just duplicating the first coordinate of each
block.

Since by definition Ψσi(T )t = Lσi · T t, then (giΨ
σi)t = Lσi(gi · T )t where

the super-index t denotes the transpose of the matrix. Therefore

Q =

 (g1Ψσ1)t

...
(grΨ

σr )t

 =

 Lσ1

. . .

Lσr


 (g1 T )t

...
(gr T )t


Finally observe that the parametrization provided by the right side of the for-
mula above is just a re-ordering of the coordinates of P . Thus, W is linearly
isomorphic to the projective closure of Ultra(Ψ).

Remark 4.2. If we rescale the matrix L so that one of the coefficients of
L0 is 1, then the coefficients of L0 generate an intermediate extension K ⊆
K(β) ⊆ K(α). Following the ideas developed for the case of hypercircles (see
[8]), we say that an ultraquadric associated to Ψ is primitive if K(β) = K(α). If
Ultra(Ψ) is not primitive, [K : K(β)] = s < r, then gi = ‖L0‖r/s/Lσi0 (where
‖L0‖ is L0 multiplied by all its different conjugates) and the polynomials of
the parametrization of the blowup can be taken of degree s. In particular,
if the denominator of Ψ has coefficients in K, then Ultra(Ψ) is a n-plane (cf.
Lemma 3.3).

Remark 4.3. Consider the hyperplanes defined by the conjugate linear forms
L0 = Lσ1

0 , . . . , Lσr0 . The center of the blowup, i.e. the variety defined by the ideal
I, is the union of all codimension 2 linear spaces where two different hyperplanes
Lσ

i

0 intersect

Z =
⋃

Lσi 6=Lσj
{Lσi0 = L

σj
0 = 0}.

In particular, if L0 does not have coefficients in K, then the ultraquadric is not
a n-plane.

The next corollaries follow from Theorem 4.1.

Corollary 4.4. U(Ψ) is an isomorphism of Pn(F) \ Z onto its image. In par-
ticular, the affine part of Ultra(Ψ) is always smooth.

Corollary 4.5. Let r ≤ n and let Lσ1
0 , . . . , Lσr0 be hyperplanes in general po-

sition in Pn(F). Then, the ultraquadric Ultra(Ψ) is (linearly isomorphic to) a
toric variety.

Proof. Take a system of coordinates s such that Lσi0 = si. Then, the parametriza-
tion of the blowup (see (4)) is of the form

[s0g1 : . . . : s0gr : . . . : sng1 : . . . : sngr]
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where gi = s1 · · · si−1si+1 · · · sr. So the variety is parametrizable by monomials,
and hence toric.

In some applications it is interesting to restrict to real-complex case and
surfaces, see for instance [3]. Hence, we take now a closer look to the case
of algebraic extensions of degree r = 2 and automorphisms of P2(F). Next
result describes the intersection of ultraquadrics arising in this context, with
the hyperplane at infinity (cf. [8] for the hypercircle case).

Corollary 4.6. Let r = 2, Φ = [L0 : L1 : L2] ∈ PGLL(2), let x2 + ax + b be
the minimal polynomial of α over K.

1. If the primitive part of L0 is in K[s, t], then Ultra(Ψ) is a plane.

2. If the primitive part of L0 is in L[s, t] \ K[s, t], then Ultra(Ψ) is linearly
isomorphic to the surface parametrized by

[u2 : uv : uw : v2 : vw]

and hence a blowup of the plane at a point. In particular, it is smooth.

Moreover, let {L0 = 0} and {Lσ0 = 0} be the lines defined, respectively, by the
denominator and by its conjugate, let p = {L0 = Lσ0 = 0} be the intersection
point. Then, the intersection of Ultra(Ψ) with the hyperplane at infinity consists
in three lines L, Lσ, E. Furthermore:

1. Ultra(Ψ) is the blowup of the plane at p.

2. L does not depend on Ψ (and hence neither does Lσ), it only depends on
the minimal polynomial of α. In fact L = V ({x0, 2x1 − (2α+ a)x2, 2x3 −
(2α+ a)x4}).

