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Abstract In this paper, we study first the relationship between Pommaret
bases and Hilbert series. Given a finite Pommaret basis, we derive new explicit
formulas for the Hilbert series and for the degree of the ideal generated by it
which exhibit more clearly the influence of each generator. Then we establish
a new dimension depending Bézout bound for the degree and use it to obtain
a dimension depending bound for the ideal membership problem.
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1 Introduction

Gröbner bases, introduced by Bruno Buchberger in his PhD thesis (see [10,
11]), have become a powerful tool for constructive problems in polynomial
ideal theory and related domains. It is well-known that they allow us to de-
sign algorithms for computing important invariants like dimension, degree and
Hilbert function. However, the bases themselves are largely independent of the

Bentolhoda Binaei
Department of Mathematical Sciences, Isfahan University of Technology
Isfahan, 84156-83111, Iran
E-mail: H.Binaei@math.iut.ac.ir

Amir Hashemi
Department of Mathematical Sciences, Isfahan University of Technology
Isfahan, 84156-83111, Iran;
E-mail: Amir.Hashemi@cc.iut.ac.ir

Werner M. Seiler
Institut für Mathematik, Universität Kassel
Heinrich-Plett-Straße 40, 34132 Kassel, Germany
E-mail: Seiler@mathematik.uni-kassel.de

http://arxiv.org/abs/1809.10964v1


2 Binaei et al.

values of these invariants. This is in marked contrast to Pommaret bases which
reflect many combinatorial and homological properties of the ideals they gen-
erate. They are not only of computational interest by providing easy access to
many invariants relevant for algebraic geometry, but also allow for alternative
constructive proofs of many theoretical results and thus lead to a much closer
intertwining of computation and theory than ordinary Gröbner bases.

Pommaret bases are a particular form of involutive bases which in turn
represent a special kind of Gröbner bases with additional combinatorial prop-
erties. Involutive bases combine ideas of the Janet-Riquier theory of partial
differential equations with Gröbner bases. Zharkov and Blinkov [51] intro-
duced Pommaret bases as involutive polynomial bases into commutative alge-
bra. Later, Gerdt, Blinkov, Zharkov, and others developed a general theory of
involutive bases [20]. The terminology Pommaret bases is historically incor-
rect, as they appear already in the work of Janet (see e. g. [27, pp. 30–31]);
however, the name has become standard by now. For a general survey on in-
volutive bases with special emphasis on Pommaret bases see e. g. [44,45,46]
(the last reference also contains some historical notes).

In the sequel, we will apply some of the above mentioned results to effective
algebraic geometry. Bézout’s theorem may be considered as a generalization of
the fundamental theorem of algebra. Let f1, . . . , fn−1 ∈ P = k[x1, . . . , xn] be a
sequence of homogeneous polynomials. If the system f1 = · · · = fn−1 = 0 has
a finite number of projective solutions (i. e. the dimension as projective variety
is zero), then the number of solutions, counted with multiplicities, is at most
∏n−1

i=1 deg(fi), see [31, page 174]. One can consider higher-dimensional exten-
sions of this result using the degree of an ideal. If the ideal I is generated by
k homogeneous polynomials of degrees d1 ≥ · · · ≥ dk, then deg (I) ≤ d1 · · · dµ
with µ = min{k, n}, see e. g. [8, Lem. 3], [24, Thm. 1] or [43, Lem. 2.95]. We
will refer to this upper bound as Bézout’s bound.

In this article, we are mainly concerned with two related topics. Firstly,
we will express the degree of an ideal in terms of the degrees and classes
of the elements of its Pommaret basis. As a by-product, we will provide a
new proof for the rationality of the Hilbert series and an explicit formula for
its numerator. Secondly, we will derive the new dimension depending Bézout
bound d1 · · · dn−D whereD = dim(I) for the degree of I. Masser andWüstholz
[36, Thm. II] proposed the upper bound dn−D

1 (see also [3, Prop. 3.5] and
[8]). However, our bound is sharper and our proof is more elementary. While
the bound itself is independent of Pommaret bases, our proof relies crucially
on special properties available only in quasi stable position, i. e. the generic
position characterized by the existence of a finite Pommaret basis.

The article is organized as follows. In the next section, we review the basic
definitions and notations which will be used throughout. Section 3 investi-
gates the relationship between Pommaret bases and Hilbert series. In the last
section, we derive our dimension depending Bézout bound and bound for the
ideal membership problem, respectively.
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2 Preliminaries

We first introduce basic notations and preliminaries needed in the subsequent
sections. Throughout P = k[x1, . . . , xn] will be the polynomial ring over an
infinite field k. We consider always homogeneous polynomials f1, . . . , fk ∈ P
and the ideal I = 〈f1, . . . , fk〉 generated by them. We assume that each fi
is non-zero and denote its total degree by di. We sort the fi so that d1 ≥
d2 ≥ · · · ≥ dk and we set d = d1. Furthermore, the dimension of I, denoted
by D = dim(I), is the Krull dimension1 of the corresponding factor ring
R = P/I. It is trivial that k ≥ n − D. If f ∈ P , the equivalence class of f
w.r.t. the congruence relation modulo I is an element of R and is denoted by
[f ]. Finally, we work throughout with the degree reverse lexicographic term
order with xn ≺ · · · ≺ x1.

The leading term of a polynomial 0 6= f ∈ P , denoted by LT(f), is the
greatest term appearing in f and its coefficient is the leading coefficient, de-
noted by LC(f); the leading monomial is the product LM(f) = LC(f)LT(f).
The leading ideal of I is the monomial ideal LT(I) = 〈LT(f) | 0 6= f ∈ I〉.
A finite subset {g1, . . . , gm} ⊂ I is called a Gröbner basis of I for ≺, if
LT(I) = 〈LT(G)〉 = 〈LT(g) | g ∈ G〉. We refer to [4,12] for more details
on Gröbner bases. We will denote by deg(I,≺) the maximal degree of the
elements of the reduced Gröbner basis of I with respect to ≺ (see [33,34,21]).

For a positive integer s, we denote by Rs the set of elements of the factor
ring R of degree s. Then the Hilbert function of I is defined by HFI(t) =
dim

k

(Rt) where dim
k

denotes the dimension as a k-vector space. From a
certain degree on, this function of t is equal to a (unique) polynomial in t,
called Hilbert polynomial, and denoted by HPI . The Hilbert regularity of I is

hilb(I) = min{m | ∀t ≥ m, HFI(t) = HPI(t)} .

We have the identity dim(I) = deg(HPI)+1, see [12, Thm. 12, page 464] and
by Macaulay’s theorem HFI = HFLT(I).

The Hilbert series of I is the power series HSI(t) =
∑∞

s=0 HFI(s)t
s. This

series can be expressed as a quotient HSI(t) = N(t)/(1−t)D with a polynomial
N ∈ Q[t] satisfying N(1) 6= 0 (see [18, Thm. 7, page 130] or [50]). In the next
section, we will provide a new proof of this fact using Pommaret bases.

