
Approximating Persistent Homology in Euclidean
Space Through Collapses

Magnus Botnan
botnan@math.ntnu.no

Gard Spreemann
spreeman@math.ntnu.no

August 21, 2014

Abstract

The Čech complex is one of the most widely used tools in applied algebraic
topology. Unfortunately, due to the inclusive nature of the Čech filtration, the
number of simplices grows exponentially in the number of input points. A practical
consequence is that computations may have to terminate at smaller scales than
what the application calls for.

In this paper we propose two methods to approximate the Čech persistence
module. Both are constructed on the level of spaces, i.e. as sequences of simplicial
complexes induced by nerves. We also show how the bottleneck distance between
such persistence modules can be understood by how tightly they are sandwiched
on the level of spaces. In turn, this implies the correctness of our approximation
methods.

Finally, we implement our methods and apply them to some example point
clouds in Euclidean space.

1 Introduction
Topological data analysis in general, and persistent homology in particular, have shown
great promise as tools for analyzing real-world data arising in the sciences. Examples of
successful applications range from image analysis [6, 26], to cancer research [1], virology [7]
and sensor networks [13].

Central to persistent homology are standard constructions for recovering the homology
of an underlying topological space from a finite sample set, chiefly the Čech and Vietoris–
Rips complexes. Unfortunately, due to the inclusive nature of their filtrations, the
number of simplices grows exponentially in the number of sample points. This may
be unfortunate as simplices added at small scales may contribute little to homology at
larger, possibly more interesting, scales.

An extreme example may be a constant region in a measurement signal (perhaps
from faulty equipment or downtime) under time-delay embedding [27]. In such a case,
a large proportion of the point cloud may lie in, say, a dense lump of N points that
contributes nothing to the cloud’s overall homology, yet introduces

(
N
k+1

)
k-simplices in

the complex from an early scale.
Preprocessing of the point cloud may sometimes rectify the situation, but such

schemes are often decidedly “off-line” in the sense that they require a one-off decision
about which sparsifications to effectuate ahead of persistence computations. We propose
more “on-line” methods wherein a decision to attempt a simplification of the simplicial
complex may be made at any time during computations when it is deemed necessary.
The simplification operation itself requires only that the point cloud comes supplied with
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its complete linkage hierarchical clustering, which may be computed ahead of time once
and for all, or the computation of nets.

1.1 Contributions
The well-known Nerve lemma [23] allows one to capture the topology of a continuous
space using discrete structures. However, the lemma works under the assumption of a
good cover, i.e. a cover wherein every finite intersection of covering sets is contractible.
This means that whenever we have a parametrized sequence of good covers, connected
by maps of covers, the persistence diagram captured by the nerves equals the persistence
diagram computed by singular homology on the level of spaces.

A central result in this paper is a way to bound the bottleneck distance between these
two persistence diagrams when the covers are not necessarily good. Using this result we
provide an approximation to the Čech persistence module built on a finite sample from
Euclidean space. The method enjoys several favorable properties: it approximates the
Čech persistence module with provable error bounds and allows for size reduction on a
heuristic basis, i.e. only when the complex becomes too large to store. Unfortunately,
computing the weights of the simplices turns out to be expensive, making it inapplicable
in most settings. To mend this we propose an easy to compute approximation which
performs surprisingly well on real data sets. Using our aforementioned result we also
show that the net-tree construction as introduced by Sheehy [28] and Dey et al. [15]
works well for the Čech complex in Euclidean space. This approach enjoys very powerful
theoretical bounds, e.g. a linear growth in the number of simplices as a function of
sampled points. In practice, however, it is difficult to prevent the complex from growing
too large.

Having implemented an algorithm to compute persistence diagrams of simplicial
complexes connected by simplicial maps we conclude the paper by applying our approxi-
mations to a variety of point samples in Euclidean space.

To the best of our knowledge, this is the first paper where persistence computations
are performed on simplicial complexes connected by more general simplicial maps than
inclusions.

1.2 Outline
In Section 2 we review background material and Dey et al.’s algorithm [15] for computing
persistent homology of simplicial complexes connected by simplicial maps. In particular,
we introduce the concept of sequences of covers, and in Section 3 we give a homotopy
colimit argument which relates the persistence module associated to a sequence of covers
to that formed by the covering sets on the level of spaces. This relation is used in
Section 3.1 to prove a sandwich type theorem for sequences of covers. We give two
approaches to approximating the Čech persistence module in Section 4. The paper
concludes with Section 5 where we compute the persistence diagrams of example point
clouds in Euclidean space using the aforementioned approximations.

1.3 Related work
In low-dimensional Euclidean space the alpha complex [18] offers a memory efficient
way to compute the persistence diagrams of a point cloud. Unfortunately, the number
of simplices grows exponentially in the ambient dimension, making it inefficient in
high-dimensional space. The witness complex [12] is a simplicial complex built on a
subset of the sample, called landmarks. Unfortunately, the persistence diagrams of the
associated filtration may depend heavily on the choice of landmarks. Sheehy [28] and
later Dey et al. [15] approximate the Vietoris–Rips complex using net-trees, and Kerber
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and Sharathkumar [24] arrive at similar results for the Čech complex in Euclidean space
using quadtrees. Our constructions in Section 4.1 is an adaption on the work of Dey et
al. [15] to the Čech complex in Euclidean space. The construction in Section 4.2 can
be viewed as a particular type of a graph induced complex [16]. Chazal and Oudot [10]
prove the results in Section 3 for the case where all the simplicial maps are inclusions.

Recent research [17, 30, 22] provides methods to reduce the size of simplicial complexes
after being stored, e.g. to provide faster persistence computations. Such reductions are
not discussed in this paper as we seek to compute persistence diagrams of point clouds
whose filtered complexes are too large to be stored to begin with.

2 Background material
In this section we survey prerequisite background material and fix notation. We assume
familiarity with basic concepts from algebraic topology, and basic knowledge of persistent
homology. For introductions see [23] and [19], respectively.

Throughout the paper, all simplicial complexes are assumed to be finite and unoriented.
A simplex is considered a set of vertices, and we write a k-simplex {i0, . . . , ik} as
[i0, . . . , ik]. For a simplicial complex K, we will denote its geometric realization by
|K|. Moreover, if f : K → L is a simplicial map between simplicial complexes, then
|f | : |K| → |L| denotes the continuous map between their geometric realizations defined
by f on the vertices and extended linearly using barycentric coordinates. The p-th
singular homology vector space of a topological space X with coefficients in the field Z2

will be denoted by Hp(X), and for a continuous map f : X → Y we denote its induced
map on homology by f∗ : Hp(X)→ Hp(Y ). When X = |K| is the geometric realization
of a simplicial complex, we will make no distinction between the p-th simplicial homology
vector space of K and the p-th singular homology vector space of |K|. Cohomology
vector spaces over Z2 are similarly denoted by Hp(X).

A collection of open sets U = {Ui | i ∈ I} indexed by a finite set I is said to be a
(finite) cover of ∪i∈IUi. The nerve NU of the cover U is the simplicial complex with
vertex set I and a k-simplex [i0, . . . , ik] ∈ NU if Ui0 ∩· · ·∩Uik 6= ∅. Let U = {Ui | i ∈ I}
and V = {Vj | j ∈ J} be covers of topological spaces U ⊆ V . A map of sets F : I → J
is said to be a map of covers if Ui ⊆ VF (i) for all i ∈ I. It is easy to check that F
extends to a simplicial map F : NU → NV between the nerves of the covers. By a
sequence of covers we will mean a collection of covers {U(α) | α ∈ A ⊂ [0,∞)}, each
indexed respectively by I(α), together with maps of covers Fα,α

′
: I(α) → I(α′) such

that Fα,α = id and Fα,α
′′

= Fα
′,α′′ ◦ Fα,α′ for all α′′ ≥ α′ ≥ α. Such a sequence will

be denoted by a pair (U , F ). Similarly, for any sequence of covers we have an induced
sequence of nerves which will be denoted by (NU , F ).

