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NEW CUBIC SELF-DUAL CODES OF LENGTH 54, 60 AND 66

PINAR ÇOMAK, JON LARK KIM, AND FERRUH ÖZBUDAK

Abstract. We study the construction of quasi-cyclic self-dual codes, espe-
cially of binary cubic ones. We consider the binary quasi-cyclic codes of length
3ℓ with the algebraic approach of [9]. In particular, we improve the previous
results by constructing 1 new binary [54, 27, 10], 6 new [60, 30, 12] and 50 new
[66, 33, 12] cubic self-dual codes. We conjecture that there exist no more binary
cubic self-dual codes with length 54, 60 and 66.

1. Introduction

Quasi-cyclic and self-dual codes are interesting classes of linear codes. Quasi-
cyclic codes are those linear codes which takes the maximum possible value of
minimum distance among the codes with the same length and same dimension.
Another class of interesting linear codes is the classes of self-dual codes. Self-dual
codes have close connections with group theory, lattice theory and design theory.
There has been an active research on the classification of self-dual codes over finite
fields and over rings. In [9] it was shown that all cubic binary codes of length 3ℓ
can be obtained by a generalization of cubic construction of Turyn’s, from a binary
code and a quaternary code of both length ℓ.

The rest of this paper is organized as follows. In Section 2, we give some pre-
liminaries about linear codes. In Sections 3 and 4, we recall the basic properties of
quasi-cyclic codes and the cubic construction that is used. In Section 5, we present
our results.

2. Preliminaries

A q-ary linear code C is a linear subspace of Fn
q . If C has dimension k, then C is

called an [n, k]-linear code or [n, k, d]-linear code, where d = d(C) is the minimum
Hamming distance which is the minimum number of distinct coordinates between
any pair of distinct codewords in C. The Hamming weight w(c) of a codeword c in
C is defined to be the number of non-zero entries of c. For a linear code, we have
that d(C) = w(C). Two codes are said to be equivalent up to permutation if they
differ only in the order of their coordinates. The Hamming weight enumerator of
the code C is defined to be WC(y) =

∑

c∈C
ywt(c) =

∑n

i=0 Aiy
i, where Ai is the

number of vectors of the code C having Hamming weight i.
A linear code C is said to be cyclic if for every codeword c = (c0, c1, .., cn−1) ∈ C

there exists a corresponding codeword c′ = (cn−1, c0, . . . , cn−2) ∈ C, in which case
we call c′ is a cyclic shift of c. It is more convenient to represent the codeword
c = (c0, c1, . . . , cn−1) as the polynomial c(x) = c0 + c1x + c2x

2 + · · · + cn−1x
n−1,

where ci ∈ Fq, ∀i = 0, .., n− 1. In this representation, the cyclic shift of c(x) is
simply c′(x) = xc(x). Since any linear combination of cyclic shifts of c(x) is also a
codeword of C, a cyclic code is an ideal in Fq[x]/(x

n−1). In a nonzero cyclic code C,
1
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the unique monic polynomial of smallest degree is called the generator polynomial
of C. The generator polynomial of a cyclic [n, k]-code has degree n−k and denoted
by g(x) = g0 + g1x+ · · ·+ gn−kx

n−k, which is a factor of xn − 1. The cyclic code C
is shown as C = 〈g(x)〉. For a cyclic [n, k]-code C, a matrix G ∈ Fk×n

q is a generator
matrix for C if its k rows span C.

We define the dual of a code C to be C⊥ = {u ∈ Fn
q : (u, v) = 0 for all v ∈ C}.

Here the inner product is the standard (Euclidean) inner product. The dual code
C⊥ of the code C over Fq and over R := R(Fq,m) = Fq[Y ]/(Y m − 1) is understood
with respect to the Euclidean (standard) inner product and the Hermitian inner
product, respectively. If C is an [n, k]-code over Fq, then the dual code C⊥ is a
linear [n, n− k] code. For any [n, k]-code C, we have (C⊥)⊥ = C. A code C is said
to be self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥. If a code C of length n is
self-dual, then n must be even; and C is a subspace of dimension n/2.

If C ⊂ Fn
2 is a binary self-dual code, then the weight of all codewords must

be even. The binary self-dual codes in which there is at least one codeword with
weight not divisible by 4 are called Type I or singly-even self-dual binary codes.
Otherwise, the binary self-dual codes are called Type II or doubly-even self-dual
binary codes.

2.1. Inner Products. In order to define dual codes, we need to define inner prod-
ucts. Inner products for linear codes over Fℓm

q and over Rℓ are defined as follows
[11].