Definition 2.1 ([22, page 52]) If D > 0, then the degree of I, denoted by
deg(I),2 is (D − 1)! times the leading coefficient of the Hilbert polynomial of
I. If D = 0, then deg(I) is defined to be the sum of the coefficients of HSI(t).

Remark 2.2 By [31, page 173], we have deg(I) = N(1) and in consequence
since I and LT(I) share the same Hilbert function, deg(I) = deg(LT(I)). We

1 Note that the Krull dimension corresponds to the dimension as affine and not as projec-
tive variety, although we work exclusively with homogeneous ideals. We stick with the affine
picture to facilitate comparison with other results which are also based on the dimension as
affine variety.

2 Please note that despite the similarity in notation deg (I) and deg (I,≺) refer to very
different objects!
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also need the following auxiliary results on the degree of an ideal from [8]. Let
Q be a p-primary ideal. We say that Q has length ℓ, if there exists a chain

Q = Q1 ⊂ · · · ⊂ Qℓ = p

of primary ideals Q1, . . . , Qℓ, but no longer chain of this form. Let r be the
least positive integer a such that pa ⊂ Q. With these notations, we find that
r ≤ ℓ and deg(Q) = ℓ deg(p), cf. [8, page 282]. Furthermore, the degree of I is
equal to the sum of the degrees of its primary components of dimension D.

Let m = 〈x1, . . . , xn〉 be the unique homogeneous maximal ideal of P . The
ideal Isat = I : m∞ is called the saturation of I. The satiety of I, denoted by
sat(I), is the smallest positive integer m such that Iℓ = Isat

ℓ for all ℓ ≥ m. It
is always a finite number [1, Rem. 1.3]. As a trivial consequence, I and Isat

possess the same Hilbert polynomial and thus in particular the same degree.
By [1, Lem. 1.6], Isat = I : y∞ for a generic linear form y.

Definition 2.3 The ideal I is m-regular, if its ith syzygy module can be
generated by elements of degree at most m + i. The Castelnuovo-Mumford
regularity reg(I) is the smallest m such that I is m-regular.

For more details on the regularity, we refer to [1,5]. The polynomials
f1, . . . , fk ∈ P form an I-regular sequence for an ideal I, if they generate a
proper ideal in P and if [fj ] is a non zero divisor in the ring P/〈I, f1, . . . , fj−1〉
for j = 1, . . . , k. We simply speak of a regular sequence, if I = 0. The depth of
I, denoted by depth(I) is the maximal length of an I-regular sequence.

Given a polynomial f ∈ P with LT(f) = xα where α = (α1, . . . , αn), the
class of f is the integer cls(f) = max {i | αi 6= 0}. Then the multiplicative
variables of f are XP (f) = {xcls(f), . . . , xn}.3 The term xβ is a Pommaret

divisor of xα, written xβ |P xα, if xβ | xα and xα−β ∈ k[XP (x
β)].

Definition 2.4 Let H ⊂ I be a finite set such that no leading term of an
element of H is a Pommaret divisor of the leading term of another element.
Then H is a Pommaret basis of I, if

⊕

h∈H

k[XP (h)] · LT(h) = LT(I) .

If an ideal I has a Pommaret basis H, then reg(I) equals the maximal
degree of an element of H and depth(I) is given by n minus the maximal class
of an element of H. Furthermore Isat = I : x∞

n and the satiety is the maximal
degree of an element of class n in H. We refer the reader to [44,45] and [46,
Chap. 3-5] for a thorough introduction into the theory of Pommaret bases.

It follows immediately from the definition that any Pommaret basis is a
(generally non-reduced) Gröbner basis. The main difference between Gröbner

3 We follow here the conventions of [20]. In [45], a convention is used which corresponds
to reverting the order of the variables x1, . . . , xn. This implies e. g. that the class is defined
as the minimum and not the maximum. Thus care must be taken when transferring results
of [45] to the conventions used in this article.
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and Pommaret bases lies in the fact that any polynomial f ∈ I has a unique
involutive standard representation, i. e. a standard representation where all
coefficients depend only on the multiplicative variables of the respective gen-
erator, by the following direct sum decomposition as graded k-linear spaces:

⊕

h∈H

k[XP (h)] · h = I . (1)

It furthermore allows to read off immediately the volume function of I

VFI(t) = dim
k

(It) =
∑

h∈H

[deg (h) ≤ t]

(

t− deg (h) + |XP (h)| − 1

t− deg(h)

)

(2)

where [·] denotes the Kronecker-Iverson symbol which yields 1, if the condition
in the bracket is satisfied, and 0 otherwise. Obviously, the volume function is
closely related to the Hilbert function: HFI = VFP − VFI . Thus we obtain
without any further computation the Hilbert function from a Pommaret basis.
The same is true of the Hilbert polynomial: the volume polynomial VPI is
given by the same expression as VFI with only the Kronecker-Iverson symbol
omitted and then HPI = VPP −VPI .

While this observation allows for an easy computation of both Hilbert
function and polynomial for any concrete ideal possessing a Pommaret basis,
it is not satisfying from a theoretical point of view. Via (1) we have only easy
access to the volume function; the dependence of properties of the Hilbert
function and related invariants like the degree on properties of the Pommaret
basis is more difficult to assess. Therefore, we will exhibit this relationship in
more detail in the next section.4

Unfortunately, Pommaret bases do not always exist. However, this is only
a question of the used variables: since we assume that k is an infinite field,
any ideal possesses a Pommaret basis after a generic linear change of variables
[45]. More precisely, we meet here the combinatorial notion of quasi-stability.5

Definition 2.5 A monomial ideal J is called quasi stable, if for any term
m ∈ J and all integers i, j, s with 1 ≤ j < i ≤ n and s > 0, if xs

i | m there
exists an integer t ≥ 0 such that xt

jm/xs
i ∈ J . The polynomial ideal I is in

quasi stable position if LT(I) is quasi stable.

Proposition 2.6 ([45]) A monomial ideal J has a Pommaret basis, if and
only if it is quasi stable. A polynomial ideal I has a Pommaret basis, if and
only if it is in quasi stable position.

4 In [45,46] also complementary decompositions, i. e. direct sum decompositions of the
complement of LT(I) are discussed and it is shown that any Pommaret basis induces one.
Then one can write down an explicit formula for HFI with a similar structure as (2). How-
ever, this only transforms the problem into understanding the precise relationship between
the complementary decomposition and the Pommaret basis. While this is relatively simple
with regard to, say, dim(I) and depth(I) (see the corresponding results in [45,46]), the
situation becomes non-trivial for deg(I).

5 Quasi stable ideals are also known by many other names like weakly stable ideals, ideals
of nested type or ideals of Borel type.
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Remark 2.7 It is trivial to see that all the objects studied in this work like
the Hilbert function or the regularity remain invariant under linear changes of
coordinates. Hence we may in the sequel always assume that we are in quasi
stable position and thus that I has a Pommaret basis H.