2.1 Persistence modules
A persistence module V over A ⊆ R is a collection of k-vector spaces {V (α) | α ∈ A}
and linear maps vα,α

′
: V (α) → V (α′) for all α ≤ α′ such that vα,α = id and vα,α

′′
=

vα
′,α′′ ◦ vα,α′ . The direct sum of two persistence modules U and W, both indexed over

the same set, is the persistence module V = U ⊕W where V (α) = U(α) ⊕W (α) and
vα,α

′
= uα,α

′ ⊕ wα,α′ . We say that V is indecomposable if the only decompositions of
V are the trivial decompositions 0⊕ V and V⊕ 0.

Definition 1. Let J ⊆ A be an interval, i.e. if s, t ∈ J and s < r < t then r ∈ J . The
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interval module over J is the persistence module IJ defined by

IJ(α) =

{
k if α ∈ J
0 otherwise

and iα,α
′

= id : IJ(α)→ IJ(α′) whenever α ≤ α′ ∈ J and 0 otherwise.

It is not difficult to show that IJ is indecomposable, and the Krull–Remak–Schmidt–
Azumaya theorem [3] tells us that if

V ∼=
⊕
l∈L

IJl V ∼=
⊕
m∈M

IKm ,

then there is a bijection σ : L → M such that Jl = Kσ(l) for all l ∈ L. So whenever
V admits such a decomposition we can characterize it by the multiset {Jl | l ∈ L}
of intervals called the persistence diagram D(V) of V. An interval (b, d) ∈ D(V)
represents a feature of V with birth and death time b and d, respectively. A persistence
diagram is usually depicted as a collection of points in (R ∪ {±∞})2. A recent theorem
by Crawley-Boevey [11] asserts that V admits a decomposition into interval modules if
Vα is finite-dimensional for all α ∈ R. For an example of a persistence module which
does not admit an interval decomposition, see [9].

To every sequence of covers (U , F ) we have an associated persistence module (Hp(NU), F∗)

with vector spaces {Hp(NU(α)) | α ∈ A ⊆ [0,∞)} and maps (Fα,α
′
)∗. As the covers are

finite, all the homology vector spaces will have finite dimension, and thus the persistence
diagrams are well-defined. In particular, if P ⊆ M is a finite set of points in a metric
space M , and B(p;α) is the open ball of radius α centered at p, we get a sequence of
covers by defining B(p; 0) = {p}, U(P ;α) = {B(p;α) | p ∈ P} and F = id. The induced
sequence of nerves is known as the Čech filtration and the associated persistence
module is the Čech persistence module. In the remainder of this paper C(P ;α)
denotes the nerve of the Čech filtration of P at scale α.

Another popular construction is the Vietoris–Rips complexR(P ;α) which is defined as
the largest simplicial complex with the same 1-skeleton as C(P ;α). By definition, it follows
that C(P ;α) ⊆ R(P ;α), and for P ⊆ Rn, it is also true that R(P ;α) ⊆ C(P ;

√
2α) [13].

2.2 Metrics and approximations
Let ∆ denote the multiset of all pairs (x, x) ∈ (R∪ {±∞})2, each with countably infinite
multiplicity. A partial matching between two persistence diagrams D and D′ is a
bijection γ : B ∪∆→ B′ ∪∆, and we denote all such by Γ(D,D′).

The following defines a metric on persistence diagrams:

Definition 2. The bottleneck distance between two persistence diagrams B and B′
is

dB(B,B′) = inf
γ∈Γ(D,D′)

sup
(b,d)∈B

||(b, d)− γ((b, d))||∞

where
||(b1, d1)− (b2, d2)||∞ = max(|b1 − b2|, |d1 − d2|).

The theory of interleavings [8] offers a generalization of the bottleneck distance to per-
sistence modules that do not admit a decomposition into indecomposables. Importantly,
if there exists an ε-interleaving between two persistence modules, then their bottleneck
distance is at most ε. In this paper we adopt the conventions of [28, 24] and use a slight
reformulation of the ordinary theory of interleavings.
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Definition 3. Two persistence modules U and V indexed over [0,∞) are said to be
c-approximate if there exist a constant c ≥ 1 and two families of homomorphisms
{φα : U(α) → V (cα)}α≥0 and {ψα : V (α) → U(cα)}α≥0 such that the following four
diagrams commute for all α ≤ α′:

U(αc ) U(cα′) U(cα) U(cα′)

V (α) V (α′) V (α) V (α′)

U(α) U(α′) U(α) U(α′)

V (αc ) V (cα′) V (cα) V (cα′)

The following theorem is immediate from the theory of interleavings [8].

Theorem 4. If U and V are c-approximate, then their bottleneck distance is bounded by
log c on the log-scale.

The above result can be seen as a general version of the relationship between the
Čech and Vietoris–Rips filtrations. Indeed, while the bottleneck distance between their
persistence diagrams may be arbitrarily large, the inclusions

C(P ;α) ⊆ R(P ;α) ⊆ C(P ;
√

2α)

ensure that a feature (b, d) in the Vietoris–Rips persistence module is also a feature in
the Čech persistence module if d− b ≥

√
2b, and vice versa.

2.3 Computing persistent homology using annotations
Many widely implemented and used algorithms for computing persistent homology
assume that the maps in the persistence module are induced by inclusions of simplicial
complexes, i.e. that the underlying sequence is a filtration. As shall become clear, we
will need to compute in the setting of general simplicial maps.

Definition 5. A surjective simplicial map f : K → K ′ with the property that there
exist distinct [a], [b] ∈ K such that

f(σ) =


σ \ {b} if a, b ∈ σ
{a} ∪ σ \ {b} if a /∈ σ, b ∈ σ
σ otherwise

is called an edge contraction of [a, b] to [a]. Simplices σ, σ′ ∈ K are called mirror
simplices (for f) if f(σ) = f(σ′).

We will often refer to an edge contraction like that above by [a, b] 7→ [a]. Since
up to isomorphism any simplicial map K → K ′ decomposes into a finite sequence of
inclusions and edge contractions, we only need to deal with those two types and adjust
the persistence module indices accordingly to reflect the addition of extra maps. Likewise,
as is normal, we decompose inclusions into ones of the form K → K ∪ {σ} and refer to
these as “adding a simplex σ”.
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We will use Dey et al.’s method of persistence annotations [15] to compute (the
persistence diagrams of) persistence modules with simplicial maps, and now quickly
review their algorithm and our implementation details.

The method of annotation tracks homology with Z2 coefficients across a persistence
module by storing the value of all cohomology generators at each simplex and updating
these “annotations” to reflect the inclusion of a simplex or the contraction of an edge.
Care should be taken to notice a slight difference in terminology: our definition of
annotations reflects Dey’s valid annotations.

Definition 6. An annotation for a simplicial complex K is a linear map Φp : Cp(K)→
Zn2 with the property that

ϕ1 = [c 7→ Φp(c)1], . . . , ϕn = [c 7→ Φp(c)n]

is a basis for Hp(K). Here Φp(c)i denotes the i’th component of Φp(c) ∈ Zn2 .

