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Abstract This paper analyses the topological information of a digital object O under
a combined combinatorial-algebraic point of view. Working with a topology-
preserving cellularization K (O) of the object, algebraic and combinatorial tools are
jointly used. The combinatorial entities used here are vector fields, V -paths and
directed graphs. In the algebraic side, chain complexes with extra 2-nilpotent
operators are considered. By mixing these two perspectives we are able to explore
the problems of combinatorial and homological optimality. Combinatorial optimality
is understood here as the problem for constructing a discrete gradient vector field
(DGVF) in the sense of Discrete Morse Theory, such that it has the least possible
number of critical cells. Fixing Z/27Z as field of coefficients, by homological
‘optimality’ we mean the problem of constructing a 2-nilpotent codifferential map
¢: Cu(K (0)) - Cyy1(K (0)) for finite linear combinations of cells in K (0), called
homology integral operator. The homology groups associated to the chain complex
(C(K (0)), ¢) are isomorphic to those of (C(K (0)), 9), being 9 the canonical
boundary or differential operator of the cell complex K (O). Relations between these
two problems are tackled here by using a type of discrete graphs associated to a
homology integral operator, called Homological Spanning Forests (HSF for short).
Informally, an HSF for a cell complex can be seen as a kind of combinatorial
compressed representation of a homology integral operator. As main result, we
refine the heuristic for computing DGVFs based on the iterative
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Morse complex reduction technique of [1], reducing the search space for an optimal
DGVF to an HSF associated to a homology integral operator.
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1 Introduction

Most topological spaces of practical interest can be represented by a decomposition
into subsets, each with simple topology, that are glued together along their boundaries.
These decompositions are called cell complexes [2], and have been widely used for
analysing topological spaces [3,4]. For instance, fixing 26-adjacency as the neigh-
bouring connectivity for a digital object O, its connectivity can be encoded in terms of
voxels (0-cells), edges between neighbouring voxels (1-cells), faces connecting three
or four neighbouring voxels (2-cells) and volumes connecting up to eight mutually
26-adjacent voxels (3-cells).

The cell complex K (O) of a given digital object O is susceptible to be analysed
from a homological point of view.

Working with coefficients in Z /27, an algebraic topological representation related
to a finite cell complex K = (K},),>0 is introduced in [1]. This representation, called
chain—integral complex C‘(K) = (Z/27Z[K], 9, ¢), is described as follows:

(a) The elements of the graded vector space Z/2Z[ K ] are finite linear combinations
of cells of K;

(b) Thelinear map 9 : Z/27Z[ K] — 7./27Z[ K «_1], called differential operator, is the
canonical boundary operator of K (that is the linear map algebraically codifying
the boundary of each set of cells);

(c) The linear map ¢ : Z/27Z[K.] — Z/2Z[ K «+1], called homology integral opera-
for, is a (not unique) map specifying a strong relationship between the canonical
chain complex C(K) = (Z/27Z[ K], 0) associated to K and its homology.

The maps 0 and ¢ are nilpotent of degree two, that is, 30 = 0 and ¢¢p = 0.
Moreover, if they satisfy d¢pd = d and ¢pd¢ = ¢, the homology of K with regards to
the operator 9 is isomorphic to the homology of K with regards to ¢.

Classical homology algorithms (matrix reduction to Smith normal form [5], incre-
mental algorithm of Delfinado—Edelsbrunner [6], DMT [7], Effective Homology [8],
AT-model theory [9,10], etc.) can be used or adapted to obtain a homology integral
operator ¢. From now on, we refer to this problem of finding a homology integral
operator for a finite cell complex as homological optimality. Discrete Morse Theory
is a method in which the combinatorial nature of a homology integral operator is par-
tially handled in terms of gradient paths and discrete vector fields. The fundamental
result of this theory establishes that the cell complex X with an admissible (without
circuits) discrete vector field is homotopy equivalent (in consequence, isomorphic on
the level of homology) to a new complex A consisting of only the critical cells. The
main problem here consists of finding an admissible discrete vector field as complete
as possible, that is, covering the maximum number of cells of the complex. This is a
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high computationally complex problem [11] that will be referred here as combinator-
ial optimality. On the other hand, the global combinatorial structure that underlies in
some homology integral operators has recently been discovered under the umbrella of
the Homological Spanning Forest (HSF) theory [1,12,13].

The HSF theory generalizes to higher dimensions the labelling connected com-
ponents strategy using spanning trees. In fact, this kind of labelling process of high
dimensional homology classes is performed using directed subgraphs (in general, they
are not acyclic) on the connectivity graph of the cell complex. In [1], a homology-
based heuristic for finding near optimal discrete gradient vector fields based on iterated
Morse reductions is given.