In the sequel, we will use the following notations: given an ideal I in quasi
stable position, we write H = {h1, . . . , hs} for its Pommaret basis. Further-
more, for each i we set mi = LT(hi), ci = deg(mi) and ni = n− |XP (mi)|, the
number of non-multiplicative variables of mi. By definition, XP (hi) = XP (mi)
and hence {m1, . . . ,ms} forms a Pommaret basis for LT(I).

3 Pommaret Bases and Hilbert Series

We now study the relationship between the Pommaret basis H of a polynomial
ideal I and certain invariants of I related to its Hilbert series. Our main results
are new formulae expressing deg (I) and the coefficients of the numerator N
of the Hilbert series in terms of the degrees ci and the numbers ni of non-
multiplicative variables of the elements hi of H. As a by-product, we provide
new proofs of some classical results like the following one.

Theorem 3.1 The Hilbert series can be written as a rational function of the
form HSI(t) = N(t)/(1− t)D with a polynomial N ∈ Z[t] satisfying N(1) 6= 0.

Proof By Rem. 2.7, we may assume that I is in quasi stable position. It is
easy to see that the Taylor coefficient of order q of the function 1/(1− t)n and
the number of terms of degree q in n variables coincide and thus the Hilbert
series of the full polynomial ring is given by 1/(1 − t)n. It then follows from
(2) and the subsequent discussion that

HSI(t) =
1

(1− t)n
−

s
∑

i=1

tdeg(mi)

(1 − t)|XP (mi)|
=

1−∑s
i=1 (1− t)nitci

(1− t)n
. (3)

We number the generators hi such that m1, . . . ,mℓ ∈ k[x1, . . . , xn−D] and
mℓ+1, . . . ,ms /∈ k[x1, . . . , xn−D]. Since I is in quasi stable position, the set
B = {m1, . . . ,mℓ} contains pure powers of the variables x1, . . . , xn−D. Hence,
if we consider the contraction J = LT(I)∩P ′ with P ′ = k[x1, . . . , xn−D], then
B is its Pommaret basis which trivially implies that J is zero-dimensional. It
follows that the Hilbert series of J is a polynomial P (t) with P (1) 6= 0 and the
Hilbert series of the extension ideal J e = 〈J 〉P ⊂ P is given by P (t)/(1− t)D.

On the other hand, the Pommaret basis B induces the direct sum decom-
position J e =

⊕ℓ

i=1 k[XP (mi)] ·mi and hence

P (t)

(1− t)D
=

1−
∑ℓ

i=1 (1 − t)nitci

(1 − t)n
.
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Consequently, 1 − ∑ℓ
i=1 (1− t)nitci = (1 − t)n−DP (t). Our assumptions im-

ply that for i = ℓ + 1, . . . , s the term mi contains at least one of the vari-
ables xn−D+1, . . . , xn entailing that all the variables x1, . . . , xn−D are non-
multiplicative for it and thus ni ≥ n−D. It follows that the Hilbert series of
I can be expressed in the form

(1− t)n−DP (t)−
∑s

i=ℓ+1 (1− t)nitci

(1− t)n
=

P (t)−
∑s

i=ℓ+1 (1− t)ni−n+Dtci

(1 − t)D
.

Writing N(t) for the numerator of the quotient on the right hand side, we thus
obtain the rational form HSI(t) = N(t)/(1− t)D.

There only remains to show that N(1) 6= 0. For ni − n + D > 0 the
polynomial (1− t)ni−n+Dtci vanishes at t = 1. Thus it suffices to consider only
P (t) (a polynomial with non-negative integer coefficients) and the polynomials
−(1− t)ni−n+Dtci for those indices ℓ+1 ≤ i ≤ s with ni−n+D = 0 (which at
t = 1 yields −1). The condition ni − n+D = 0 corresponds to a leading term
of the form mi = xα1

1 · · ·xαn−D

n−D x
αn−D+1

n−D+1 with αn−D+1 6= 0. Since {m1, . . . ,ms}
forms a Pommaret basis, xα1

1 · · ·xαn−D

n−D /∈ J and therefore we can associate

the unique non-zero class [xα1

1 · · ·xαn−D

n−D ] in the quotient ring P ′/J to each mi

with ni − n + D = 0. Since dim(I) = D, there is no pure power of xn−D+1

contained in I and thus we cannot find any mi with ni − n + D = 0 which
would correspond to the class [1]. Therefore, the number of leading terms mi

with ni−n+D = 0 is strictly less than dim
k

(P ′/J ) = P (1) and N(1) 6= 0. ⊓⊔
Remark 3.2 The basic idea underlying the above proof, namely to use a direct
sum decomposition for obtaining information about invariants like the Hilbert
series is very old and goes back at least to Riquier [42] and Janet [28] (in the
context of partial differential equations). In fact, Janet gave already an explicit
formula for the Hilbert function in terms of what is nowadays called a Janet
basis. Within algebra, it was mainly Stanley [48] who exploited much later
the same idea. For this reason one often speaks of Stanley decompositions.
However, the special decompositions induced by Pommaret bases appeared
already considerably earlier in the work of Rees [41]. These decompositions
can also be used for the construction of resolutions, as Eliahou and Kervaire
[17] showed first for the special case of stable ideals where they could obtain
an explicit expression for the minimal resolution of the ideal. As a by-product,
they obtained this way via the Betti numbers (3) for this special case. Later it
was shown in [45] how their construction embeds into the theory of Pommaret
bases and how it can consequently be generalised to quasi-stable ideals and
(to some extent) to polynomial ideals in quasi-stable position. However, in
these more general situations one no longer obtains the minimal resolution
and hence only upper bounds for the Betti numbers. But as (3) is a simple
consequence of the direct sum decomposition induced by the Pommaret basis
independent of any explicit expression for the Betti numbers, it remains valid.

Based on the proof above, we can derive an upper bound for the degree
of the numerator N of the Hilbert series. Furthermore, we provide an explicit
formula for the coefficients of N in terms of the Pommaret basis H.
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Proposition 3.3 Let HSI(t) = N(t)/(1−t)D where N(t) = a0+a1t+· · ·+aℓt
ℓ

with aℓ 6= 0. If H is the Pommaret basis of I, then deg(N) = ℓ satisfies

ℓ ≤ max{deg(h)− |XP (h)|+D | h ∈ H}

and the coefficients ai are given by

ai =

(

n−D + i− 1

n−D − 1

)

−
∑

h∈H,deg(h)≤i,
|XP (h)|≤D

(−1)i−deg(h)

(

D − |XP (h)|
i− deg(h)

)

−
∑

h∈H,deg(h)≤i,

|XP (h)|>D

(|XP (h)| −D + i− deg(h)− 1

|XP (h)| −D − 1

)

.