2.1.1. Euclidean inner product. Defined on Fℓm
q as

a · b =

m−1
∑

i=0

ℓ−1
∑

j=0

aijbij

for a = (a0,0, a0,1, . . . , a0,ℓ−1, a1,0, . . . , a1,ℓ−1, . . . , am−1,0, . . . , am−1,ℓ−1) and
b = (b0,0, b0,1, . . . , b0,ℓ−1, b1,0, . . . , b1,ℓ−1, . . . , bm−1,0, . . . , bm−1,ℓ−1).

2.1.2. Hermitian inner product. Defined on Rℓ as

〈x, y〉 =

ℓ−1
∑

j=0

xjyj

for x = (x0, x1, . . . , xℓ−1) and y = (y0, y1, . . . , yℓ−1). Here the conjugation operation
− on R sends Y to Y −1 = Y m−1 (identity on Fq) and satisfies x = x, x+ y =
x+ y, xy = x y.

3. Quasi-Cyclic Codes

Let Fq be a finite field and m be a positive integer coprime with the charac-
teristic of Fq. A linear code C of length ℓm over Fq is called quasi-cyclic code if
(cm−1,0, . . . , cm−1,ℓ−1, c0,0, . . . , c0,ℓ−1, . . . , cm−2,0, . . . , cm−2,ℓ−1) ∈ C whenever the
codeword (c0,0, . . . , c0,ℓ−1, c1,0, . . . , c1,ℓ−1, . . . , cm−1,0, . . . , cm−1,ℓ−1) ∈ C.

This code is invariant under ℓ-shift and such codes are called as ℓ-quasi-cyclic
codes or quasi-cyclic codes of index ℓ. The quasi-cyclic codes are the generalization
of cyclic codes. Cyclic codes correspond to the case ℓ = 1.
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3.1. 1-1 correspondence. Let Fq[Y ] denote the polynomial ring over Fq. Con-
sider the ring R := R(Fq,m) = Fq[Y ]/(Y m − 1). This ring is the same as the
polynomial representation of cyclic codes of length m over Fq. Namely, the cyclic
codes of length m over Fq are ideals of R(Fq,m). Modules over R is closely related
to the ideals in Fq[Y ]/(Y m−1). In fact, ideals are just 1-dimensionalR-submodules.
Let C be a ℓ-quasi-cyclic code over Fq of length ℓm and let

c = (c0,0, . . . , c0,ℓ−1, c1,0, . . . , c1,ℓ−1, . . . , cm−1,0, . . . , cm−1,ℓ−1)

denote a codeword in C. Define a map φ : Fℓm
q → Rℓ by

φ(c) = (c0(Y ), c1(Y ), . . . , cℓ−1(Y )) ∈ Rℓ

where cj(Y ) =
∑m−1

i=0 cijY
i ∈ R, j = 0, . . . , ℓ− 1.

A linear code C of length n over R is defined to be a R-submodule of Rn. If R
is a finite field Fq of order q, the linear code C of order n over Fq is an Fq-vector
subspace of Fn

q .

Lemma 3.1. [9] The map φ gives a one-to-one correspondence between ℓ-quasi-
cyclic codes over Fq of length ℓm and linear codes over R of length ℓ.

Proposition 3.2. [9] Let a, b ∈ Fℓm
q . Then (T ℓk(a)) · b = 0 for 0 ≤ k ≤ m − 1 if

and only if 〈φ(a), φ(b)〉 = 0.

It follows from Proposition 3.2 that a quasi-cyclic code C is self-dual with respect
to the Euclidean inner product if and only if φ(C) is self-dual with respect to the
Hermitian inner product, where C is an ℓ-quasi-cyclic code over Fq of length ℓm

and φ(C) is its image in Rℓ under φ. We also have that φ(C)
⊥
= φ(C⊥), where the

dual in Fℓm
q is taken with respect to the Euclidean inner product and the dual in

Rℓ is taken with respect to the Hermitian inner product.

3.2. Existence of Self-Dual Codes. In [7], it is proved that there exist self-dual
binary codes of length ℓ over R = R(F2,m) = F2[Y ]/(Y m − 1) if and only if 2|ℓ.
For binary ℓ-quasi-cyclic self-dual codes of length ℓm, if m is a prime not dividing
i, then m must divide Ai, which is the number of codeword with Hamming weight
i. This gives the possible weight enumerators of self-dual codes of a given length.