In this paper, we propose a heuristics for combinatorial optimality based on the
construction of a homology integral operator directly on the connectivity graph of the
original cell complex.

The paper is organized as follows. In Sect. 2, the process of cellularization and
an introduction on how to represent homological information (that related to homol-
ogy generators and their relations between them) of digital objects using HSFs are
explained. In Sect. 3, relations between combinatorial and homological optimality
are presented. Section 4 focusses on the formal definition of HSFs. An algorithm for
constructing HSFs is given in Sect. 5. Preliminary results on combinatorial optimality
are drawn in Sect. 6. Section 7 is devoted to conclusions.

2 Cellularization and Homological information of digital objects
2.1 Cellularization

The cellularization technique presented in [14] is used here to obtain a cell complex (in
fact, a polyhedral complex) of a given digital object. A formal definition of cell com-
plexes can be seen in [15]. Given a cell complex embedded in R", each g-dimensional
cell o has as geometric boundary d (o) that is a set of i-cells for i < g. The i-boundary
of o is the set of i-cells within its geometric boundary.

The connectivity graph of a cell complex K is the graph G(K) where the nodes
represent the cells of the complex, and the edges represent the incidence relation
among the cells. We can also define the (i, i 4+ 1)-connectivity graph (i = 0,1, ...)
G@+D(K), which is the subgraph of G (K) induced by the nodes representing the
i-cells and the (i + 1)-cells. An example is shown in Fig. 1 where the boundary of
the 2-cell A is the set {1,2,3,4,a,b,c,d}. Its 0O-boundary is {1, 2, 3,4} and its 1-
boundary is {a, b, ¢, d}. If K is a convex cell complex (that is, K is formed by convex
cells), a geometric realization of the graph G(K) using as nodes the barycentres of
the different cells can be comfortably established.

Given a digital object O represented by the set of black n-xels in a n-dimensional
matrix with O and 1 values and a local adjacency relation between n-xels, the cellular-
ization technique we use here is based on the idea that each element is a O-cell of the
cell complex K" (O). For n = 2 and considering the 4-adjacency for black pixels, this
cellularization corresponds to a cubical cell complex KZ(O) (see Fig. 2). The same
occurs for n = 3 and considering the 6-adjacency between voxels.
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Fig. 1 a A cell complex K with
four O-cells (/, 2, 3, 4), four
1-cells (a, b, c, d) and one 2-cell
(A). b The connectivity graph
G(K)

Fig. 2 a A two-dimensional

digital object O and b its 5

associated cell complex K 3 (0)
(superimposed)
(a) (b)
Digital volume V

| A A

‘} Il | f/l

L e

(a) (b)

Fig. 3 a Points in red are voxels and the construction of KS6(O) is gradually done for each 2 x 2 x 2

square of voxels within the image. b Three dimensional digital object O and a zoom of a part of K%’6(0)
(color figure online)

For n = 3 and considering the 26-adjacency for black voxels, 3-dimensional cells
are formed by at most eight voxels mutually 26-adjacent. The dimension of a concrete
cell will strongly depend on the geometric notion of point coplanarity in the euclidean

space R3. For example, four voxels mutually 26-adjacent can form a tetrahedron or a
two-dimensional square.

The cellularization process consists of dividing the object into overlapped entities.
For n = 3, these entities are unit cubes formed by eight voxels mutually 26-adjacent
(see Fig. 3). For n = 2, they are squares formed by four voxels. With overlapped, we
mean that its intersection is a “square” of four voxels mutually 26-adjacent for n = 3,
and an edge of two voxels for n = 2. The complex is scanned taking one entity per
step, and obtaining its corresponding cell configuration. All the possible patterns for
each voxel configuration within an entity have been previously computed and stored
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into a look-up table (23 possible configurations within the unit cube, plus rotations).
These patterns are computed in such a way, that when the configuration of each entity
is glued together with its neighbouring entities to conform the cell complex of the
entire object, intersections between simplexes are avoided.

2.2 Homological information

Given a cell complex, if we want to talk about homology, we first need to specify
an “arithmetic”, that is a field or a ring. In this paper, we work with coefficients in
the field Z/2Z = {0, 1}. We need to bring to algebra the notion of cell complex K.
This can be done by defining the canonical chain complex (C(K), d,) where 9; is the
canonical i-boundary map 9; : C;(K) — C;—1(K),i = 1,2, .... This boundary map
satisfies 9;0;+1 = 0, that is, the boundary of the boundary is zero.

We can now define the homology groups of a chain complex of the type (C(K), dx)
(with differential map d, not necessarily being the canonical one). An i-chain c (that
is, a linear combination of i-cells) is a cycle if d;j(c) = 0. Any linear combination
of O-cells is, by definition, a 0-cycle, that is, do(c) = 0 for every O-cell 0. The ¢'"
homology group of the chain complex C(K) is H,(K) = Ker d; /Im dy+1,Yqg > 0.1In
the three dimensional context, the Betti numbers are the ranks of the homology groups,
and they are usually seen as the number of “different” holes of each dimension.