(4)

Proof By the proof of Thm. 3.1, N(t)(1− t)n−D = 1−∑s
j=1 (1− t)nj tcj and

thus deg(N(t)) ≤ max{nj + cj | j = 1, . . . , s} − n + D which immediately
implies the bound for ℓ.

By the equality above,N(t) = (1−t)D−n−
∑s

j=1 (1− t)nj−n+Dtcj . Thus we
have expressed N as a sum of rational functions and now study the respective
Taylor series. The coefficient of ti in the series expansion of (1− t)D−n is equal
to the number of terms of degree i in n−D variables and hence to

(

n−D+i−1
n−D−1

)

,

the first term in (4). Now we must find the coefficient of ti in (1− t)nj−n+Dtcj .
Obviously, it vanishes for cj > i. For cj ≤ i two cases arise. If nj − n+D ≥ 0
(or equivalently |XP (h)| ≤ D), then, by binomial expansion, the coefficient of
ti is (−1)i−cj

(

nj−n+D
i−cj

)

which yields the second summand in (4). Otherwise,

the coefficient of ti is equal to the number of terms of degree i−cj in n−nj−D

variables and thus to
(

n−nj−D+i−cj−1
n−nj−D−1

)

leading to the last summand in (4). ⊓⊔

The above result leads to two simple corollaries relating the Hilbert regu-
larity with the parameters of the Pommaret basis and other invariants.

Corollary 3.4 If H is the Pommaret basis of I, then

hilb(I) ≤ max
{

0, deg(h)− |XP (h)|+ 1 | h ∈ H
}

.

Proof Write HSI(t) = N(t)/(1 − t)D with N(1) 6= 0. It is well-known that
hilb(I) = max{0, deg(N(t))−D+1}, see e. g. [9, Prop. 4.1.12]. Now Prop. 3.3
immediately entails the assertion. ⊓⊔

Corollary 3.5 Assume that the Pommaret basis H of I contains a generator
h ∈ H having simultaneously the maximal degree and the maximal class among
all elements of H. Then

(1) hilb(I) = max{0, deg(h)− |XP (h)|+ 1},
(2) deg(N(t)) = deg(h)− |XP (h)|+D,
(3) hilb(I) + depth(I) = max{depth(I), reg(I)}.
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Proof We may assume that h = hs. Since ns + cs ≥ ni + ci for all i, two first
equalities follow from the proofs of Prop. 3.3 and Cor. 3.4, respectively. By
[45, Prop. 3.19] we have depth(I) = |XP (hs)|−1 and reg(I) = deg(hs) by [45,
Thm. 9.2] which entails the last assertion. ⊓⊔

Remark 3.6 Mora [40, Thm. 38.1.1] claimed the equality reg(I) = hilb(I) +
depth(I) for arbitrary ideals. However, it does not even necessarily hold for
ideals in generic position6. As a concrete counterexample, we consider the
monomial ideal I = 〈x1x3, x1x2, x

2
1, x

3
2〉 ⊂ k[x1, x2, x3] which is a generic

initial ideal. Its generating set is already its Pommaret basis and therefore
reg(I) = 3. The only term of maximal class is not of maximal degree and
thus Cor. 3.5 cannot be invoked. , By [45, Prop. 3.19], depth(I) = 0. On the
other hand, HSI(t) = −(2t + 1)/(−1 + t) and therefore hilb(I) = 1. Thus
reg(I) > hilb(I) + depth(I). Finally, we note that in general the inequality
reg(I) ≥ hilb(I) + depth(I) does not hold. For example, consider the above
ideal in the ring k[x1, . . . , x7]. Then, reg(I) = 3, hilb(I) = 0 and depth(I) = 4.

Finally, we provide an explicit expression for the degree of an ideal in
terms of its Pommaret basis. Below, we denote by f (i) the ith derivative of
the function f .

Theorem 3.7 Let H be the Pommaret basis of I. Then

deg(I) =
∑

h∈H,
D≤|XP (h)|≤D+deg(h)

(−1)|XP (h)|−D+1

(

deg(h)

|XP (h)| −D

)

.

Proof We claim that

deg(I) = N(1) =
(−1)n−D

(n−D)!

(

N(t)(1− t)n−D
)(n−D)

|t=1 .

Indeed, by the general Leibniz rule we have

(

N(t)(1− t)n−D
)(n−D)

=
∑

k1+k2=n−D

(n−D)!

k1!k2!
N(t)(k1)

(

(1 − t)n−D
)(k2)

.

On the right hand side, all summands vanish at t = 1 except for k1 = 0 and
k2 = n−D which proves the claim.

By the proof of Thm. 3.1, N(t)(1 − t)n−D = 1 −∑s
i=1 (1− t)nitci . Thus

there only remains to determine the derivatives of the right hand side. Apply-
ing again the general Leibniz rule, we obtain

(

(1− t)nitci
)(n−D)

=
∑

k1+k2=n−D

(n−D)!

k1!k2!

(

(1− t)ni
)(k1)

(tci)(k2) .

6 By generic position, we mean after a linear change of variables from a Zariski open set,
see [1] for more details.
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At t = 1, all summands disappear except for k1 = ni ≤ n − D and k2 ≤ ci.
Such indices appear whenever ni + ci ≥ n − D and ni ≤ n − D. By simple
manipulations, one now obtains

(

(1− t)nitci
)(n−D)|t=1 = (−1)ni(n−D)!

(

ci
n−D − ni

)

which immediately yields the assertion. ⊓⊔

4 Dimension Depending Upper Bounds

We now exploit some of the results obtained in the last section to derive a
dimension depending upper bound for the degree of a homogeneous ideal.
Furthermore, as related subjects, we provide new dimension depending upper
bounds in the effective Nullstellensatz, in elimination theory and for the ideal
membership problem. Let us quickly recall the used notations. I ⊂ P is an
ideal generated by the homogeneous polynomials f1, . . . , fk. If I is in quasi
stable position, then we denote its Pommaret basis byH. We write di = deg(fi)
and assume that d1 ≥ · · · ≥ dk. If an index i > k appears, then we set di = 1.
Then the classical Bézout bound (see e. g. [24, Thm. 1], [8, Lem. 3] or [43,
Lem. 2.95]) asserts that deg(I) ≤ d1 · · · dµ with µ = min{k, n}. We will now
improve this bound using the dimension7 D = dim I.

Lemma 4.1 If the ideal I is in quasi stable position and H its Pommaret
basis, then for each i ≤ n the set H|xi=···=xn=0 is the Pommaret basis of the
ideal I|xi=···=xn=0 ⊆ k[x1, . . . , xi−1].

Proof Obviously, H|xn=0 ⊂ I|xn=0 and no leading term of an element of
H|xn=0 is a Pommaret divisor of the leading term of another element. It is well-
known that the reverse lexicographic term order implies that, if xn divides the
leading term of a polynomial, then it divides every term in the polynomial. It
follows immediately that I|xn=0 =

⊕

h∈H k[XP (h|xn=0)] · h|xn=0 and H|xn=0

is thus the Pommaret basis of I|xn=0. For i < n the claim is established using
a simple induction. ⊓⊔

Proposition 4.2 Suppose that the ideal I is in quasi stable position and of
dimension D > 0. Then deg(I) = deg(I|xn−D+2=···=xn=0).