A key observation is the following: the persistent homology of a sequence of simplicial
complexes can be obtained by dualizing on the level of chains and taking cohomology. This
is true since when working over Z2 (or any field), the map α : Hp(K)→ Hom(Hp(K),Z2)
defined by α([f ])([c]) = f(c) is an isomorphism. Thus, intervals in persistent cohomology
are dual to intervals in persistent homology. Therefore, we shall interchangeably speak
of a homology class born at persistence index i as a cohomology class in the opposite
direction dying at persistence index i.

By storing the value of Φp at each p-simplex, that simplex’ contribution to the
(co)homology vector space is known and so allows us to only make changes to homology
near the site of a contraction. This “locality” of the changes introduced by an edge
contraction is summarized in the following definition [14], proposition [2] and lemmas.

Definition 7. The link of a simplex σ in a simplicial complex K is the set

lkK σ = {τ \ σ | σ ⊆ τ ∈ K}.
An edge [a, b] ∈ K satisfies the link condition if lkK [a] ∩ lkK [b] = lkK [a, b].

When the simplicial complex in question is clear, we shall simply write lk for lkK .

Proposition 8. The contraction f : K → K ′ of an edge that satisfies the link condition
induces a homotopy equivalence |f | : |K| → |K ′|, and hence an isomorphism f∗ :
H∗(K)→ H∗(K

′).

Lemma 9. If [a, b] ∈ K, then lkK [a, b] ⊆ lkK [a] ∩ lkK [b].

Proof. Suppose η ∈ lk[a, b]. Then there exists a τ ∈ K with [a, b] ⊆ τ and η = τ \ [a, b].
Since K is a simplicial complex, it also contains τ ′ = τ \ [a] and τ ′′ = τ \ [b]. We have
[b] ⊆ τ ′ and η = τ ′\ [b], so η ∈ lk[b]. The same argument using τ ′′ gives that η ∈ lk[a].

For the following lemma we shall write LK(a, b) = (lkK [a] ∩ lkK [b]) \ lkK [a, b].

Lemma 10. If η ∈ LK(a, b), then K ′ = K ∪ {η ∪ [a, b]} is also a simplicial complex,
and moreover LK′(a, b) = LK(a, b) \ {η}.
Proof. Observe that [a, b] 6⊆ η. K ′ is still a simplicial complex, as all faces of η ∪ [a, b]
are present in K by the assumption that η ∈ LK(a, b). Note that by definition

lkK′ [a] = lkK [a] ∪ {η ∪ [b]} lkK′ [b] = lkK [b] ∪ {η ∪ [a]},
so lkK′ [a] ∩ lkK′ [b] = lkK [a] ∩ lkK [b]. It also follows from the definition that

lkK′ [a, b] = lkK [a, b] ∪ {η},
so LK′(a, b) = LK(a, b) \ {η}.
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In summary, we see that to contract an edge we only need to change the simplicial
complex in the vicinity of that edge.

Suppose
K = (K0

f0−→ K1
f1−→ · · · fm−1−−−→ Km)

is a sequence of simplicial complexes (with the fi’s simplicial maps) whose persistence
module

H∗(K) = (H∗(K0)
(f0)∗−−−→ H∗(K1)

(f1)∗−−−→ · · · (fm−1)∗−−−−−→ H∗(Km))

has been computed, and write Φip for the annotation of Hp(Ki) and n for its dimension.
To compute the persistence module of

K ′ = (K0
f0−→ · · · fm−1−−−→ Km

fm−−→ Km+1),

there are four cases to handle:

1. fm adds a single p-simplex σ, and. . .

(a) Φm
p−1(∂σ) = 0. This corresponds to a generator of Hp(K

′) being born at
persistence index m+ 1, or equivalently to a generator of Hp(K ′) dying at m
going left (see Proposition 5.2 in [15]). Define Φm+1

p : Cp(Km+1)→ Zn+1
2 by

Φm+1
p (τ) =

{
(Φmp (τ)1, . . . ,Φ

m
p (τ)n, 0) if τ 6= σ

(0, . . . , 0, 1) if τ = σ

and extending linearly. In other dimensions q 6= p, we set Φm+1
q = Φmq .

(b) Φmp−1(∂σ)i1 = · · · = Φmp−1(∂σ)il = 1 for some l ≥ 1. In this case σ kills a class
in Hp−1(K ′) at m + 1, or equivalently gives birth to one of the generators
ϕi1 , . . . , ϕil of Hp−1(K ′) in the reverse direction (see Proposition 5.2 in [15]).
We kill the youngest homology class, say the one numbered u (so ϕu is born
in the reverse direction). Note that γ : Km+1 → Zn2 defined by

γ(τ) =

{
Φmp−1(τ) + Φmp−1(∂σ) if Φmp−1(τ)u = 1

Φmp−1(τ) otherwise

has 0 in component u of all its values. Define Φm+1
p−1 : Cp−1(Km+1)→ Zn−1

2 as
γ with the u-th component removed, and extend linearly. In other dimensions
q 6= p− 1, we set

Φm+1
q (τ) =

{
(0, . . . , 0) if τ = σ, q = p

Φmq (τ) otherwise.

2. fm contracts [a, b] to [a], and. . .

(a) [a, b] satisfies the link condition. Let

Mp−1 = {σ ∈ Km | dimσ = p− 1, a ∈ σ and σ has a mirror under fm},

and note that to any τ ∈ Mp−1, there is a unique gτ ∈ Km with τ ⊆ gτ ,
dim gτ = p and [a, b] ⊆ gτ . Define Φm+1

p on the p-simplices of Km+1 by

Φm+1
p (σ) = Φmp (σ) +

∑
σ⊇τ∈Mp−1

Φmp (gτ ),

noting that the sum may be empty. This corresponds to Dey’s “annotation
transfers” — see Proposition 4.4 and 4.5 of [15] for a more detailed explanation.
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(b) [a, b] does not satisfy the link condition. Lemma 10 tells us which simplices
to add, repeatedly hitting the cases 1a and 1b, until the link condition
becomes fulfilled1. Afterwards contracting [a, b] is handled by case 2a. Some
bookkeeping is of course required if one wants to consider the potentially
many homology changes from the inclusions as occurring at persistence index
m+ 1.

Dey et al. show in [15] (Proposition 5.1) that Φm+1
∗ as constructed above is an annotation

for H∗(Km+1). With K0 = ∅ and the associated empty annotation Φ0
∗, then, the above

is a correct algorithm for computing persistent homology.

2.3.1 Some implementation details

As suggested in [4, 5], the simplex tree is a data structure that is well-suited for storing
the simplicial complex in the above algorithm.

A simplex tree is a trie (also called a prefix tree), which is a tree T that stores a
simplicial complex K whose vertices V have a total ordering ≤ by the following rules:

• T contains a distinguished root.

• Every non-root node n ∈ T carries the data of a label L(n) ∈ V . The root is
labelled by a distinguished symbol, say ∗, and we extend the ordering to ∗ < v for
all v ∈ V to ease notation.

• Nodes have zero or more children.

• If n is a child of p, then L(n) > L(p).

• If n and m both are children of p, then L(n) 6= L(m).

The simplicial complex K to be encoded corresponds to all paths to the root of T , and
we write S(n) ∈ K for the simplex corresponding to the path from n ∈ T . We will also
refer to the root having depth 0, and in general a node as having depth k + 1 if its
parent has depth k. Thus depth(n) = dimS(n) + 1.