For example, the homology groups of the cell complex in Fig. 1 are all null excepting
Hy, which is Ker dy/Im di = 7Z/27. This result means that the complex has Betti
numbers By = 1 (one connected component) and 1 = 0 (no holes).

Following the AT-model theory [9,10], we can derive homological information
by determining a linear map (called homology integral operator) ¢, : Cyx(K) —
Cy+1(K). The time complexity for computing a homology integral operator is O (m°>)
being m the number of cells. Now, from a canonical chain complex (C(K), d,) asso-
ciated to a finite cell complex K, also endowed with an additional homology integral
operator ¢, : C(K) — Cy4+1(K), it is easy to deduce homological information. In
particular, the set of homologically different i-cycles is classified through the set of
critical chains of the kind (1 + 9;+1¢; + ¢i—10;)(0) = 0 + (9j+1¢;i + ¢pi—10i)(0), V
i-cello,Vi=0,...,n.

In general, a homology integral operator is, computationally speaking, an algebraic
artefact that holds too much redundancy. First steps towards the simplification of this
operator are taken in [1], where HSFs are introduced. More precisely, HSF is a special
set of direct graphs on the connectivity graph G(K), that generalizes the notion of
V-path in DMT [7]. Obtaining a homology integral operator starting from an HSF
is, in general, an easy task. The reciprocal result of getting an HSF structure (non
necessarily on G(K)) from a homology integral operator seems to be impossible
in some occasions. The concept of HSF will be introduced in Sect. 4. Given a cell
complex, an algorithm for constructing an HSF is presented in Sect. 5.

An example of HSF can be seen in Fig. 4 where the directed edges of the O—1 HSF
are coloured in red (from O-cells to 1-cells) and orange (from 1-cells to O-cells). The
(1-2)-HSF is drawn in yellow. There is only one directed edge from the 1-cell {a, c}
to the 2-cell. The associated integral homology operator ¢ : Cx(K) — Cyy1(K) is
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Fig. 4 An HSF structure for the
two-dimensional cell complex in
Fig. 1

{c.d}

defined by ¢o(a) = {a, b} +{b, d} + {c, d}, ¢o(b) = {b, d} + {c.d}, po(d) = {c. d},
do(c) =0, p1({a, c}) = A, p1(0) = 0, for o # {a, ¢} and ¢ (A) = 0. We can see
that this operator satisfies the three conditions of the homology integral operator, and
the set of representative cycles of homology generators reduces to the cell ¢ for Hp.

3 Combinatorial and homological optimality

There exist a wide variety of perspectives from which homological information has
been treated in the literature. Besides the classical view of homology as an algebraic-
topological invariant, there are two other views that are of interest to this work:

(a) Homology as a representational tool for cell complexes (see, for example, [8—
10,13]).

(b) Homology can be seen as a homotopical reduction of a cell complex to its minimal
homological expression in terms of critical cells [16].

In DMT [7], the main homotopy operations in this reduction process are simplicial
collapses. A simplicial collapse is graphically represented as a vector between an i -cell
and an (i 4 1)-cell. Combinatorial notions like V-paths and discrete gradient vector
fields are used as an attempt to control the homology—homotopy reduction process.
Having a complete control of this process is not possible without taking more complex
homotopy operations into consideration. Results of the kind “contractibility does not
imply collapsibility” [17] support this thesis. These complex homotopy operations are
geometric realizations of elementary algebraic operations appearing in the construc-
tion of a homology integral operator and they can be expressed in graphical terms
by elementary directed graphs. Some preliminary efforts to clarify this aspect have
been the introduction of the chain—integral complex algebraic notion in [1] and the
Homological Spanning Forest concept in [12,13].

Within the context of DMT, having combinatorial optimality for a finite cell complex
K means that a discrete gradient vector field for K having the least number of critical
cells in each dimension can be constructed. That means to have an acyclic matching
between pairs of incident cells, where the number of unpaired cells is the least possible.
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By homological optimality we mean here to construct an algebraic homology integral
operator for the canonical chain complex (C.(K), d5) in the sense of the AT-model
theory.

Finding combinatorial optimality is a complex problem [11,18] and, in general,
the suitable question to be solved consists of determining the degree of combinatorial
near-optimality of K. On the other hand, homological optimality can be solved in
general in O (m3) (being m the number of cells in K) but in most of the cases dealing
with this problem, geometrical and combinatorial tools are not jointly used.