Proof Let H be the Pommaret basis of I. It follows from Thm. 3.7 that gener-
ators with class greater than n−D+1 are not considered in the there provided
formula for deg (I). Together with Lem. 4.1, this observation implies that the
degrees of I and of I|xn−D+2=···=xn=0 are identical. ⊓⊔

7 Although we are dealing with a homogeneous ideal, we will always work with the di-
mension as affine variety.
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Example 4.3 Let I = 〈x2x3, x
2
1, x1x2x4, x

3
2, x1x

2
3x4, x1x

3
3, x

2
2x

2
4x5, x

3
4x

2
2〉 be an

ideal in P = k[x1, . . . , x5]. One can easily show that I is quasi stable and that
dim(I) = 3. By Prop. 4.2, deg(I) = deg(I|x4=x5=0) = 1, and this makes the
computation of the degree of I less expensive. We note that generally Prop. 4.2
becomes false, if we set further variables to zero. In our concrete example, one
easily checks that the Hilbert series of I|x3=x4=x5=0 is t3 + 2t2 + 2t + 1 and
therefore deg(I|x3=x4=x5=0) = 6 6= deg(I).

Corollary 4.4 If D > 0 then deg(I) ≤ d1 · · · dµ where µ = min{k, n−D+1}.

Proof By Rem. 2.7, we may assume that I is in quasi stable position. By
Prop. 4.2, the degrees of I and of I|xn−D+2=···=xn=0 are identical with the
latter ideal lying in the ring k[x1, . . . , xn−D+1]. Now the assertion follows by
Bézout’s bound. ⊓⊔

Theorem 4.5 (Dimension depending Bézout bound) If the ideal I has
dimension D, then deg(I) ≤ d1 · · · dn−D.

Proof For D = 0, this is just the classical Bézout bound. For D > 0, we
may assume that I is in quasi stable position by Rem. 2.7. By Prop. 4.2,
deg(I) = deg(J ) where J = I|xn−D+2=···=xn=0 ⊆ k[x1, . . . , xn−D+1] and it
suffices to prove the desired upper bound for the latter ideal. Since I is in quasi
stable position and D = dim(I), a pure power of each variable x1, . . . , xn−D

appears in LT(I) and no pure power of xn−D+1 belongs to LT(I) (this follows
e. g. from [45, Prop. 3.15]). Therefore, dim(J ) = 1.

J is a homogeneous ideal generated by the polynomials fi|xn−D+2=···=xn=0

with i = 1, . . . , k. Since I is in quasi stable position, J is in quasi stable
position, too, (Lem. 4.1) and therefore J sat = J : x∞

n−D+1 (see e.g. [45,
Prop. 10.1]) . This implies that the degree of J sat equals the number of pro-
jective solutions (with multiplicity) of the system associated to J sat (see e. g.
[33, Thm. 3.2]). Since the ideal J sat is saturated, this number equals the num-
ber of affine solutions (with multiplicity) of the system associated to the ideal
J with xn−D+1 = 1. Obviously, the ideal J |xn−D+1=1 is zero-dimensional and
generated by the polynomials fi|xn−D+1=1,xn−D+2=···=xn=0 with i = 1, . . . , k
(see [45, Prop. 10.1]). By Bézout’s theorem, the number of solutions is thus
bounded by d1 · · · dn−D and hence deg(J sat) ≤ d1 · · · dn−D. Our assertion now
follows from the fact that deg(J ) = deg(J sat). ⊓⊔

Remark 4.6 An alternative proof of Thm. 4.5 goes as follows. Suppose that
the ideal I is in quasi stable position. As we observed, for bounding deg(I), we
could only add the variables xn−D+2, . . . , xn into I and the main obstacle in
estimating deg(I) was the addition of xn−D+1 into I|xn−D+2=···=xn=0. Using
the notations in the proof above, we have deg(I) = deg(J ) = deg(J sat) and
J ⊂ k[x1, . . . , xn−D+1] is a one-dimensional ideal. If H′ = H|xn−D+2=···=xn=0

is the Pommaret basis of J , then we set H′
1 = {h ∈ H′ | cls(h) = n−D + 1}

and H̄′
1 = {h/x

degxn−D+1
(h)

n−D+1 | h ∈ H′
1} where degxn−D+1

(h) denotes the degree

of h in the variable xn−D+1. [45, Prop. 10.1] asserts that H′ \ H′
1 ∪ H̄1 is a
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(non reduced) Pommaret basis (and thus a Gröbner basis) of J sat. It follows
that xn−D+1 does not appear in LT(J sat) and therefore deg(J ) is equal to the
degree of J sat|xn−D+1=0 ⊂ k[x1, . . . , xn−D] which is a zero-dimensional ideal.
On the other hand, we know that the ideal K generated by the polynomi-
als fi|xn−D+1=xn−D+2=···=xn=0 with i = 1, . . . , k is zero-dimensional and K ⊂
J sat|xn−D+1=0. This yields that deg(J sat|xn−D+1=0) ≤ deg(K). So the desired
inequality follows from Bézout’s theorem. For example, the generating set of
the ideal I = 〈5x2

2+4x2x3+x2
3, 2x1x2+x1x3+2x2

2+x2x3, x
2
1+x1x2, x1x

2
3+x2x

2
3〉

in the polynomial ring k[x1, x2, x3] is already a Pommaret basis and dim(I) =
1. By the above argument, the set H′ = {5x2

2, 2x1x2+2x2
2, x

2
1 +x1x2, x1+x2}

is a Gröbner basis for Isat and this observation entails deg(I) = 2.

Remark 4.7 In general, this upper bound improves the upper bound dn−D
1 for

deg(I) due to Masser and Wüstholz [36, Thm. II], cf. [3, Prop. 3.5]. We also
note that Lazard [34, Prop. 1] presented (without any proof or reference) a
similar upper bound.

Example 4.8 Consider the homogeneous ideal

I = 〈x5x7 + x1x8, x6x7 + x1x9, x6x8 + x5x9, x5x2 + x1x3,

x6x2 + x1x4, x6x3 + x5x4, x8x2 + x7x3, x9x2 + x7x4, x9x3 + x8x4〉

in the polynomial ring k[x1, x2, x3, x4, x5, x6, x7, x8, x9] appearing in the work
of Eisenbud and Sturmfels [16]. We note that dim(I) = 3, deg(I) = 24 and
I is generated by 9 quadratic polynomials. The classical Bézout bound yields
the estimate deg(I) ≤ 29 = 512, while Thm. 4.5 says deg(I) ≤ 26 = 64.