In terms of implementation, every node holds a pointer to its parent and a dictionary2
of pointers to its children, keyed on their labels. Furthermore, we augment the tree by
adding to each node a “cousin pointer”: We call m a cousin of n if depth(m) = depth(n)
and L(m) = L(n). Every node holds a pointer to one of its cousins in such a way that
they form a cyclic linked list that visits every cousin at the same depth precisely once
(per cycle). In addition, an arbitrary representative of each such cyclic linked list is
maintained in a dictionary keyed on labels and depths.

Figure 1 shows an example of the basic part of a simplex tree, along with an example
of annotations (intermediate data structures are dropped from the figure, and annotations
are attached directly to the simplices for ease of visualization).

Boissonnat and Maria show that this data structure allows us to efficiently insert and
remove simplices, and compute their faces and cofaces. For details, see [5].

To tie the simplex tree to the annotations discussed earlier, we want to associate to
each node (i.e. each simplex) its annotation value. Since multiple simplices are likely to
share the same annotation value, we go by way of a union find structure. Each node
thus contains a pointer to a node in a forest, wherein each tree represents an annotation

1This must happen after a finite number of steps since Lemma 10 shows that the size of (lk[a] ∩
lk[b]) \ lk[a, b] is reduced by one every time one of the new simplices is added. Moreover, one can in
practice expect the number of simplices added to be small compared to the size of Km since only cofaces
of [a, b] are added.

2A dictionary is here any data structure with logarithmic lookup time complexity for keys.
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Figure 1: A somewhat simplified simplex tree representation of a sim-
plicial complex. Annotation values on the 1-simplices are included for
a persistence module in which the simplices are added in the order
. . . , [1, 5], [4, 5], [2, 5], [3, 5], [1, 4], [2, 3], [1, 4, 5], [2, 3, 5], [3, 4], [1, 2], leading up to the top
row situation. To contract the edge [1, 2], the link condition must be fulfilled, requiring
the inclusion of [1, 2, 5] (middle row). The situation after contraction is shown in the
bottom row.
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value shared by multiple cohomologous simplices. The root of each tree in the forest
points to the actual annotation value of the simplices pointing to nodes in that tree.

The annotation values themselves are also kept referenced in a dictionary (keyed on
the annotation values) for easy access and updating as used in the algorithm outlined
earlier.

3 Persistent homology of sequences of covers
In the following we assume that all covering sets are subsets of some metric space and
that every cover is finite. In particular, this means that all our spaces are paracompact.
Moreover, the constructions in this section can be seen as special cases of the much more
general construction of a homotopy colimit of a diagram of topological spaces.

To any open covering U = {Ui | i ∈ I} of an open set U we assign a topological
space ∆UU ⊂ |NU| × U defined as the disjoint union⊔

S∈NU
|S| ×

⋂
i∈S

Ui

under the equivalence relation (s, x) ∼ (t, x) if s ∈ |S|, t ∈ |T |, S ⊆ T and s = t. This
construction comes equipped with continuous projection maps π1 : ∆UU → |NU| and
π2 : ∆UU → U given by projecting onto the first and second factor, respectively.

Lemma 11. The fiber projecting map π2 : ∆UU → U is a homotopy equivalence.

sketch. As U is assumed to be paracompact we can choose a partition of unity {φi}i∈I
subordinate to U and define g : U → ∆UU by

g(x) =
∑
i∈I

(φi(x)vi, x) ,

where vi is the vertex corresponding to Ui. Then π2 ◦ g = idU and it is not difficult to
show that g ◦ π2 ' id∆(U). For a complete proof see [23].

Now let V = {Vj | j ∈ J} be a finite cover of V ⊇ U and F : I → J a map of covers.
Recall that |F | : |NU| → |NV| denotes the continuous map defined on the vertices by the
induced simplicial map between the nerves. If we let incVU : U ↪→ V denote the inclusion
of U into V we get the commutative diagram

U V

∆UU ∆VV

|NU| |NV|

incVU

|F | × incVU

π2 '

π1

' π2

π1

|F |

.

By passing to (singular) homology and using that π2 is a homotopy equivalence we can
reverse arrows to find the following commutative diagram:

H∗(U) H∗(V )

H∗(|NU|) H∗(|NV|)

(
incVU

)
∗

(π1)∗ ◦ (π2)−1
∗ (π1)∗ ◦ (π2)−1

∗

|F |∗

(1)

10



Example 12. Note that Diagram (1) does not commute on the level of spaces: let
U = {U} and V = {U, V } where U ∩V 6= ∅. If x ∈ U ∩V then (|F | ◦ π1 ◦ g)(x) is a point
in |NU| whereas (π1 ◦ g ◦ inc)(x) can be any point along the edge |[U, V ]|, depending on
the choice of partition of unity. See Figure 2.

U U V

∆U{U} ∆(U ∪ V ){U,V }

Figure 2: This diagram is an example of the diagram from Example 12 not commuting
on the level of spaces.

Definition 13. A cover is said to be good if every finite intersection of its sets is
contractible.

The following theorem is one of the great pillars of computational algebraic topology. It
allows us to use discrete information to capture the topology of a continuous space. For
a proof see Section 4.G. of [23].

Theorem 14. If U is a good cover, then the base projection map π1 : ∆UU → |NU| is a
homotopy equivalence.

Corollary 15. If U is a good cover, then the composition (π1)∗◦(π2)−1
∗ is an isomorphism.

3.1 A sandwich theorem for sequences of covers
We will use the results from the previous section to prove a sandwich type theorem for
sequences of covers. The idea is that if a sequence of covers can be sandwiched between
two sequences of good covers, then the persistence module associated to the middle
sequence approximates the persistence modules associated to the good covers.

Let (U , FU ) , (V, FV) and (W, FW) be sequences of covers satisfying

U(α) ⊆ V (α) ⊆W (α) ⊆ U(cα)

together with maps of covers

Fα,α
′

V,W : V(α)→W(α′) Fα,cα
′

W,V :W(α)→ V(cα′)

for all α′ ≥ α and a fixed constant c ≥ 1. Moreover, we assume that the maps of covers
satisfy the following coherence relations:

Fα
′,α′′

W ◦ Fα,α
′

V,W = Fα
′,α′′

V,W ◦ Fα,α
′

V F
α/c,cα′

W,V ◦ Fα/c,α/cV,W = F
α/c,cα′

V (2)

for all α′′ ≥ α′ ≥ α.
For notational simplicity we let ηα,α

′

U,V = |Fα,α
′

U,V |∗ and accordingly for the other maps
of covers above. From Corollary 15 we know that if (U , FU ) and (W, FW) are sequences

11



of good covers, then there exist unique linear maps ηα,α
′

U,V , η
α,α′

U,W and ηα,cα
′

W,U making the
following diagrams commute:

Hp(U(α)) Hp(V (α′)) Hp(U(α)) Hp(W (α′))

Hp(|NU(α)|) Hp(|NV(α′)|) Hp(|NU(α)|) Hp(|NW(α′)|)
(π1)∗ ◦ (π2)−1

∗
∼=

(
inc

V (α′)
U(α)

)
∗

(π1)∗ ◦ (π2)−1
∗ (π1)∗ ◦ (π2)−1

∗
∼=

(
inc

W (α′)
U(α)

)
∗

∼=(π1)∗ ◦ (π2)−1
∗

ηα,α
′

U,V ηα,α
′

U,W

Hp(W (α)) Hp(U(cα′))

Hp(|NW(α)|) Hp(|NU(cα′)|)
(π1)∗ ◦ (π2)−1

∗
∼=

(
inc

U(cα′)
W (α)

)
∗

∼=(π1)∗ ◦ (π2)−1
∗

ηα,cα
′

W,U

Hence, there are well-defined linear maps

φα = ηα,cαU,V : Hp(|NU(α)|)→ Hp(|NV(cα)|)
ψα = ηα,cαW,U ◦ ηα,αV,W : Hp(|NV(α)|)→ Hp(|NU(cα)|) (3)

Also, note that the map ηα,cα
′

W,V is the unique map that makes Diagram (1) commute.