The idea presented here consists of expressing homological optimality using exclu-
sively directed subgraphs on the connectivity graph G(K) of the cell complex K. In
this way, we obtain a directed subgraph of G(K), having exactly §; (corresponding
with the Betti numbers) critical nodes (with no arrow coming out from them) in each
dimension. This scaffolding will be our searching space for finding combinatorial
near-optimality.

In[1], arecursive technique for constructing nested Morse complexes using directed
trees and chain—integral complexes is designed. A homology integral operator ¢ is
finally derived from that technique. Although the initial directed tree is forced to follow
directed graphs on the connectivity graph, the final graph “describing” a homology
integral operator obtained in [1] is not in general a subgraph of G(K) and, conse-
quently, it is not appropriate for efficiently searching combinatorial near-optimality.

Our goal in this paper is to design an algorithm that corrects this flaw by using
graph-search algorithms on G(K).

4 Defining optimal homological scaffoldings

We present an algorithm whose input is a finite cell complex K, and outputs ahomology
integral operator ¢, : Cy(K) — Cu41(K). As we have already commented, this
integral operator can be deduced from a hierarchical set of directed graphs on the
connectivity graph G(K), called HSF of K. Let us suppose that the dimension of K
is | K| = k and that K is a cell complex such that any two (i + 1)-cells share only one
i-cell Vi > 0. This kind of cell complex has been exhaustively used for describing
digital images in topological terms.

Let us give a review of the main notions related to directed graphs. A directed graph
G = (V, E) is defined by a set of nodes and a set of (ordered) pairs of nodes (called
directed edges, arcs or arrows). If (u, v) is an arc, u is the tail and v is the head. A
direct path within the connectivity graph G (K') from one cell o to another 7 is denoted
by 0 — t. Let be G a directed subgraph on the connectivity graph G(K) and o one
of its nodes, we call the directed subgraph generated by o (and we denote it by G (o))
the subgraph induced by the nodes t which have a (directed) path o — 7 from o to
7. In particular, if ¢ is an i-cell node and t is an (i + 1)-cell node, then the directed
path 0 — t runs in an alternating manner over i-cell nodes and (i 4+ 1)-cell nodes.

Now, we are able to define a MSF (Morse homological spanning forest) structure.

Definition 1 A MSF M for a finite cell complex K satisfies the following conditions:

(a) M is a directed graph.
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(b) As non-directed graph, M is a subgraph of the connectivity graph G (K).

(c) Any (weakly) connected component of M has as nodes cells of dimension i and
(i + 1) and it is called an (i, + 1)-MSF subgraph of M, fori = 0,1,...,k.
Exceptionally, this subgraph can be formed by only one i-cell. The directed edges
(o, ) from an i-cell o to an (i + 1)-cell T in M are called integral arrows. The
rest of the arrows from an (i + 1)-cell to an i-cell are called differential arrows.

(d) Any cell of K must belong exactly to one (i, i + 1)-MSF subgraph of M.

Let us note the asymmetry in the definition of the following two algebraic maps
associated to a MSF structure.

Definition 2 Given a MSF M for a finite cell complex K, the associated differential
operator d(M)y : C(K) — Cy_1(K) (resp. the associated combinatorial integral
operator Y (M), : C.(K) — Cyy1(K) ) is a linear map decreasing the dimension
by one (resp. increasing the dimension by one). For any (i, i + 1)-MSF subgraph 7
of M, let {01, 02, ..., 0.} be the set of i-cell nodes of 7 and let {zy, ..., 7y} be the
set of its i + 1-cell nodes, then:

d(M) (o)) = 0; (resp. Y (M)(o)) = Zb,-,,-r,»)
i=1
d(M)(tj) = D _ajioi; (resp. ¥ (M)(z)) = 0)

i=1

where a;; is 1if (oy, 7;) is an integral arrow or (7}, 0;) is a differential arrow (resp.
bj;is 1if (o}, ;) is an integral arrow) of M and 0 elsewhere.

An algebraic operator on C, (K) can be associated to an acyclic MSF M (in which
all the (i, i 4+ 1)-MSF subgraphs are directed graphs without directed cycles).

Definition 3 Given an acyclic MSF M for a finite cell complex K, the associated
HSF-integral operator ¢p(M), : C(K) — Cyy1(K) is a linear map increasing the
dimension by one and defined as follows. For any (i, i 4+ 1)-MSF subgraph H of M,
let {01, 02, ...,0,} be its i-cell nodes and let {7y, ..., 74} be its (i + 1)-cell nodes.
Then:

p(M) (o)) = D bjin
k
PM)(1)) =0

where b i is the sum of the number of directed paths in G(K) from o to any (i + 1)-
cell y¢ of K, having all the arrows from M possibly excepting some differential arrows
that have not yj as tail.