Example 4.9 The so-called Mora-Lazard-Masser-Philippon-Kollár example [7]
shows that the degree bound of Thm. 4.5 is sharp. For any sequence of degrees
d1, . . . , dn−1, let I by the ideal generated by the set

A =
{

xd1

1 − x2x
d1−1
n , xd2

2 − x3x
d2−1
n , . . . , x

dn−2

n−2 − xn−1x
dn−2−1
n , x

dn−1

n−1

}

.

The first Buchberger criterion (see e. g. [12]) shows easily that A is the reduced

Gröbner basis of I. Therefore, LT(I) = 〈xd1

1 , . . . , x
dn−2

n−2 , x
dn−1

n−1 〉 entailing that
HSI(t) = (1− td1) · · · (1 − tdn−1)/(1− t)n and thus deg(I) = d1 · · · dn−1.

We finally discuss some new dimension depending upper bounds for the
effective Nullstellensatz, for elimination theory and for the ideal membership
problem. We first briefly review some known results related to the effective
Nullstellensatz that we will use in the rest of this section. For a sequence
d1 ≥ · · · ≥ dk of positive integers, let

N(d1, . . . , dk;n) =











∏k

i=1 di if n ≥ k ≥ 1

dk
∏n−1

i=1 di if k > n > 1

dk if n = 1.
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In an effective Nullstellensatz, one considers statements as follows. If a homo-
geneous polynomial f belongs to the radical of the ideal generated by the poly-
nomials fi, then there exists a positive integer e and polynomials g1, . . . , gk ∈ P
such that fe = g1f1 + · · · + gkfk with e ≤ N(d1, . . . , dk;n) and deg(gifi) ≤
deg(f)N(d1, . . . , dk;n). This result also holds for non-homogeneous polyno-
mials, if we replace the factor deg(f) by 1 + deg(f). The smallest integer e
such that for every polynomial f ∈

√
I we have fe ∈ I is called the Nœther

exponent of I and it is denoted by e(I).
Let X be a variety of dimension n and deg(X) its degree. Let f1, . . . , fk ∈

k[X ] be a sequence of polynomials so that di = deg(fi) with d1 ≥ · · · ≥ dk.
Then, the above assertion holds true for the fi’s if in the above upper bound
we replace N(d1, . . . , dk;n) by deg(X)N(d1, . . . , dk;n). Thus, Thm. 4.5 could
be useful for finding an upper bound for deg(X), if it is unknown. For further
details on this topic, we refer to e.g. [32,49,29].

We are now concerned with obtaining an upper bound for the Nœther
exponent e(I). For unmixed8 ideals, it has been shown that e(I) ≤ d1 · · · dn−D

cf. [8, Lem. 4]. However, this inequality does not hold in general.

Example 4.10 Consider the ideal9 I = 〈x4 + x3y, x3 + y3〉 ⊂ k[x, y]. We have
I = 〈x+y〉∩〈x3 , y3〉, dim(I) = 1 and d1 = 4. On the other hand, we note that
x+ y ∈

√
I however (x+ y)4 /∈ I and (x+ y)5 ∈ I. Therefore, e ≥ 5 6≤ d1 = 4.

In characteristic zero, we now provide a refinement of this bound for all
one-dimensional ideals using the next theorem due to Lazard [34, Thm. 2].

Theorem 4.11 Let the ideal I be in generic position and assume that D ≤ 1.
Then deg (I,≺) ≤ d1 + · · ·+ dr − r + 1 where r = n− depth(I).

Proposition 4.12 Let I be an ideal of dimension D = 1 over a field of char-
acteristic zero. Then e(I) ≤ max {d1 · · · dn−1, d1 + · · ·+ dr − r + 1} where
r = n− depth(I).

Proof W.l.o.g. we may assume that I is in generic position. Since D = 1 and
I is homogeneous, a primary decomposition I = Q1∩· · ·∩Qs∩Q exists where
each Qi is a pi-primary component of I of dimension 1 and Q is m-primary.
Let ℓi be the length of Qi. By Rem. 2.2, deg(I) =

∑s

i=1 ℓi deg(pi). We note

that
√
I = p1∩· · ·∩ps. For any polynomial f ∈ p1∩· · ·∩ps, one has f

deg(I) ∈
Q1∩· · ·∩Qs (cf. Rem. 2.2). On the other hand, one easily sees that any f ∈ m

satisfies f sat(I) ∈ Q. Hence we find e(I) ≤ max{deg(I), sat(I)}. Now the
assertion follows from Thm. 4.11 and the fact that in generic (more precisely,
in stable) position sat(I) ≤ reg(I) = deg(I,≺) (see e. g. [46, Thms. 5.5.7 and
5.5.15, Prop. 5.5.28]). ⊓⊔

Example 4.13 We consider again the ideal of Example 4.10. There depth(I) =
0 and by Prop. 4.12 we get e(I) = 5 ≤ max {4, 4 + 3− 2 + 1} = 6.

8 An ideal is called unmixed if all its associated prime ideals have the same dimension.
9 This example has been provided by David Masser (private communication).
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Remark 4.14 The restriction to characteristic zero is required in the last step
of the proof of Prop. 4.12. Only in characteristic zero we can always achieve
stable position by a linear transformation. In positive characteristic p > 0,
the ideal I = 〈xp

1 , x
p
2〉 ⊂ k[x1, x2] is not in stable position and invariant un-

der any linear transformation. For such ideals we only have the inequality
reg (I) ≥ deg (I,≺) and cannot conclude any relationship between sat (I) and
deg (I,≺). For the above ideal sat (I) = reg (I) = 2p − 1 > deg (I,≺) = p.
We get the same values for these invariants, if we consider I as an ideal in
k[x1, x2, x3] so that it is one-dimensional. Prop. 4.12 remains correct for this
example, as the bound comes now from the first term which is p2.

In the remainder of this section, unless explicitly stated otherwise, we skip
the assumption that we are dealing with homogeneous polynomials and ideals,
but keep otherwise our notations. We present first a dimension depending
bound for the representation problem related to Nœther normalization [13]
(see also [30,38]). Recall that an ideal I ⊂ P is in Nœther position, if the ring
extension K[xn−D+1, . . . , xn] →֒ P/I is integral [15]. In this case, for each
index 1 ≤ i ≤ n−D, the intersection I ∩ k[xi, xn−D+1, . . . , xn] is non-empty
and, by [13, Prop. 1.7], contains a witness polynomial hi which is monic in xi

and can be represented in the form hi = g1f1 + · · · + gkfk with coefficients
g1, . . . , gk ∈ P such that deg(gjfj) ≤ dn(dn + 1) for d = d1. In this estimate,
the first factor dn represents an upper bound for N(d1, . . . , dk;n). Mayr and
Ritscher [38] proved the following improvement.

Proposition 4.15 ([38, Thm. 10]) In the above described situation, the coef-
ficients gj can be chosen such deg(gjfj) ≤ (d1 · · · dn−D)2.