Theorem 16. If (U , FU ) and (W, FW) are sequences of good covers, then the families
of homomorphisms {φα}α∈[0,∞) and {ψα}α∈[0,∞) defined in Equation (3) satisfy the
diagrams of Definition 3. In particular, the persistence modules

(Hp(|NU|), ηU ) and (Hp(|NV|), ηV)

are c-approximate.

Proof. We need to show that the following four relations in Definition 3 are satisfied for
all α ≤ α′:

ψα′ ◦ ηα,α
′

V ◦ φα/c = η
α/c,cα′

U ψα′ ◦ ηα,α
′

V = ηcα,cα
′

U ◦ ψα
φα′ ◦ ηα,α

′

U ◦ ψα/c = η
α/c,cα′

V φα′ ◦ ηα,α
′

U = ηcα,cα
′

V ◦ φα (4)

It follows from the uniqueness of the above linear maps, and the associativity of the
maps in a sequence of covers, that any map composed out of the maps

η−,−U , η−,−V , η−,−W , η−,−U,W , η
−,−
W,U , η

−,−
W,V and η−,−U,V (5)

is uniquely defined by its domain and co-domain. That, together with the coherence
relations of Equation (2), will prove the theorem. We will do the top left case of
Equation (4) in full detail whereas we will refer to uniqueness arguments in the other
three cases.

12



Top left:

ψα′ ◦ ηα,α
′

V ◦ φα/c
= ηα

′,cα′

W,U ◦ ηα
′,α′

V,W ◦ ηα,α
′

V ◦ ηα/c,αU,V

= ηα
′,cα′

W,U ◦ ηα,α
′

V,W ◦ η
α/c,α
U,V

= ηα
′,cα′

W,U ◦ ηα,α
′

V,W ◦ (π1 ◦ π−1
2 )∗ ◦

(
inc

V (α)
U(α/c)

)
∗
◦ (π1 ◦ π−1

2 )−1
∗

= ηα
′,cα′

W,U ◦ (π1 ◦ π−1
2 )∗ ◦

(
inc

W (α′)
V (α)

)
∗

(
inc

V (α)
U(α/c)

)
∗
◦ (π1 ◦ π−1

2 )−1
∗

= (π1 ◦ π−1
2 )∗ ◦

(
inc

U(cα′)
U(α/c)

)
∗
◦ (π1 ◦ π−1

2 )−1
∗

= η
α/c,cα′

U

The second equality follows from the coherence relations.

Bottom left: By definition, φα′ ◦ ηα,α
′

U ◦ψα/c = ηα
′,cα′

U,V ◦ ηα,α
′

U ◦ ηα/c,αW,U ◦ η
α/c,α/c
V,W . Using

that the composition of the three leftmost maps has same domain and co-domain
as ηα/c,cα

′

W,V , we are left with ηα/c,cα
′

W,V ◦ ηα/c,α/cV,W = η
α/c,cα′

V . Here the last equality
follows from Equation (2).

Top right: From the coherence relations in Equation (2) we find ψα′ ◦ ηα,α
′

V = ηα
′,cα′

W,U ◦
ηα
′,α′

V,W ◦ ηα,α
′

V = ηα
′,cα′

W,U ◦ ηα,α
′

W ◦ ηα,αV,W . Lastly, we note that ηα
′,cα′

W,U ◦ ηα,α
′

W and

ηcα,cα
′

U ◦ ηα,cαW,U are equal by uniqueness.

Bottom right: Both sides of the equation are composed out of maps from (5).

The following is a corollary of the proof.

Corollary 17. Any two of the persistence modules

(Hp(|NU|), ηU ) , (Hp(|NV|), ηV) and (Hp(|NW|), ηW)

are c-approximate.

Note that we do not require the covers in the sequence (V, FV) to be good. One
application of this, which will be pursued in the next section, is the following. Let (U , FU )
be a sequence of good covers and (V, FV) another sequence of covers where each open set
in V(α) is a union of open sets in U(α). Thus, we have a map of covers U(α)→ V(α′),
and more interestingly, a linear map Hp(|NU(α)|)→ Hp(|NV(α′)|). However, we do not
have a map of covers the other way around, so it is a priori not clear how to define the
interleaving map in the opposite direction. This is illustrated in Figure 3. The previous
theorem tells us that such a map can be constructed and gives an upper bound on the
bottleneck distance between the associated persistence modules.

4 Approximating the Čech complex in Euclidean space
In this section we construct two different approximation schemes for the Čech persistence
module built on a finite set of points in Euclidean space.

It is clear that for any c-approximation of the Čech persistence module, a
√

2c-
approximation can be had via the Vietoris–Rips complex built on its 1-skeleton. For a
treatment of approximate Vietoris–Rips complexes in general metric spaces see [15, 28].

13



U V U ∪ V

U ′ V ′

f

g h

?

Figure 3: The map of covers f is defined as sending a ball to the union it belongs to,
and g as the obvious map of covers arising from U ⊆ U ′ and V ⊆ V ′. There is no map
of covers h making the diagram commute on the level of covers.

4.1 Linear-size approximation of the Čech persistence module
This section is an adaption of the work in [15] to the case of Čech complexes in Euclidean
space. Throughout this section, P ⊆ Rn.

Definition 18. For a set of points P , we say that P ′ ⊆ P is a δ-net of P if

1. for every p ∈ P there exists a p′ ∈ P ′ such that ||p− p′|| ≤ δ

2. for any p, q ∈ P ′, ||p− q|| > δ.

Choose parameters α0, ε ≥ 0 and define a sequence of point sets Pk for k = 0, 1, . . . ,m
such that P0 = P and Pk+1 is an α0ε

2(1 + ε)k−1-net of Pk. We refer to such a collection
P0, . . . , Pm as a net-tree. Furthermore, let C(Pk;α) be the Čech complex at scale α
built upon the vertex set Pk, and U(Pk;α) the union of open balls of radius α centered
at each point in Pk. We clearly have maps πk : Pk → Pk+1 which send a vertex p ∈ Pk
to its most nearby vertex in Pk+1.

Lemma 19. For every k = 0, . . . ,m− 1 we have inclusions

U(P ;α0(1 + ε)k) ⊆ U(Pk+1;α0(1 + ε)k+1).

Proof. Let p ∈ P = P0 and x ∈ Rn be any point such that ||p−x|| < α0(1+ε)k. Since P1

is an α0ε
2(1+ε)−1-net of P we can find π0(p) ∈ P1 such that ||π0(p)−p|| ≤ α0ε

2(1+ε)−1.
Similarly, we can find p′ = (πk ◦ · · · ◦ π0)(p) ∈ Pk+1 such that

||p′ − x|| = ||πk ◦ · · · ◦ π0(p)− x||

≤ ||p− x||+
k∑
i=0

α0ε
2(1 + ε)i−1

≤ ||p− x||+ α0ε
2

1 + ε
· (1 + ε)k+1 − 1

ε

< α0(1 + ε)k + α0ε(1 + ε)k = α0(1 + ε)k+1.