3. q = [0 : (α + a/2)L1(p) : L1(p), (α + a/2)L2(p) : L2(p)] ∈ L is such that
L \ {q} corresponds, by the parametrization, to {L0 = 0} \ {p}.

4. E = 〈q, qσ〉, the line through q and qσ, is the exceptional divisor of the
blowup.

Proof. If L0 ∈ K[s, t], the result follows from Corollary 3.4. In the other
case, Ultra(Ψ) is the blowup at p by Corollary 4.5. To check the rest of the
claims, we parametrize Ultra(Ψ) following the construction of Theorem 4.1.
The parametrization of Ultra(Ψ) is the composition of the maps

r → [L0(r)Lσ0 (r) : L1(r)Lσ0 (r) : Lσ1 (r)L0(r) : L2(r)Lσ0 (r) : Lσ2 (r)L0(r)] =

= [t0 : t10 : t11 : t20 : t21]→
[
t0 :

t10 + t11
2

:
t10 − t11
(α− ασ)

:
t20 + t21

2
:
t20 − t21
(α− ασ)

]
If we restrict the map to {L0 = 0} \ {p} we have:

r → [0 : L1(r)Lσ0 (r) : 0 : L2(r)Lσ0 (r) : 0] = [0 : L1(r) : 0 : L2(r) : 0]→
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→
[
0 :

L1(r)

2
:

L1(r)

(α− ασ)
:
L2(r)

2
:

L2(r)

(α− ασ)

]
This is a parametrization of the line L and the only point that is not attained
(corresponding to p) is q. The rest of the items follow easily from this observa-
tion.

Example 4.7. Consider the extension R ⊆ R(i) = C and the automorphism of
the plane given by L(t0 : t1 : t2) = (t1 + it2, t0, t1). Then L0 = {t1 + it2 = 0},
Lσ0 = {t1−it2 = 0}. The center of the blowup is the origin (1 : 0 : 0). Ultra(L) =
V (x2x3 − x1x4, x3 − x23 − x24, x1 − x1x3 − x2x4) ⊆ C5. The projectivization of
Ultra(L) intersects the hyperplane at infinity at the three lines L = V (x0, x1 −
ix2, x3− ix4), Lσ = V (x0, x1 + ix2, x3 + ix4) and E = V (x0, x3, x4). In this case
q = (0 : i : 1 : 0 : 0).

In the previous corollary we have assumed that Ψ = [L0 : L1 : L2] ∈
PGLL(2) and that r = 2. For the rest of this section, we keep these assumptions
and we analyze how Ultra(Φ) is related to hypercircles. For this purpose, and
taking into account Corollary 3.4 or Corollary 4.6, we may assume w.l.o.g. that
the primitive part of L0 is not a polynomial over K. We start with the following
lemma.

Lemma 4.8. Let Ψ = [L0 : L1 : L2] ∈ PGLL(2) be such that the primitive part
of L0 is not over K. There exists Ψ∗ ∈ [Ψa] (see (3) for the notation Ψa) of the
form

Ψ∗(s, t) =

(
a∗1 +

b∗1t+ c∗1
s+ α

, a∗2 +
b∗2t+ c∗2
s+ α

)
,

where a∗i , b
∗
i , c
∗
i ∈ L.

Proof. We can assume that L0 has degree 1 in s; note that, if this is not the
case, Ψa(s, s+ t) ∈ [Ψa] and this new automorphism satisfies the condition. So,
let Ψa be expressed as

Ψa(s, t) =

(
A1s+B1t+ C1

s+ ft+ g
,
A2s+B2t+ C2

s+ ft+ g

)
where Ai, Bi, Ci, f, g ∈ L. Dividing w.r.t. s each numerator by the denominator,
Ψa can we written as

Ψa(s, t) =

(
a1 +

b1t+ c1
s+ ft+ g

, a2 +
b2t+ c2
s+ ft+ g

)
where ai, bi, ci, f, g ∈ L. Now, let f and g be expressed in the {1, α} basis as

f = f0 + αf1, g = g0 + αg1.

with fi, gi ∈ K. We distinguish two cases.

