Skip to main content
Log in

On the zeta Mahler measure function of the Jacobian determinant, condition numbers and the height of the generic discriminant

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In Cassaigne and Maillot (J Number Theory 83:226–255, 2000) and, later on, in Akatsuka (J Number Theory 129:2713–2734, 2009) the authors introduced zeta Mahler measure functions for multivariate polynomials [Cassaigne and Maillot (J Number Theory 83:226–255, 2000) called them “zeta Igusa” functions, but we follow here the terminology of Akatsuka (J Number Theory 129:2713–2734, 2009)]. We generalize this notion by defining a zeta Mahler measure function \({\mathcal {Z}}_X(\cdot ,f):{\mathbb {C}}\longrightarrow {\mathbb {C}}\), where X is a compact probability space and \(f:X\longrightarrow {\mathbb {C}}\) is a function bounded almost everywhere in X. We give sufficient conditions that imply that this function is holomorphic in certain domains. Zeta Mahler measure functions contains big amounts of information about the expected behavior of f on X. This generalization is motivated by the study of several quantities related to numerical methods that solve systems of multivariate polynomial equations. We study the functions \({\mathcal {Z}}(\cdot ,{1}/{\Vert \cdot \Vert _\mathrm{aff}})\), \({\mathcal {Z}}(\cdot ,{1}/{\mu _\mathrm{norm}})\) and \({\mathcal {Z}}(\cdot ,\mathrm JAC)\), respectively associated to the norm of the affine zeros (\(\Vert \cdot \Vert _\mathrm{aff}\)), the non-linear condition number (\(\mu _\mathrm{norm}\)) and the Jacobian determinant (JAC) of complete intersection zero-dimensional projective varieties. We find the exact value of these functions in terms of Gamma functions and we also describe their respective domains of holomorphy in \({\mathbb {C}}\). With the exact value of these zeta functions we can immediately prove and exhibit expectations of some average properties of zero-dimensional algebraic varieties. For instance, the exact knowledge of \({\mathcal {Z}}(\cdot ,{1}/{\Vert \cdot \Vert _\mathrm{aff}})\) yields as a consequence that the expectation of the mean of the logarithm of the norms of the affine zeros of a random system of polynomial equations is one half of the nth harmonic number \(H_n\). Other conclusions are exhibited along the manuscript. Using these generalized zeta functions we exhibit the exact value of the arithmetic height of the hyper-surface known as the discriminant variety (roughly speaking the variety formed by all systems of equations having a singular zero).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akatsuka, H.: Zeta Mahler measures. J. Number Theory 129, 2713–2734 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anfinsen, S.N., Doulgeris, A.P., Eltoft, T.: Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 47, 3795–3809 (2009)

    Article  Google Scholar 

  3. Beltrán, C., Pardo, L.M.: On the probability distribution of singular varieties of given co-rank. J. Symb. Comput. 42, 4–29 (2007)

    Article  MATH  Google Scholar 

  4. Beltrán, C., Pardo, L.M.: Estimates on the distribution of the condition number of singular matrices. Found. Comput. Math. 7, 87–134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beltrán, C., Pardo, L.M.: On Smale’s 17th problem: a probabilistic positive solution. Found. Comput. Math. 8, 1–43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beltrán, C., Pardo, L.M.: Smale’s 17th problem: average polynomial time to compute affine and projective solutions. J. Am. Math. Soc. 22, 363–385 (2009)

    Article  MATH  Google Scholar 

  7. Beltrán, C., Pardo, L.M.: Fast linear homotopy to find approximate zeros of polynomial systems. Found. Comput. Math. 11, 95–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernšteǐn, I.N., Gel’fand, S.I.: Meormorphy of the function \(P^\lambda \). Funktional. Anal. i Priložen 3, 84–85 (1969)

    Google Scholar 

  9. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998)

    Book  MATH  Google Scholar 

  10. Borwein, J.M., Straub, A.: Log-sine evaluations of Mahler measures. J. Aust. Math. Soc. 92, 15–36 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borwein, J.M., Straub, A., Wan, J., Zudilin, W.: Densities of short uniform random walks. With an appendix by Don Zagier. Can. J. Math. 64, 961–990 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bost, J.B., Gillet, H., Soulé, C.: Heights of projective varieties and positive Green forms. J. Am. Math. Soc. 7, 903–1027 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bürgisser, P., Cucker, F.: On a problem posed by Steve Smale. Ann. Math. 174, 1785–1836 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bürgisser, P., Cucker, F.: Condition: The Geometry of Numerical Algorithms, Die Grundlehren der mathematischen Wissenschaften, Band 349. Springer, Berlin (2013)