We will now improve this bound to 3d1 · · · dn−D and study its application
in the membership problem. We denote by hP the ring k[x1, . . . , xn+1] where
xn+1 is a new variable. For any polynomial f ∈ P , we consider its homoge-

nization hf = x
deg(f)
n+1 f(x1/xn+1, . . . , xn/xn+1) ∈ hP . For an ideal I ⊂ P , its

homogenization is defined as hI = 〈hf | f ∈ I〉 ⊂ hP . We need the follow-
ing result due to Sombra [49, Lem. 3.15] which allows us to extract a regular
sequence which remains regular after homogenization. We denote by Ii, for
i = 1, . . . , k, the ideal generated by f1, . . . , fi with the convention I0 = 〈0〉.

Lemma 4.16 ([49, Lem. 3.15]) Let f1, . . . , fk be a regular sequence. Then
polynomials p1, . . . , pk and q1, . . . , qk exist in P such that for any i

• hpi = xci
n+1

hfi + qi with qi ∈ hIi−1 and ci ≤ max{deg(hIi−1), deg(fi)}
• deg(pi) ≤ max{deg(hIi−1), deg(fi)}
• hp1, . . . ,

hpk forms a regular sequence in hP.

We remark that Sombra [49] assumed the conditions d2 ≥ · · · ≥ dk ≥ d1
which may make our next bounds sharper, however, using the fact that any
permutation of a regular sequence is a regular sequence and for simplicity
we continue with our restrictions on the degrees. We also use the following
two results related to regular sequences. The next proposition can be found
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e. g. in [43, Lem. 2.81] or [38, Lem. 9]. However, we prove it for the sake of
completeness. In the proof, we apply the well-known fact that the set of all
zero-divisors for an ideal in P is the union of all its minimal prime ideals.

Proposition 4.17 If the field k is infinite, then there are a strictly decreasing
sequence of integers 1 ≤ jn−D < · · · < j1 = k and homogeneous polynomials
hi,j ∈ P such that each of the polynomials gi = fi + hi,i+1fi+1 + · · ·+ hi,kfk
for i = j1, . . . , jn−D is homogeneous of degree di and such that gj1 , . . . , gjn−D

form a regular sequence in P.

Proof We follow the proof given by Ritscher [43, Lem. 2.81] filling in some
missing details. We show by induction that for each 1 ≤ r ≤ n − D there
exists a regular sequence gj1 , . . . , gjr and dim(〈fjr , . . . , fk〉) = n − r. For the
base case, we take j1 = k and gj1 = fk 6= 0. Obviously, dim (〈fk〉) = n− 1. For
the inductive step, assume that gj1 , . . . , gjr for r < n−D is a regular sequence
in P and dim (〈fjr , . . . , fk〉) = n − r. Let P = {p1, . . . , pt} be the set of all
associated primes of J = 〈gj1 , . . . , gjr 〉. Then, by Macaulay’s Unmixedness
theorem (see e. g. [9, Thm. 2.1.6]), we have dim(pi) = n − r for each i. Since
dim(I) = n − D and n − r > D, there exists an integer jr+1 such that
dim (〈fjr+1

, . . . , fk〉) ≤ n − (r + 1) ≥ D. Let jr+1 be the maximum integer
with this property.

Consider the k-linear space S =
∏k

i=jr+1
k

(
djr+1

−di+n−1

n−1
) and for each inte-

ger ℓ = 1, . . . , t the subspace

Sℓ =







(ai,α)jr+1≤i≤k,|α|=djr+1
−di

∈ S |
k

∑

i=jr+1

∑

|α|=djr+1
−di

ai,αx
αfi ∈ pℓ







.

We claim that Sℓ is a proper subspace of S for each ℓ. For a proof by reductio

ad absurdum assume that Sℓ = S for some ℓ. Then we have x
djr+1

−di

j fi ∈ pℓ

for each j and for each i = jr + 1, . . . , jr+1 and hence fjr+1
, . . . , fk ∈ pℓ since

pℓ is a prime ideal. By construction, the ideal generated by fjr+1
, . . . , fk is of

dimension n− (r + 1) which yields a contradiction.
Since k is assumed to be infinite, S 6= S1 ∪ · · · ∪ St by elementary linear

algebra. Choose a tuple (ai,α)i,α ∈ S \ (S1 ∪ · · · ∪ St). Then the corresponding

polynomial g′jr+1
=

∑k
i=jr+1

∑

|α|=djr+1
−di

ai,αx
αfi is a non-zero divisor on

P/J . Note that here fjr+1
is multiplied only by a constant. We show now that

this constant does not vanish. Indeed, otherwise a linear combination of the
polynomials fjr+1+1, . . . , fk was a non-zero divisor on P/J implying that the
depth of the ideal 〈fjr+1+1, . . . , fk〉 was greater than its dimension n− r which
is not possible. Finally, dividing g′jr+1

by the coefficient of fjr+1
yields a new

polynomial gjr+1
of the desired form to extend our regular sequence. ⊓⊔

We note that one obtains a regular sequence for a generic choice of the
polynomials hi,j . Furthermore, this proposition implies that for a given ideal
I = 〈f1, . . . , fk〉 we may assume w.l.o.g. that f1, . . . , fn−D is a regular se-
quence. Since we have deg(gi) ≤ deg(fi) for each i, this assumption may only
increase the following upper bounds.
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Proposition 4.18 ([35, Cor. 3.5, page 107]) Let f1, . . . , fk be a regular se-
quence of homogeneous polynomials and assume that I = 〈f1, . . . , fk〉 is in
Nœther position. Then, deg(I,≺) ≤ d1 + · · ·+ dk − k + 1.

Theorem 4.19 If dk ≥ 2, then a linear change of variables φ exists such
that the transformed ideal φ(I) is in Nœther position. Furthermore, there are
polynomials hi ∈ I∩k[xi, xn−D+1, . . . , xn] for i = 1, . . . , n−D and coefficients
g1, . . . , gk ∈ P such that hi is monic in xi and hi = g1f1 + · · · + gkfk with
deg(gjfj) ≤ 3d1 · · · dn−D.

