Skip to main content
Log in

Cohomological learning of periodic motion

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

This work develops a novel framework which can automatically detect, parameterize and interpolate periodic motion patterns obtained from a motion capture sequence. Using our framework, periodic motions such as walking and running gaits or any motion sequence with periodic structure such as cleaning, dancing etc. can be detected automatically and without manual marking of the period start and end points. Our approach constructs an intrinsic parameterization of the motion and is computationally fast. Using this parameterization, we are able generate prototypical periodic motions. Additionally, we are able to interpolate between various motions, yielding a rich class of ‘mixed’ periodic actions. Our approach is based on ideas from applied algebraic topology. In particular, we apply a novel persistent cohomology based method for the first time in a graphics application which enables us to recover circular coordinates of motions. We also develop a suitable notion of homotopy which can be used to interpolate between periodic motion patterns. Our framework is directly applicable to the construction of walk cycles for animating character motions with motion graphs or state machine driven animation engines and processed our examples at an average speed of 11.78 frames per second

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Our contributions are also outlined in a video summary, accessible at http://www.youtube.com/watch?v=NGQ-M2gdibQ.

  2. Recall that our human motion input data lies in a 62 dimensional configuration space \(\mathcal {C}\).

References

  1. CMU Graphics Lab: CMU graphics lab motion capture database. http://mocap.cs.cmu.edu/ (2012). Accessed Nov 2012

  2. Muico, U., Lee, Y., Popović, J., Popović, Z.: Contact-aware nonlinear control of dynamic characters. In: SIGGRAPH, pp. 81:1–81:9 (2009)

  3. Yin, K., Coros, S., Beaudoin, P., van de Panne, M.: Continuation methods for adapting simulated skills. In: SIGGRAPH, pp. 81:1–81:7 (2008)

  4. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57, 469–483 (2009)

    Article  Google Scholar 

  5. Unity Technologies (2013) Unity 4. Commercial Software

  6. Witkin, A., Kass, M.: Spacetime constraints. In: SIGGRAPH, pp. 159–168 (1988)

  7. Rose, C., Guenter, B., Bodenheimer, B., Cohen, M.F.: Efficient generation of motion transitions using spacetime constraints. In: SIGGRAPH, pp. 147–154 (1996)

  8. Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22, 417–426 (2003)

    Article  Google Scholar 

  9. Liu, C.K., Hertzmann, A., Popović, Z.: Composition of complex optimal multi-character motions. In: SCA ’06, pp. 215–222 (2006)

  10. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: SIGGRAPH, pp. 473–482 (2002)

  11. Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Graph. 21, 483–490 (2002)

    Article  MATH  Google Scholar 

  12. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. In: SIGGRAPH, pp. 559–568 (2004)

  13. Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs. ACM Trans. Graph. 26 (2007)

  14. Guo, S., Robergé, J.: A high-level control mechanism for human locomotion based on parametric frame space interpolation. In: Proceedings of the Eurographics Workshop on Computer Animation and Simulation ’96, pp. 95–107 (1996)

  15. Wiley, D.J., Hahn, J.K.: Interpolation synthesis for articulated figure motion. In: VRAIS ’97 (1997)

  16. Beaudoin, P., Coros, S., van de Panne, M., Poulin, P.: Motion-motif graphs. In: SCA ’08, pp. 117–126 (2008)

  17. Gleicher, M., Shin, H.J., Kovar, L., Jepsen, A.: Snap-together motion: assembling run-time animations. In: SIGGRAPH, pp. 52:1–52:9 (2008)

  18. Pullen, K., Bregler, C.: Animating by multi-level sampling. In: Computer Animation, pp. 36–42 (2000)

  19. Mukai, T.: Motion rings for interactive gait synthesis. In: I3D ’11, pp. 125–132 (2011)

  20. Peternel, M., Leonardis, A.: Visual learning and recognition of a probabilistic spatio-temporal model of cyclic human locomotion. In: ICPR, vol. 4, pp. 146–149 (2004)

  21. Lamar-Len, J., Garca-Reyes, E., Gonzalez-Diaz, R.: Human gait identification using persistent homology. Prog. Pattern Recognit. Image Anal. Comput. Vision Appl. 7441, 244–251 (2012)

    Article  Google Scholar 

  22. Vasudevan, R., Ames, A., Bajcsy, R.: Persistent homology for automatic determination of human-data based cost of bipedal walking. Nonlinear Anal. Hybrid Syst. 7(1), 101–115 (2013). (IFAC World Congress 2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Takens, F.: Detecting strange attractors in turbulence. Dyn. Syst. Turbul. Warwick 1980, 366–381 (1981)

    Google Scholar 

  24. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  25. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS Press, New York (2009)

    Google Scholar 

  26. Morozov, D., de Silva, V., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete Comput. Geom. 45(4), 737–759 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Morozov, D.: Dionysus. http://www.mrzv.org/software/dionysus/ (2011). Accessed Nov 2012

  28. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python. http://www.scipy.org/ (2001)

  29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MATH  MathSciNet  Google Scholar 

  30. de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Symposium on Point-Based Graphics (2004)

  31. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29, 551–559 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  32. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. In: Proceedings of the VVS, pp. 75–82 (1992)

  33. Barbic, J., Zhao, Y.: mocapPlayer. http://graphics.cs.cmu.edu/software/mocapPlayer.zip (2012). Accessed Nov 2012

  34. Autodesk (2013) Maya. Commercial software

  35. Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput. 51(184), 699–706 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  36. Craig, J.: Introduction to Robotics: Mechanics and Control. Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

  37. Lee, J., Chai, J., Reitsma, P.S., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. (TOG) 21, 491–500 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Vejdemo-Johansson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vejdemo-Johansson, M., Pokorny, F.T., Skraba, P. et al. Cohomological learning of periodic motion. AAECC 26, 5–26 (2015). https://doi.org/10.1007/s00200-015-0251-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-015-0251-x

Keywords

Navigation