It is immediate to prove that the integral operator ¢ (M) associated to a MSF M is
2-nilpotent, that is, it satisfies ¢ (M)441¢ (M), = 0. On the other hand, the graded
set Cr (M) of critical nodes of M is formed by those cells which are not the tail of an
integral arrow of M. A critical cell ¢ satisfy that ¢ (M)(c) = 0. In order to promote
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an acyclic MSF M for K to an HSF directed graph for K, some additional algebraic
conditions relative to its associated integral operators must be satisfied.

Definition 4 ([1]) An HSF directed graph H for a finite cell complex K of dimension
k is an acyclic MSF structure such that its associated integral operator ¢ () satisfies
the following conditions:

1. SDR-condition of M with regards to the boundary differential 9: ¢ (H); 0;+1¢ (H);
(o) =¢(H)i(0),Vi-cello,Vi=0,1,...,k—1;

2. Homology condition of M with regard to 9: 9;¢p(H);—109;(¢) = 9; (o), Vi-cell o,
Vi=1,...,k.

The HSF acronyms, coming from Homological Spanning Forest, is due to the
fact that these directed graphs (in general, they are not forests) generalize to higher
dimension the role of the spanning forest notion for labelling connected components.
Informally speaking, an HSF directed graph structure is a topological and geometrical
(coordinated-based) gadget which is mainly used here as a tool that facilitates the
computation of the associated integral operator satisfying the three previous mentioned
conditions. In fact, an HSF can be seen as a kind of compressed combinatorial coding
of its associated integral operator. In principle, this notion heavily depends on the ring
of coefficients we work with.

There are two kind of critical cells for a given HSF H. Given a (i,i + 1) MSF
subgraph of H, a critical cell T of dimension (i+1) is called (homologically) inessential
and a critical cell o of dimension i is called essential. If H is simply a MSF structure,
then 7 is the head of an integral arrow and o is the head of all the edges incident to it
(differential arrows).

One algebraic integral operator can have associated two different HSFs. For
instance, if we add to an HSF structure A all the differential arrows of the kind
(t, 0), being o any essential critical i-cell of a (i, i + 1) MSF subgraph of H and 7 a
(i + 1)-cell belonging to the same subgraph, then the resulting MSF structure is again
an HSF, denoted by H, endowed with the same integral operator ¢ (H).

Let us note than when we talk about MSFs or HSFs of a digital object O, we
mean MSFs or HSFs of its associated cellularization K (O). Given an HSF ‘H with
its associated homology integral operator ¢ (), the cycles given by the formula o +
dp(H)(o) + ¢(H)d(o) (where o runs over all the cells of K), are representative
cycles of the homology generators of K. The same set of representative cycles can be
calculated if we restrict o to the smaller set Cr(M).

In order to compute numerical or algebraic information related to homology gener-
ators and their relations between them at both homology and cycle levels, the impor-
tance of the notion of homology integral operator is great. In order to use this tool for
progressing in computing advanced topological invariants, a successful homological
algebra framework provided by integral-chain complexes is proposed in [12].

4.1 More examples of HSF

We give here some simple examples of the previously introduced concepts.
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Fig. 5 A cell complex and a subgraph of its connectivity graph

a {a.b} b
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Fig. 6 A MSF graph and an HSF

In Fig. 5 (left) a cell complex K formed by two 2-cells (a square abcd and a triangle
bced), eight 1-cells and six O-cells is presented. On the right side, superimposed on K,
we show a subgraph of G(K) in which only edges connecting cells which differ in
one dimension are drawn.

In Fig. 6 (left) we show a MSF directed graph H which is an HSF for the cell
complex K of Fig. 5. There is one (0—1)-MSF subgraph having only one critical cell
(the O-cell ¢) and one (1-2)-MSF subgraph having only one critical cell (the 1-cell
{b, d}). Let us note that the gradient vector field specified by the integral arrows of
this HSF is already optimal.

In Fig. 6 (right) the HSF-structure H is drawn. The only difference with regards to
the previous MSF is the green arrow from the square 2-cell A to the edge {b, d}. The
number of critical cells is also two. Using the homology integral operator associated
to this HSF we can determine the representative path ¢ = {b, c, e, f,d, b} of the
homology generator associated to the critical cell {b, d}. In fact, c is the 1-cycle
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Fig.7 A non-optimal DGVF

14+ ¢d({b, d}), where ¢ is the homology integral operator associated to the previous
HSF. It can be noted that the number of optimal DGVFs that can be determined from
H is three and from H is four.

Let us consider now the example shown in Fig. 7 where an HSF is shown. We can
now try to obtain combinatorial optimality from the previous HSF by taking a maximal
subset of pairwise disjoints arrows. A non-optimal DGVF is given by:

(a) the red integral arrows at level 0—1;
(b) at level 1-2 the set of yellow integral arrows, excluding ({b, d}, A), ({b, d}, F)
and ({a, b}, E).