  15. Busé, L., Jouanolou, J.P.: On the discriminant scheme of homogeneous polynomials. Math. Comput. Sci. 8, 175–234 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cassaigne, J., Maillot, V.: Hauteur des hypersurfaces et fonctions Zêta d’Igusa. J. Number Theory 83, 226–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Castro, D., Montaña, J.L., San Martín, J., Pardo, L.M.: The distribution of condition numbers of rational data of bounded bit length. Found. Comput. Math. 2, 1–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Castro, D., Giusti, M., Heintz, J., Matera, G., Pardo, L.M.: The hardness of polynomial equation solving. Found. Comput. Math. 3, 347–420 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cattani, E., Dickenstein, A.: Introduction to residues and resultants. In: Dickenstein, A., Emiris, I.Z. (eds.) Solving Polynomial Equations: Foundations, Algorithms, and Applications, Algorithms and Comput. Math. 14, pp. 1–61. Springer, Berlin (2005)

    Chapter  Google Scholar 

  20. Cuesta-Albertos, J.A., Wschebor, M.: Some remarks on the condition number of a real random square matrix. J. Complex. 19, 548–554 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. D’Andrea, C., Krick, T., Sombra, M.: Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze. Ann. Sci. de l’École Norm. Sup. 46, 549–627 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Dickenstein, A., Emiris, I.Z. (eds.): Solving Polynomial Equations: Foundations, Algorithms, and Applications, Algorithms and Computation in Mathematics 14. Springer, Berlin (2005)

  23. Dedieu, J.P.: Points fixes, zéros et la méthode de Newton. Springer, Berlin (2006)

    Google Scholar 

  24. Demazure, M.: Résultant, discriminant. L’ Enseignement Mathématique 58, 333–373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Einsiedler, M.: A generalization of Mahler measure and its application in algebraic dynamical systems. Acta Arith. LXXXVIII.1, 15–29 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Everest, G., Ward, T.: Height of Polynomials and Entropy in Algebraic Dynamics. Springer, NY (1999)

    Book  MATH  Google Scholar 

  27. Faltings, G.: Diophatine approximation on Abelian varieties. Ann. Math. 133, 549–576 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer-Verlag New York Inc., New York (1969)

    Google Scholar 

  29. Fernández, M., Pardo, L.M.: An arithmetic Poisson formula for the multi-variate resultant. J. Complex. 29, 323–350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gelfand, I.M., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants and Multi-dimensional Determinants, Modern Birkhäuser Classics. Springer, Berlin (2008)

    MATH  Google Scholar 

  31. Goodman, N.R.: Statistical analysis based on certain multi-variate complex Gaussian distribution (an introduction). Ann. Math. Stat. 34, 152–177 (1963)

    Article  MATH  Google Scholar 

  32. Goodman, N.R.: The distribution of the determinant of a complex Wishart distributed matrix. Ann. Math. Stat. 34, 178–180 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  33. Graczyk, P., Letac, G., Massam, H.: The complex Wishart distribution and the symmetric group. Ann. Stat. 31, 287–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Howard, R.: Analysis on Homogeneous Spaces, Class Notes Spring. Royal Institute of Technology, Stockholm (1994)

    Google Scholar 

  35. Ibarra, O.H., Moran, S.: Probabilistic algorithms for deciding equivalence of straight-line programs. J. Assoc. Comput. Mach. 30, 217–228 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jouanolou, J.P.: Formes d’inertie et résultant: un formulaire. Adv. Math. 126, 119–250 (1997)

    Article  MathSciNet  Google Scholar 

  37. Ji, S., Kollar, J., Shiffman, B.: A global Łojasiewicz inequality for algebraic varieties. Trans. Am. Math. Soc. 329, 813–818 (1992)

    MathSciNet  MATH  Google Scholar 

  38. Krick, T., Pardo, L.M.: A computational method for Diophantine approximation, In: Algorithms in Algebraic Geometry and Applications (Santander, 1994), Progr. Math., vol. 143, Birkhäuser, Basel, pp. 193–253 (1996)