11



• Let f1 6= 0. Then, we consider

Ψ(s, t) := Ψa

(
−f0

(
1

f1
t− g1

f1

)
− g0 + s,

1

f1
t− g1

f1

)
∈ [Ψa].

Thus, Ψ can be expressed as

Ψ(s, t) =

(
a1 +

b∗1t+ c∗1
s+ αt

, a2 +
b∗2t+ c∗2
s+ αt

)
.

Finally, we get that

Ψ∗(s, t) := Ψ

(
s

t
,

1

t

)
∈ [Ψ] = [Ψa].

Moreover, Ψ∗(s, t) is of the form

Ψ∗(s, t) =

(
a1 +

b∗1 + c∗1t

s+ α
, a2 +

b∗2 + c∗2t

s+ α

)
.

• Let f1 = 0, then g1 6= 0, and the common denominator is s+ f0t+ (g0 +
αg1). Then

Ψ∗(s, t) = Ψa

(
sg1 − tg1,

g1
f0
t− g0

f0

)
∈ [Ψa]

Finally, the following theorem shows that the ultraquadrics of elements in
PGLL(2) are surfaces ruled by means of some hypercircles. For this purpose,
we introduce the following notation. For i ∈ {1, 2}, let Φi(u) = φi0(u)+αφi1(u),
with φij ∈ K(u), be L-birational maps from F onto F. We denote by H(Φ1) �
H(Φ2) the rational curve in F4 parametrized by

(φ10(u), φ11(u), φ20(u), φ21(u)).

In this situation, we have the following result.

Theorem 4.9. Let Ψ = [L0 : L1 : L2] ∈ PGLL(2), then Ultra(Ψ) is a ruled
surface. Moreover, if the primitive part of L0 is not over K, there exist four
L-birational maps, Φ1, . . . ,Φ4, of F onto F, such that Ultra(Ψ) is parametrized
as

(H(Φ1)(s)�H(Φ2)(s)) + t (H(Φ3)(s)�H(Φ4)(s)).

Proof. Taking into account Corollary 3.4, the theorem holds for the case where
L0 is over K. So we assume that L0 is in L[s, t] \K[s, t]. By Lemma 4.8, we can
assume w.l.o.g. that Ψa (see (3) for the notation Ψa) is expressed as

Ψa(s, t) =

(
a1 +

b1
s+ α

t+
c1

s+ α
, a2 +

b2
s+ α

t+
c2

s+ α

)
.
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Let ai = ai0 +αai1, bi
s+α = bi0(s)+αbi1(s), ci

s+α = ci0(s)+αci1(s), with aij ∈ K
and bij , cij ∈ K(s). Then U(Ψ) can be expressed as U(Ψ)(s, t) = A(s) + tB(s),
where

A(s) = (a10 + c10(s), a11 + c11(s), a20 + c20(s), a21 + c21(s))
B(s) = (b10(s), b11(s), b20(s), b21(s))

Finally, observe that

A(s) = H
(
a1 + c1

s+α

)
�H

(
a2 + c2

s+α

)
B(s) = H

(
b1
s+α

)
�H

(
b2
s+α

)

Example 4.10. Take the automorphism given in Example 4.7, (s, t)→
(

1
s+it ,

s
s+it

)
.

Following Lemma 4.8 we get the automorphism in the same class (s, t) →
( t
s+i , 1 + −i

s+i ). Then A(s) =
(

0, 0, s2

s2+1 ,
−s
s2+1

)
and B(s) =

(
s

s2+1 ,
−1
s2+1 , 0, 0

)
,

and Ultra(Ψ) is parametrized as

(H(Φ1)(s)�H(Φ2)(s)) + t (H(Φ3)(s)�H(Φ4)(s)) = A(s) + tB(s).

In this case, neither H(Φ1) nor H(Φ4) are true hypercircles while H(Φ2) =
H(s/(s+ i)) and H(Φ3) = H(1/(s+ i)).
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