This last set is shown in Fig. 7 where the level 1-2 set is coloured in green.
Combinatorial optimality is obtained by choosing the DGVF within the HSF (in
green) in Fig. 8.

5 Constructing HSFs from MSFs

The cell complexes (K, d) we consider here are cellularizations of nD digital objects.
Let us start determining a concrete kind of MSF, from which we progress for getting
an HSF structure.

Definition 5 A non-directed tree 7 on the connectivity graph G(K) is called a col-
lapsible (i, i + 1) tree (c-tree for short) if it exclusively involves i-cells and (i + 1)-cells
and satisfies that every leaf of 7 is an i-cell. A maximal non-directed (i,i + 1) c-tree
T isa (i,i + 1) c-tree containing the maximal number of (i + 1)-cell nodes such that
all their boundary i-cells nodes belong to 7.
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Fig. 8 An optimal GVF

e ©h

Let us recall that the number of (i 4+ 1)-cells in the c-tree 7 sharing an i-cell in 7°
with any other (i 4 1)-cell node is at most two. In other words, the valence of a i-cell
node is at most two.

A (i,i + 1) c-tree 7 can be converted into a (non-unique) special directed acyclic
graph (DAG, for short) with the minimum number (at least one) of essential critical
i-cells and such that its associated integral operator ¢ (7") satisfies both the SDR and
homology conditions with regards to its associated differential operator d (7). This is
called a Morse directed (i, i + 1) c-tree associated to T . An constructive way to create
such a directed tree is the following. We first set a root in 7 by selecting an i-cell u.
For any (i + 1)-cell 7 of the 2k-level (k = 1, ...), we choose one incident i-cell o
of the (2k + 1)-level and then stablish the integral arrow (o, t). Finally, differential
arrows are set for the rest of the edges of 7. In DMT terms, the constructed DAG,
denoted 7, is collapsible to a set of i-cells including p.

Definition 6 A MSF M for a finite cell complex K of dimension k such that any
(weakly) connected (7, i + 1)-MSF subgraph is a Morse directed (i, i + 1) c-tree (resp.
a Morse directed maximal (i, i + 1) c-tree) is called a c-MSF (resp., a m-MSF).

We construct an example of c-MSF structure in the following way. If any directed
(i,i+ 1) tree D of a MSF M is of the form D = 7, being 7 a non-directed (i, i + 1)
c-tree (resp. maximal non-directed c-tree), then M is a c-MSF (resp. a m-MSF).

In any directed (i, i + 1) tree D of a c-MSF M, every (i + 1)-cell node is the head
of one integral arrow and every i-cell is the tail of at most one integral arrow of M.

Let us note that the construction of m-MSF strongly depends on the particular

order we choose for listing the set of cells of the complex. Any m-MSF M of K is an
hierarchical DAG which at (0, 1) level is generated by a spanning forest of its O-cells.
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All the edges in the connectivity graph G (K) which do not belong to a m-MSF M
are edges either connecting a (i, i + 1) m-MSF tree with itself, with a (i — 1, i) m-MSF
treeora (i +1,i +2) m-MSF tree (i = 1, ...,k — 2). The associated differential
operator d(M) : Cx(K) — Cy_1(K) (see Definition 2) is zero for all the i-cells of a
(i, i + 1) m-MSF tree. The associated integral operator ¢ (M), : Cx(K) — Cyy1(K)
(see Definition 3) is zero for all the (i + 1)-cells of a (i, i + 1) m-MSF tree. It satisfies
the SDR condition both with regards to d (M) (see Definition 2) and to §, the canonical
boundary map 9 of K restricted to the set of (i + 1)-cells (delta is supposed to be zero
over the i-cells) of the directed (i,i + 1) m-MSF trees of M. It also satisfies the
homology condition with regards to d (M).

Finally, starting from a m-MSF M for the cell complex K, it is possible to define
another MSF structure with additional homology-related properties using the same
underlying set of c-trees of M.

Definition 7 A m-MSF DAG structure whose associated integral operator ¢ (M) sat-
isfies the homology condition with regards to the differential operator § : C(K) —
C.—1(K) is called homotopy m-MSF or h-MSF for short.

Let us show now a method for constructing an h-MSF from a m-MSF M. From
any Morse directed (i, i 4+ 1) c-tree M ; ;11) of M having r (r > 1) essential critical
i-cells, we construct another Morse directed c-tree in the following way. For each
(i + 1)-cell T of M; ;+1) and for each i-cell o of the combinatorial boundary of
7 such that the edge {o, T} does not belong to M ; ;+1), the idea is simply that o
becomes an essential critical cell in the current step of the loop. Taking into account
that we handle with a c-tree, there always must be at least one directed path o — y,
being y an essential critical i-cell in the current stage. A new path y — o reversing
the arrows (differential arrows become integral and viceversa) of the previous path is
constructed and o turns into a critical cell in the resulting Morse directed (i, + 1)
c-tree at this step. At the end of this algorithmic process we always achieve a h-MSF,
no matter the order in which we process the set of cells in the nested loop.