  39. Krick, T., Pardo, L.M., Sombra, M.: Sharp estimates for the arithmetic Nullstellensatz. Duke Math. J. 109, 521–598 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kurokawa, N., Lalín, M., Ochiai, H.: Higher Mahler measures and zeta functions. Acta Arith. 153, 269–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lelong, P.: Mesure de Mahler et calcul des constantes universelles pour les polynômes de N variables. Math. Ann. 299, 673–695 (1994)

    Article  MathSciNet  Google Scholar 

  42. Lind, D., Schmidt, K., Ward, T.: Mahler measure and entropy for commuting automorphisms of compact groups. Invent. Math. 101, 593–629 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mattner, L.: Complex differentiation under the integral. Nieuw Arch voor Wiskunde 5/2, s 32–s 35 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    Book  MATH  Google Scholar 

  45. Nagar, D.K., Gupta, A.K.: Expectations of functions of complex Wishart matrix. Acta Appl. Math. 113, 265–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Philippon, P.: Critères pour l’indépendance algébrique. Inst. Hautes Études Sci. Publ. Math. 64, 5–52 (1986)

    Article  MathSciNet  Google Scholar 

  47. Philippon, P.: Sur des hauteurs alternatives I. Math. Ann. 289, 255–283 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. Philippon, P.: Sur des hauteurs alternatives II. Ann. Inst. Fourier (Grenoble) 44, 1043–1065 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. Philippon, P.: Sur des hauteurs alternatives III. J. Math. Pures Appl. 74, 345–365 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Rémond, G.: Élimination multihomogène, Chapter 5 of “Introduction to algebraic independence theory”, Lecture Notes in Math. 1752, pp. 53–81. Springer, Berlin (2001)

  51. Rémond, G.: Géométrie diophantienne multiprojective, Chapter 7 of “Introduction to algebraic independence theory”, Lecture Notes in Math. 1752, pp. 95–131. Springer, Berlin (2001)

  52. Schmidt, K.: Dynamical Systems of Algebraic Origin, Modern Birkhäuser Classics. Springer, Berlin (1995)

    Book  Google Scholar 

  53. Srivastava, M.S.: On the complex Wishart distribution. Ann. Math. Stat. 36, 313–315 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shub, M., Smale, S.: Complexity of Bezout’s theorem I: geometric aspects. J. Am. Math. Soc. 6, 450–501 (1993)

    MathSciNet  MATH  Google Scholar 

  55. Shub, M., Smale, S.: Complexity of Bezout’s theorem II: volumes and probabilities. Computational algebraic geometry (Nice, 1992). Progr. Math. 109, Birkhäuser Boston, Boston, MA, pp. 267–285 (1993)

  56. Shub, M., Smale, S.: Complexity of Bezout’s theorem III: condition number and packing. J. Complex. 9(1), 4–14 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  57. Shub, M., Smale, S.: Complexity of Bezout’s theorem IV. Probability of success; extensions. SIAM J. Numer. Anal. 33, 128–148 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  58. Shub, M., Smale, S.: Complexity of Bezout’s theorem V. Polynomial time. Theor. Comput. Sci. 133, 141–164 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  59. Shub, M.: Complexity of Bézout’s theorem VI. Geodesics in the condition (number) metric. Found. Comput. Math. 9, 171–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Smale, S.: Mathematical Problems for the Next Century, Mathematics: Frontiers and Perspectives. Amer. Math. Soc., Providence, RI (2000)

    MATH  Google Scholar 

  61. Tao, T.: Topics in random matrix theory. In: Graduate Studies in Mahtematics 132. American Mathematical Society (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Pardo.

Additional information

Luis M. Pardo: Research was partially supported by Spanish Ministry of Science Grant MTM2014-55262-P.

Mario Pardo: Research was partially supported by Spanish Ministry of Science Grant MTM2014-55262-P and the Program of Pre-doctoral Grants of the University of Cantabria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardo, L.M., Pardo, M. On the zeta Mahler measure function of the Jacobian determinant, condition numbers and the height of the generic discriminant. AAECC 27, 303–358 (2016). https://doi.org/10.1007/s00200-016-0284-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-016-0284-9

Keywords

Navigation