Proof By Prop. 4.17, we may assume that the sequence f1, . . . , fn−D is reg-
ular. Applying Lem. 4.16 provides then polynomials p1, . . . , pn−D such that
their homogenizations form a regular sequence in hP and satisfy deg(hpj) ≤
max{deg(hIj−1), deg(fj)}. hIj−1 is the saturation of the ideal generated by
hf1, . . . ,

hfj−1 w.r.t. xn+1 and thus deg(hIj−1) ≤ deg(〈hf1, . . . , hfj−1〉) ≤
d1 · · · dj−1. This observation implies that deg(hp1) = d1 and deg(hpj) ≤
d1 · · · dj−1 for each j > 1. Let J ⊂ hP be the homogeneous ideal gener-
ated by the polynomials hpj. The Nœther normalization lemma asserts the
existence of a linear change of variables φ such that φ(J ) is in Nœther posi-
tion. Since at the end, we will set xn+1 = 1, we choose φ by ignoring xn+1 in
the Nœther normalization process which is always possible. It is easy to see
that the sequence φ(hp1), . . . , φ(

hpn−D) remains regular.
We consider now a degree reverse lexicographic order with xn+1 ≺ xn ≺

· · · ≺ xn−D+1 ≺ xi and xi ≺ xj for j 6= i and j < n − D. Since φ(J ) is
in Nœther position, the reduced Gröbner basis G of φ(J ) for ≺ contains a
polynomial wi ∈ k[xi, xn−D+1, . . . , xn, xn+1] which is monic in xi. Since φ(J )
is in addition generated by a regular sequence, Prop. 4.18 implies that the
degrees of the elements of G is at most

∑n−D

j=1 (deg(hpj)− 1) + 1 ≤ d1 + d1 +
d1d2 + · · ·+ d1 · · · dn−D−1. Using a simple induction and the fact that 2 ≤ dj
for all j, we conclude that d1 + d1 + d1d2 + · · ·+ d1 · · · dn−D−1 ≤ d1 · · · dn−D.
Now, there exist coefficients aj ∈ hP such that wi = a1

hp1+ · · ·+an−D
hpn−D.

We note that wi|xn+1=1 ∈ φ(I) is a monic polynomial in xi with coefficients in
k[xn−D+1, . . . , xn]. However, there still remains to find the maximum degree
of the representation of this polynomial in terms of the original generators fi.

Thus, we next aim at expressing the polynomials hpj in terms of the gen-

erators hf1, . . . ,
hfn−D. We know that hpj = x

cj
n+1

hfj + qj with qj ∈ hIj−1

and deg(qj) ≤ d1 · · · dj−1. From [49, Lem. 3.18], we deduce that for some ex-
ponent µj ≤ 2d1 · · · dj−1 the product x

µj

n+1qj belongs to the ideal generated by
hf1, . . . ,

hfj−1. This shows that x
µ
n+1wi with µ = 2d1 · · · dn−D can be written

as a linear combination of the polynomials hfj and the maximal degree of this
expression is at most 3d1 · · · dn−D. If we set hi = xµ

n+1wi|xn+1=1, then the
desired conditions hold for hi, and this terminates the proof. ⊓⊔

Remark 4.20 The new bound given by the above theorem improves the ex-
isting results including the bound dn(dn + 1) stated in [13, Sec. 1] where
d = max{d1, . . . , dk} and also the bound (d1 · · · dn−D)2 from [38, Thm. 10].
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We now state some consequences of this theorem. Dickenstein et al. [13]
applied their variant of Thm. 4.19 to give a bound for the degree w.r.t. only
a subset of variables for the membership problem. Following their proof and
using our new bound, we obtain the next result.

Proposition 4.21 Assume dk ≥ 2. A polynomial f ∈ P lies in the ideal I, if
and only if coefficients g1, . . . , gk ∈ P exist such that f = g1f1+ · · ·+gkfk and
the degree of each summand gifi w.r.t. the variables x1, . . . , xn−D is at most
max{deg(f), d1 + 3(n−D)d1 · · · dn−D}+ 3d1 · · · dn−D.

Consider the element f = g1f1 + · · ·+ gkfk in the ideal generated by the
polynomials f1, . . . , fk of degrees d1 ≥ · · · ≥ dk. The first upper bound for the
coefficients, deg(gi) ≤ deg(f) + 2(kd1)

2n−1

, was established by Hermann [26].
We will mimic the proof of [30, Thm. 5] to give a sharper upper bound. We
first recall a generic degree bound due to Hermann, see e.g. [37, page 312].

Proposition 4.22 Consider a linear system of equations

s
∑

j=1

hijXj = ci, i = 1, . . . , t

with coefficients hij , ci ∈ P which has at least one solution. Then, the sys-
tem possesses a solution g1, . . . , gs with deg(gi) ≤ c + (ds)2

n

where d =
max{deg(hij)} and c = max{deg(ci)}.
Theorem 4.23 Assume dk ≥ 2. A polynomial f ∈ P lies in I, if and only if
coefficients g1, . . . , gk ∈ P exits such that f = g1f1 + · · ·+ gkfk and the degree

of each gi is at most deg(f) + (kdD1 )2
n−D

.

Proof W.l.o.g., we may assume that I is in Nœther position. Any ideal mem-
ber f ∈ I can be written as a linear combination f = g1f1 + · · ·+ gkfk where
the degree of each summand gifi w.r.t. x1, . . . , xn−D is at most B with B the
bound in Prop. 4.21. Set PD = k[xn−D+1, . . . , xn]. We consider now gi, fi and
f as elements of the polynomial ring PD[x1, . . . , xn−D]. This leads to represen-
tations gi =

∑

j uijmij , fi =
∑

j wijm
′
ij and f =

∑

j vjm
′′
j with coefficients

uij , wij , vj ∈ PD and terms mij ,m
′
ij ,m

′′
j ∈ k[x1, . . . , xn−D]. These satisfy for

each i, j the estimates deg(mijm
′
ij) ≤ B, deg(wij) ≤ d1 and deg(vj) ≤ deg(f).

Since we look for an upper bound for the degrees of the gi, we consider
the coefficients uij as unknowns over PD and try to bound their degrees using
Prop. 4.22. We enter the above representations of gi, fi and f into the linear
combination f = g1f1+ · · ·+gkfk and extract linear equations for the uij over
PD. By equating the coefficients of each term (in the variables x1, . . . , xn−D)
of degree at most B on both sides, we derive a linear system of equations over
PD. Solving the resulting system yields the coefficients g1, . . . , gk. The number
of variables in each linear equation is at most k times the number of terms in
xn−D+1, . . . , xn of degree at most d1, i. e. at most k

(

D+d1

D

)

≤ kdD1 . Moreover,
the right hand side in each linear equation is a polynomial of degree at most
deg(f). Prop. 4.22 implies now the existence of a solution with deg(gi) ≤
deg(f) + (kdD1 )2

n−D

and this yields the desired bound. ⊓⊔
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We conclude this section by providing another consequence of Thm. 4.19.
Mayr and Ritscher [38, Thm. 36] applied Prop. 4.15 to prove the upper bound

2

(

1

2
((d1 · · · dn−D)2(n−D) + d1)

)2D

for the degrees of the elements of any reduced Gröbner basis of I. In their
proof, they exploited that the homogenization of I contains a homogeneous
regular sequence of degree at most (d1 · · · dn−D)2. We now improve this result.
The proof of Thm. 4.19 entails that there are polynomials p1, . . . , pn−D ∈ I
such that hp1, . . . ,

hpn−D is a regular sequence of degree at most d1 · · · dn−D,
cf. [38, Lem. 35], which yields the following sharper bound.

Corollary 4.24 If dk ≥ 2, then the degrees of the elements of any reduced
Gröbner basis of I are bounded by

2

(

1

2
((d1 · · · dn−D)n−D + d1)

)2D

.
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