Let us consider a finite cell complex K of dimension k. There are several graph-
based strategies that can be used to construct spanning trees for finding connected
components: depth-first search, breadth-first-search, greedy algorithms, etc. We can
use them using any order for the set of cells of K in order to determine the underlying
hierarchical set of non-directed trees of a h-MSF over G (K).

We are interested here in designing an algorithm for computing an HSF structure
over a finite cell complex K starting from a h-MSF structure. We use one of the pre-
vious specialized spanning tree techniques for achieving the preprocessing step of
constructing a h-MSF M = {M,(CI’IH)},',/{. Due to the fact that M is a h-MSF, let
us recall that the associated integral operator ¢ (M) satisfies the 2-nilpotency condi-
tion and the SDR and homology conditions with regards to d (M) and the canonical
boundary operator 9 restricted to the set of (i + 1)-cells (applied over an i-cell is zero)
of each (i, i + 1) h-MSF tree of M.

The main idea consists of “perturbing” the differential operator d (M) in order to
reach a new chain complex (C.(K), d)) endowed with an HSF structure.

The boundary operator of the cell complex K can be split into three summands
0 =d(M) +d*(M) + d°(M), in the following form:
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— the map d“(M) : G(K) — G(K) is defined for a given node o of a connected
(i, i+ 1)-MSF subgraph /\/l,(f’iH) as the sum of summands of 9 +d (M) belonging
to MUY

— the map d“(M) : G(K) — G(K) is defined as d(M) = 9 + d(M) + d*(M).
For a node o of an (i,i + 1)-MSF subgraph M; ;11, d°(M)(0) is the linear
combination of the summands of d + d (M) which does not belong to M,((i’iJ’l).

The following equalities hold:

@ (I =dM)p(M)d*(M)(1 —p(M)d(M))(t) =0, for every (i + 1)-cell T of
a(i,i +1) c-tree of M.

b) A —dM)p(M)d (M)A — dp(M)d(M))(t) = 0, for every (i + 1)-cell T of
a(i,i + 1) c-tree of M.

(¢) Givenani-cello ofa (i, i+1)-MSF subgraph of M, then (1—d (M)¢ (M))d (M)
(1 — p(M)d(M))(o) is a linear combination of (i — 1)-cells belonging to a
(i —1,i) c-tree of M.

The map 1 : Cx(K) — C4(K) is the identity map. The first two equalities are due
to the fact that (1 — ¢ (M)d(M))(t) = 0. The last one is due to the fact that M is a
h-MSF.

An acyclic HSF ‘H f is gradually constructed from i = 1 to k, as follows. Let
us suppose that we have constructed H up to dimension i — 1. Let o be an i-cell
of an (i, i 4+ 1)-MSF subgraph of H. Since d(M)(c) = 0 and d*(M) (o) = 0, then
(o) =d(M)(0).Ifd°(M)(o) # 0, then the expression (1—d (H)¢p (H))d(M)(o)
is a linear combination Z; w;j of critical (i — 1)-cells i ; belonging toa (i — 1, i)-MSF
tree.

Two cases can arise:

— The previous linear combination is not zero. Let us choose one of the (i — 1)-cells
w: and reverse one directed patho — u; = {o = y0, 00, ..., ¥p, 0p = u;} created
with this algebraic map. The new acyclic MSF ‘H has the same directed edges than
M excepting those involved in the path o — u;, which are now the directed edges
of the path u; — o. Now, the differential arrows are {(o1, 6p), ..., (¥p,0p—1)} and
the integral arrows are {(6y, o), (61, ¥1), ..., (0p, ¥p)}. We also eliminate from the
old HSF structure the differential and integral arrows connecting o to the neighbour
cells belonging to its (i, i + 1)-MSF tree.

- If (1 —dM)p(M))d“(M)(o) = 0, then o becomes a critical cell for the new
HSF and, in case there is one, the integral arrow (o, t) of the old HSF structure
connecting o with the neighbour (i + 1)-cell T within its connected (i, i + 1)-MSF
subgraph is replaced by the differential arrow (t, o) in the new HSF.

Finally, for a (i + 1)-cell within a (i, i + 1)-MSF tree, there are no changes in H.

It is straightforward to prove that the MSF structure H generated in this way satisfies
the three conditions for being an HSF for K.