In particular, for p ∈ Pk we have that B(p;α0(1 + ε)k) ⊆ B(πk(p);α0(1 + ε)k+1), and
thus πk : Pk → Pk+1 is a map of covers

πk : U(Pk;α0(1 + ε)k)→ U(Pk+1;α0(1 + ε)k+1).
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Using this we define a sequence of covers associated to the net tree by defining

Unet(P ;α) = U(Pk;α0(1 + ε)k)

where k is the greatest integer such that α0(1 + ε)k ≤ α. The maps between the covers
are given by compositions of πk’s. We will denote the induced sequence of nerves by
Cnet(P ) and the associated persistence module by (Hp(Cnet(P )), π∗). Recall that with
this notation we have that

Unet(P ;α) = U(Pk;α0(1 + ε)k) =
⋃
p∈Pk

B(p;α0(1 + ε)k)

Proposition 20. The persistence modules (Hp(Cnet(P )), π∗) and (Hp(C(P )), id∗) are
(1 + ε)2-approximate.

Proof. Using that Unet(P ;α) = U(Pk;α0(1 + ε)k) together with Lemma 19 we have the
chain of inclusions

Unet(P ;α) ⊆ U(P ;α) ⊆ U(P ;α0(1 + ε)k+1) ⊆ U(Pk+2;α0(1 + ε)k+2)

= Unet(P ;α(1 + ε)2).

The rest of the proof follows by applying Theorem 16 with U = Unet(P ) and V =W =
U(P ).

Proposition 21. Let P ⊆ Rn be a set of m points. Then the number of p-simplices in
Cnet(P ;α0(1 + ε)k) is O

(
( 1
ε )O(np)m

)
.

Proof. This is Theorem 6.3 in [15] together with the fact that the doubling dimension of
Rn is O(n)

The net-tree construction exhibits great theoretical properties both with regards to
approximating the Čech persistence module and in terms of size complexity. In practice
however, as we shall see in Section 5, the complex often grows too large to be stored.
Not doing a single collapse between scale α0(1 + ε)k and scale α0(1 + ε)k+1 will in many
situations introduce too many new simplices. To mend this we introduce a complex
which allows for more numerous collapses, at the expense of computation time and poorer
error bounds.

4.2 Approximations through non-good covers
We propose a general framework to approximate persistence modules associated to
sequences of good covers. Using this framework we give an explicit approximation of the
Čech persistence module in Euclidean space.

Let (U , F ) be a sequence of covers with index sets {I(α)}α≥0 and J(I(α)) a partition
of I(α). We make the following assumption on the partitions: if J ∈ J(I(α)) then for
all α′ ≥ α there exists J ′ ∈ J(I(α′)) such that J ⊆ J ′. In other words, if two elements
are partitioned together at some scale α, they will be partitioned together at all scales
α′ ≥ α. Moreover, if J ∈ J(I(α)) then Fα,α

′
(J) denotes the set J ′ ∈ J(I(α′)) such that

J ⊆ J ′.
Lemma 22. For each α ≥ 0, let J(I(α)) be a partition of I(α) as described above. Then
the pair (Ũ , F ) with

Ũ(α) =

ŨJ(α) =
⋃
j∈J

Uj(α) | J ∈ J(I(α))


is a sequence of covers.
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Proof. This follows from that J ⊆ Fα,α′(J) for all J ∈ J(I(α)).

For such a choice of partitions we say that (Ũ , F ) is coarsening of (U , F ).
Let (Ũ(P ), id) be any coarsening of the Čech sequence of covers U(P ) on a finite point

set P ⊆ Rn. Furthermore, define an associated sequence of good covers (CH Ũ , id) where

CH Ũ(α) =
{

CH
(
Ũk(α)

)
| Ũk(α) ∈ Ũ(α)

}
,

and CH(−) denotes the convex hull. In the following proposition (C̃(P ), id) denotes the
induced sequence of nerves of (Ũ(P ), id).

Proposition 23. If there exists a constant c ≥ 1 such that CH
(
ŨJ(α)

)
⊆ ⋃j∈J Uj(cα)

for all α ≥ 0 and all J ∈ J(α), then the persistence modules (Hp(C(P )), id∗) and(
Hp(C̃(P )), id∗

)
are c-approximate.

Proof. We will use Theorem 16. We see that the inclusion condition is satisfied by
assumption:

U(α) ⊆ U(α) ⊆
⋃

J∈J(α)

CH
(
ŨJ(α)

)
⊆ U(cα).

Moreover, Ũ(P ;α) and CH Ũ(P ;α) have the same indexing set, so the coherence relations
of Equation (2) are trivially satisfied.

We see that every time we make our cover coarser, the number of 0-simplices in the
nerve is reduced, and hence so is the size of the simplicial complex.

4.2.1 An explicit approximation

In the previous section we provided a general framework for constructing c-approximations
to the Čech persistence module. We now give an explicit construction using Proposi-
tion 23.

Lemma 24. Let P = {p0, p1, . . . , pk} ⊂ Rn where p0 = 0 and ||pi|| ≤ α for all i. Then
for any point x ∈ CH(P ) there exists pi ∈ P such that ||x− pi|| ≤ α/

√
2.

Proof. By definition of p0 we may assume without loss of generality that x = (x1, 0, . . . , 0)
where x1 > α/

√
2. Let pi = (pi,1, pi,2, . . . pi,n) be a point in P such that pi,1 ≥ pj,1 for

every other j, and assume that ||x− pi|| > α/
√

2. Using the law of cosines:

α2 ≥ ||pi||2 = ||(pi − x) + x||2 = ||pi − x||2 + ||x||2 − 2||pi − x|| · ||x|| cos(∠p0xpi)

>
α2

2
+
α2

2
− 2||pi − x|| · ||x|| cos(∠p0xpi)

= α2 − 2||pi − x|| · ||x|| cos(∠p0xpi)

implying that cos(∠p0xpi) > 0. By application of the Euclidean inner product we find

(pi − x) · (−x) = −pi,1 · x1 + x2
1 = ||pi − x|| · ||x|| · cos(∠p0xpi) > 0

and therefore pi,1 < x1, contradicting that x was enclosed in the convex hull of P .

Figure 4 shows an extreme case of the previous Lemma.
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p0

p1 p2
x

Figure 4: The vertices p0, p1, p2 of an isosceles triangle T = CH{p0, p1, p2} with legs of
length α and base of length

√
2α form an extreme case of Lemma 24 as x ∈ T lies a

distance α/
√

2 from every vertex.

Proposition 25. Let α ≥ 0 and ε ≥ 0. If P = {p0, p1, . . . , pk} ⊂ Rn is a set of points
such that ||pi − pj || ≤ εα, then the following relation holds:

CH

 ⋃
0≤i≤k

B(pi;α)

 ⊆ ⋃
0≤i≤k

B

(
pi;α

√
1 +

ε2

2

)
.

Proof. First, observe that we have the equality

CH

 ⋃
0≤i≤k

B(pi;α)

 = {x ∈ Rn | ∃y ∈ CH(P ), ||x− y|| < α} .

Any point x ∈ CH(P ) is contained in the union ∪0≤i≤kB(pi; εα/
√

2) by Lemma 24. Thus,
what remains to be shown is that the proposition holds true for any x ∈ Rn for which
there is a p ∈ CH{pi0 , . . . , pik}, k ≤ n− 1, such that ||x− p|| < α. The last inequality
follows since x is in the exterior of the convex hull and the most nearby point cannot be
strictly inside an n-simplex.

Denote by x′ the orthogonal projection of x down on the affine space spanned by
{pi0 , . . . , pik}. If x′ ∈ CH{pi0 , . . . , pik} it follows from Lemma 24 that there exists a pij
such that

||pij − x||2 = ||pij − x′||2 + ||x− x′||2 ≤ ε2α2

2
+ α2 = α2

(
1 +

ε2

2

)
.

If x′ 6∈ CH{pi0 , . . . , pik} it implies the existence of a point p′ on the boundary of
CH{pi0 , . . . , pik} such that ||x − p′|| ≤ ||x − p|| < α and we can repeat the process for
that point. This completes the proof as the proposition is trivially true if k = 0.

Figure 5: Left: the convex hull of a union of three balls. Right: By increasing the radii
of the balls their union eventually covers the convex hull.

The previous proposition is illustrated in Figure 5. By combining Propositions 23 and 25
we have shown the following.
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Proposition 26. Let ε ≥ 0. Suppose Ũ(P ) is a coarsening of U(P ) with the property that
for every α ≥ 0 and every pair of indices i, j ∈ J ∈ J(I(α)), the inequality ||pi−pj || ≤ α·ε
holds. Then Hp(C̃(P ), id∗) is a

√
1 + ε2/2-approximation of the Čech persistence module

built on P .

The previous proposition allows us to build good approximations to the Čech per-
sistence module with far fewer simplices. A problem with this approach is that such a
memory efficient construction comes at the expense of computing weights of simplices.
As an example, if J(I(α)) consists of k partitions, each with m elements, then computing
the smallest α at which they have a k-intersection has time complexity O(mk). To
mend this we seek methods to approximate this persistence module by ones that are less
computationally expensive. The next section details one method for doing so.

4.2.2 Choosing a representative

Let (Ũ(P ), id) be a coarsening of the Čech sequence of covers and for every α ≥ 0 and every
J ∈ J(α) choose a representative pj ∈ P , where j ∈ J . Denote the set of representatives
at scale α by Pα. For every α ≥ 0 we define the subcomplex Crep(P ;α) ⊆ C̃(P ;α) to be
the smallest simplicial complex such that:

1. C(Pα;α) ⊆ Crep(P ;α)

2. idα,α
′

: C̃(P ;α)→ C̃(P ;α′) restricts to a simplicial map Crep(P ;α)→ Crep(P ;α′)

The idea is to choose a set of representatives, one for each element J(I(α)), and use
those representatives to approximate the persistent homology computation. However,
to get a well-defined sequence of simplicial complexes and simplicial maps, we need to
make sure that the image of a simplex spanned by one set of representatives is a simplex
at a later filtration time, where the set of representatives may be different. Thus, our
approximate complex contains the simplicial complex built on the set of representatives
and, in addition, the images of simplices spanned by representatives at earlier filtration
times.

Proposition 27. The persistence modules (Hp(C̃(P )), id∗) and (Hp(Crep(P )), id∗) are
1

1−ε -approximate.

Proof. The simplicial complexes Crep(Pα;α) and C̃(P ;α) are defined over the same
indexing set J(I(α)) for every α ≥ 0. This follows from having chosen one representative
for each covering set of Ũ(α). Now choose x ∈ UJ ∈ Ũ(α), where ||x− pj || < α for some
j ∈ J , and let p be the representative of idα,α/(1−ε)(J) ∈ J(I(α/(1− ε))). Then

||p− x|| ≤ ||p− pj ||+ ||x− pj || <
αε

1− ε + α =
α

1− ε .

Hence, we have a map of covers Ũ(P ;α)→ U(Pα/(1−ε);
α

1−ε ) which induces the first map
of the composition

C̃(P ;α)→ C
(
Pα/(1−ε);

α

1− ε

)
⊆ Crep

(
Pα/(1−ε);

α

1− ε

)
⊆ C̃

(
P ;

α

1− ε

)
The proof follows from application of Definition 3 and Theorem 4.
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4.3 Relationship to graph induced complexes
We conclude this section by briefly discussing a related construction introduced in [16]
by Dey et al.

Definition 28. Let G(V ) be a graph with vertex set V and let ν : V → V ′ be a vertex
map where ν(V ) = V ′ ⊆ V . The graph induced complex G(V, V ′, ν) is defined as the
simplicial complex where a k-simplex [v′1, . . . , v

′
k+1] is in G(V, V ′, ν) if and only if there

exists a (k+ 1)-clique {v1, . . . , vk+1} ⊆ V such that ν(vi) = v′i for each i ∈ {1, . . . , k+ 1}.

First we note that a coarsening of a cover as defined at the beginning of Section 4.2
induces a graph induced complex. Indeed, just choose a representative for each partition
and let ν be the map which takes a vertex to its representative. This, together with
a net-tree construction as in Section 4.1, is utilized in [15] to construct a linear-size
approximation to the Vietoris–Rips persistence module. Constructing the analogue Čech
approximation is straightforward and it can be shown that it enjoys error bounds similar
to what we proved in Section 4.1. In fact, the analogue Čech construction is nothing
more than forming a coarsening of the Čech sequence of covers where the process of
partitioning covering sets is determined by a net-tree. Unfortunately, as discussed at the
end of Section 4.2.1, computing the k-intersections needed for this construction is very
time consuming.

5 Computational experiments
This section details our implementation of the approximation schemes described above, as
well as some computational examples examining their efficacy and practical applicability.

5.1 Implementation
We realize an implementation of the approximation schemes detailed in Section 4.2 as a
C++ program in the following way.

The program takes as parameters ε ≥ 0 (as in Section 4.2.1), a maximal scale αmax > 0
(as usual when computing persistence), a maximal simplex dimension D > 0 (as usual)
and L ∈ N (to be explained later). Given an input point cloud P = {p1, . . . , pN} ⊆ Rd,
we first use Müllner’s fastcluster [25] to compute its hierarchical clustering HC(P ) with
the complete linkage criterion. This is considered a preprocessing step.

A cluster is a pair (p,X) with p ∈ X ⊆ P , wherein p will be called the cluster’s
representative and X its members. At initialization time, we begin with N clusters

c01 = (p1, {p1}), c02 = (p2, {p2}), . . . , c0N = (pN , {pN}).

and denote their enumeration by C0 = {1, . . . , N}.
We shall regard HC(P ) as the data of a series of linkage events of the form

(s, i, j) ∈ R×N×N ordered by the first component, and (arbitrarily) with the convention
that i < j. An event like this signifies the linking of clusters cli = (pli, X

l
i) and clj = (plj , X

l
j)

at scale s, from which we form a new cluster cl+1
i = (pl+1

i , X l
i ∪X l

j) where p
l+1
i ∈ X l

i ∪X l
j ;

in principle the new representative pl+1
i can be chosen arbitrarily from X l

i ∪ X l
j , but

for heuristic reasons we pick the point in the member set X l
i ∪X l

j closest to that set’s
centroid.

We maintain a priority queue Q of simplices prioritized by their persistence time. At
initialization, the queue contains the 0-simplices [1], . . . , [N ] all at persistence time 0. A
simplex tree, along with associated annotations and other data structures as described
in Section 2.3, are also initialized empty. These data structures that track homology will
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jointly be referred to as PH below, and we shall abuse language and speak of a simplex
as “belonging to PH” when the simplex is present in the simplicial complex. We also
initialize α′ = 0 and l = 0 to begin with.