The process for computing a Z/27Z-HSFs of a k-dimensional cell complex K start-
ing from a h-MSF structure is presented in Algorithm 1. The output of this algorithm
is a HSF structure H = (V (H), E(H)). We gradually (increasingly in dimension) go
over all the i-cells of the complex Vi > 2, changing in each step the MSF structure.
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Algorithm 1 HSF computation from h-MSF

Require: A h-MSF M = (V(M), E(M)), the boundary operators 9, d(M), d* (M) and d°(M) and
the integral operator ¢ (M), previously defined.
H:=M
fori =2tokdo
for all i-cell o do
if o belongs to a connected (i, i + 1)-MSF subgraph of M then
if (1 —d(H)¢(H)d (H)(1 — ¢(H)d(H))(0) == O then
E(H) = (E(H) 4+ {(r,o}) \ {(o, 1)}, if there is an (i 4 1)-cell T such that (o, 7) is an integral
arrow of H
else
E;,uj =1 —=d(H)¢(H))d(H)(1 — ¢ (H)d(H) (o) where j are critical cells of H
Let us choose a non-null y; (1 > ¢ > r) and reverse the directed path over H o — u; = {o; =
70,00, - - -, Yp,Op = ur}.
E(H) = (E(H) + {(60, 0), (01, 60), - - -, p, 0p—1): (ur, yp)I\(o, 60), (B0, v1), - - -, Op—1,

Yp)s (Vp. i}
E(H) = (E(H) \ {(o, 7) or (r,0) / being T a neighbor cell of o in a MSF-subgraph
end if
end if
end for

end for

5.1 Sketch of the proof for the algorithm correctness

At zero and one dimension, the spanning forest of the MSF at that level automatically
specifies in a natural way that the integral operator ¢ (H) : C.(K) — C.(K) is a
homology integral operator with regards d. In higher dimension, the three conditions
needed for being H an HSF-structure can be easily verified, due to the fact that the
integral operator ¢ (H) associated to H is equal to ¢ (M) + (1 + d)(/\/l)d(/\/l))q;(l +
d(M)$p(M)), where ¢(i1;) = o, being o an i-cell within a (i, i + 1)-MSF subgraph
of M (i =1,...,k—1)and u, defined as previously in this section, and d(y) =0
for the rest of cases.

The construction of such a special HSF for a 2D digital object O (and its corre-
sponding cellularization) is shown in Fig. 9. The object O is formed by the set of
black (in fact, grey) square pixels. It is obvious that the cell complex K (O) using 8-
adjacency between black pixels has one connected component (one connected (0, 1)
HSF tree) and four “independent” 1-dimensional holes (specified in this case by four
different (1, 2) HSF trees, each of one with only one essential critical 1-cell (marked
with yellow thick stroke).

6 Constructing a near-optimal DGVF from an HSF

We can now state the following result concerning near-optimal dgvfs:

By the process of the HSF construction, there is at most one integral arrow coming
out from a cell of the cell complex. Let us also note that combinatorial optimality is not
always guaranteed. Examples showing the HSF for the Bing’s house and one layer
of a trabecular bone micro-CT image are shown in Figs. 10 and 11. Figure 10 shows
the initial cell complex of the Bing’s house, and the integral operator for dimensions
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Fig. 9 A 2D example

Fig. 10 Bing house

Algorithm 2 dvf computation

Given a h-MSF M and the canonical boundary operator d on Cx (K ), we have constructed an HSF sructure
‘H. In general, a non-necessarily optimal dgvf is determined by the set of integral arrows of the h-MSF. The
optimal discrete (non-necessarily gradient) vector field we use in our heuristics is derived from H. Given a
connected directed MSF subgraph of H, we simply take as vectors of this dvf all the integral arrows of it.

(0-1) and (1-2). Figure 11 shows the integral operator for dimensions (0-1) and (1-2)
and a zoom on a concrete part of the trabecular bone layer.

7 Conclusions

To find a non-redundant global representation of a cell complex by successfully com-
bining combinatorics and algebra is an important step forward that could provide posi-
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Fig. 11 Trabecular bone

tive answers to several important topological interrogations. The graph-based structure
of a Homological Spanning Forest (or HSF, for short) can be thought as an effort to
provide a global “skeletal” picture of the cell complex, gluing the connections between
cells in a dynamical way.

We propose a refined method based on a direct extraction of the HSF information
from the connectivity graph of the cell complex. In order to better understanding,
visualizing and checking the accuracy of this heuristic, we place ourselves in the
discrete context of digital volumes using coefficients in Z/2Z. Experimental research
is done using an HSF software specially designed for this task.

As future work we intend to fathom the analysis capabilities of the HSF notion for
the combinatorial optimality problem, working in the applied settings of 3D and 4D
digital imagery. It is precisely in fourth dimension, when homology information with
integer coefficients explodes in complexity, that is when torsion appears. To adjust the
HSF tool to this framework will be a priority in this research.
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