The implementation code then proceeds in the following steps:

1. If Q is empty, we are done and go to step 6. If not, pop a simplex σ and its
persistence scale α from the front, and continue.

2. If α > αmax, we are done and go to step 6. Otherwise continue.

3. If σ is not already in PH, add it according to Section 2.3. In both cases, continue.

4. If dimσ > D, go to step 5. Otherwise, for each simplex τ ∈ {σ ∪ {i} | i ∈ Cl}:
compute3 the radius rτ of the smallest enclosing ball of the set {pli | i ∈ τ} ⊆ P ,
and add τ to Q at persistence scale rτ . Go to step 5.

5. If at least L simplices have been added to PH since the last time this step was
reached, we (possibly) perform a simplification by going to step 5a. Otherwise go
to step 1.

(a) For each linkage event (s, i, j) ∈ HC(P ) for which s ∈ [α′, εα), perform the
edge contraction [i, j] 7→ [i] according to Section 2.3, taking care to adjust
persistence times to reflect a (possible) series of inclusions to satisfy the link
condition. If there were no linkage events in the given interval, go to step 1.
Otherwise, denote the clusters present after handling the linkage event, as
explained earlier in this section, by

{Cl+1
i1

, . . . , Cl+1
iNl+1

} ⊆ {Clj1 , . . . , CljNl }

and go to step 5b.

(b) Clear Q and reset it to contain the 0-simplices [i1], . . . , [iNl ], all at persistence
scale 0. Update l to l + 1 and α′ to εα, and go to step 1.

6. We are done. Any persistent homology generators not yet killed off are recorded as
on the form (b,∞).

The algorithm above may be summarized as follows: Compute Čech persistence
until the underlying simplicial complex has at least L simplices. When that is the case,
walk up the complete linkage dendrogram of the point cloud until scale εα is reached,
where α is the persistence scale. Any linkage event encountered corresponds to an edge
contraction, which is performed. After that, computation of Čech persistence resumes as
before, albeit on a reduced and changed point cloud, and collapses may happen again
when L more simplices have been added. We terminate upon reaching αmax, and ignore
simplices of dimension above D (thus computing homology in dimensions 0, . . . , D − 1).

Note that L is merely a parameter to reduce computational overhead involved in
the collapses, as a higher value postpones contractions until the simplicial complex is
denser. In principle, L can be thought of as zero. Also observe that ε = 0 corresponds to
computing ordinary Čech persistence.

5.2 Experiments
This section describes three experiments designed to test the feasibility of our implemen-
tation.

3Our implementation uses Gärtner’s Miniball [21] for this computation.
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A calculation ranging from scale 0 to scale αmax will have its resulting persistence
diagram drawn as the region above the diagonal in [0, αmax]2. Generators still alive at
αmax will be referred to as on the form (b,∞) and plotted as triangles, while generators
of the form (b, d) with d ≤ αmax will be plotted as dots. See Figure 7 for an example of
drawing conventions.

5.2.1 Wedge of six circles enclosing each other

We produced a point cloud by randomly (uniformly) sampling 100 points from a circle
of radius 1 centered at (0, 1), 200 points from a circle of radius 2 centered at (0, 2) and
so forth up to 600 points from a circle of radius 6 centered at (0, 6). Each point in the
circle of radius r was perturbed by radial noise sampled from the uniform distribution on
[(1− 0.02)r, (1 + 0.02)r). The very dense region near the origin where all the circles meet
(see Figure 6) contributes nothing to homology, but significantly adds to the number of
simplices if no collapse is done.

Running to αmax = 2, our implementation clearly limited the number of simplices —
see Figure 8 and note especially the rapid increases between collapses, the regimes where
the ordinary Čech filtration is formed — while producing a highly correct persistence
diagram, as is shown in Figure 7.
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Figure 6: The point cloud from the example in Section 5.2.1.
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Figure 7: Persistence diagrams of the (noisy) wedge of six circles in Section 5.2.1 with
ε = 3/4 and αmax = 2.
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Figure 8: The simplex count while computing persistence for the example in Section 5.2.1.
The net tree computations were run with α0 = 10−3 and ε = 0.7 in the notation of
Section 4.1.

5.2.2 The real projective plane

We sampled RP 2 by randomly selecting 5000 points on S2 and embedding them in
R4 under (x, y, z) 7→ (xy, xz, y2 − z2, 2yz) as a test of how well our scheme handles
higher dimensions. Figure 9 shows that the expected persistence diagram resulted when
computing to αmax = 0.54 at ε = 1.0.

Figure 10 compares our scheme (at ε = 1) with the very beginning an ordinary Čech
filtration. Our implementation keeps the number of simplices manageable, peaking at
just above 3 · 105 simplices near the end (scale 0.54), while still recovering the correct
persistence diagram. The figure also shows the simplex count for the net tree construction;
notice that we were unable to correctly choose α0 and ε so as to make computations
with it feasible, unlike for the example in Section 5.2.1.

5.2.3 Time-delay embedding

We solved the Lorenz system (with parameters σ = 10, r = 28, b = 8/3 in the notation
of [20]) and created a time series y ∈ R15000 by adding together all three of the solution’s
coordinates at each of 15000 points in time. Let A(i) denote the (discrete) correlation
of y and y shifted i places to the right. The first local minimum of A occurs at 15, so
that was used as delay to embed y in R3 by delay-embedding. The resulting point cloud,
with 15000− (3− 1) · 15 = 14970 points, reconstructs [29] the Lorenz attractor as seen in
Figure 11. Observe that there are regions that have a very high density of points.

Our implementation computes the expected persistence diagram (Figure 12) while
keeping the number of simplices low (Figure 13).

6 Conclusions and future work
We have presented two approximation schemes for the Čech filtration in Euclidean
space. One construction uses a net-tree to build the Čech complex at fewer and fewer
simplices as we increase the scale parameter. The other approach forms a coarsening of
the Čech filtration by using covering sets formed by unions of open balls. Computing
k-intersections of such covering sets is computationally expensive, so we approximated the
persistence module by choosing a representative at each scale. In practice we experienced
far better results with this method than the net-tree approach. This contrasts with the
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Figure 9: Persistence diagrams for the 5000 point random sample of RP 2 embedded in
R4 as described in Section 5.2.2, with ε = 1.0 and αmax = 0.54.
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Figure 10: The simplex count for the RP 2 example from Section 5.2.2 compared to that
of an ordinary Čech filtration and the net tree approach (with α0 = 10−3 and ε = 0.7 in
the notation of Section 4.1).
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Figure 11: Lorenz system scalar measurements (parts shown on the left) and delay-
embedding reconstructed attractor (right), as detailed in Section 5.2.3.
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Figure 12: Persistence diagrams for the Lorenz attractor described in Section 5.2.3.
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Figure 13: Simplex count for the Lorenz attractor computations described in Section 5.2.3.
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superior theoretical guarantees enjoyed by the net-tree construction. By approximating
the Čech filtration through representatives we lose much of the theoretical guarantees,
but the frequent collapses allow for much greater maximum scales.

We believe that an interesting direction for future work is to find other approximations
than choosing a representative for each covering set. This could be done either by choosing
multiple representative points, or by using the embedding to approximate the covering
sets by sets for which computing k-intersections is tractable.

The proofs in this paper also rely heavily on the notion of good covers. In general
metric spaces a cover by a union of balls may fail to be good, and the Nerve lemma is
lost. It would be interesting to see if there are similar results without this precondition.
We believe it should be so, as the net-tree construction for the Vietoris–Rips filtration
extends to general metric spaces.
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