3.3. Ring Decomposition. Let R = R(Fq,m) = Fq[Y ]/(Y m − 1). If gcd(m, q) =
1, then the ring can be decomposed into a direct sum of fields by the Chinese
remainder theorem (CRT) or discrete Fourier transform (DFT) [9]. By this ap-
proach, the quasi-cyclic codes can be decomposed into codes of lower lengths. The
polynomial Y m − 1 factors completely into distinct irreducible factors in Fq[Y ] as

(3.1) Y m − 1 = δg1 . . . gsh1h
∗
1 . . . hth

∗
t

where δ is nonzero in Fq, g1 . . . gs are the polynomials which are self-reciprocal, and
h∗
i ’s are reciprocals of hi’s, for all 1 ≤ i ≤ t. Then by CRT [9], the ring R can be

written as

(3.2) R =
Fq[Y ]

(Y m − 1)
=

(

s
⊕

i=1

Fq [Y ]

(gi)

)

⊕

(

t
⊕

j=1

(

Fq[Y ]

(hj)
⊕

Fq[Y ]

(h∗
j )

)

)

.

For notational convenience, let Gi, H
′
j and H ′′

j denote Fq[Y ]
/

(gi), Fq[Y ]
/

(hj)

and Fq[Y ]
/

(h∗
j ), respectively. Then
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Rℓ =

(

s
⊕

i=1

Gℓ
i

)

⊕

(

t
⊕

j=1

(

H ′ℓ
j ⊕H ′′ℓ

j

)

)

.

and every R-linear code C of length ℓ can be decomposed as the direct sum

C =

(

s
⊕

i=1

Ci

)

⊕

(

t
⊕

j=1

(

C′
j ⊕ C′′

j

)

)

where Ci, C
′
j and C′′

j are linear codes over Gi, H
′
j and H ′′

j , respectively, all of length
ℓ for each 1 ≤ i ≤ s, and for each 1 ≤ j ≤ t.

Let x = (x0, x1, . . . , xℓ−1) and y = (y0, y1, . . . , yℓ−1). Here, for 1 ≤ i ≤ s, the
Hermitian inner product of x and y with xi, yi ∈ Gi is defined as in [9, Section IV]
by 〈x, y〉 = x0y

m−1
0 + · · ·+ xℓ−1y

m−1
ℓ−1 . Moreover, for 1 ≤ i ≤ t, the Euclidean inner

product of x and y with xi, yi ∈ H ′
j is defined by x · y = x0y0 + · · ·+ xℓ−1yℓ−1.

Notice that every element of R can be written as c(Y ), for some polynomial
c ∈ Fq[Y ]. The decomposition (3.2) shows that c(Y ) may also be written as an
(s+ 2t)-tuple

(3.3) (c1(Y ), . . . , cs(Y ), c′1(Y ), c′′1 (Y ), . . . , c′t(Y ), c′′t (Y ))

where ci(Y ) ∈ Gi, (1 ≤ i ≤ s), c′j(Y ) ∈ H ′
j , (1 ≤ j ≤ t) and c′′j (Y ) ∈ H ′′

j ,

(1 ≤ j ≤ t). Here, we can consider the ci, c
′
j and c′′j as polynomials in Fq[Y ]. We

can also write

c(Y ) = (c1(Y ), . . . , cs(Y ), c′′1(Y ), c′1(Y ), . . . , c′′t (Y ), c′t(Y )).

Theorem 3.3. [9] An ℓ-quasi-cyclic code C of length ℓm over Fq is self-dual if and

only if

C =

(

s
⊕

i=1

Ci

)

⊕

(

t
⊕

j=1

(

C′
j ⊕ (C′

j)
⊥

)

)

where, for 1 ≤ i ≤ s, Ci is a self-dual code over Gi of length ℓ with respect to the

Hermitian inner product and for 1 ≤ j ≤ t, C′
j is a linear code of length ℓ over H ′

j

and (C′)⊥ is its dual with respect to the Euclidean inner product as defined above.

4. Cubic Self-Dual Binary Codes and Cubic Construction

There are some construction methods for combining codes to get new codes with
greater length for different values of q, m and ℓ (for example see [1]).

In this work, we focus on the case of so called binary cubic codes, which ,s the
case for q = 2 and m = 3. We use a cubic construction in [1] and [9] to find new
codes.

Since Y 2+Y +1 is irreducible in F2[Y ], we can write Y 3−1 = (Y −1)(Y 2+Y +1)
as a product of irreducible factors. By (3.2), R can be decomposed as

R =
F2[Y ]

(Y 3 − 1)
= F2 ⊕ F22 .

This gives a correspondence between the ℓ-quasi-cyclic codes C of length 3ℓ over F2

and a pair (C1, C2), where C1 is a linear code over F2 of length ℓ and C2 is a linear
code over F4 = F2(ω) of length ℓ where ω2 + ω + 1 = 0. Using the discrete Fourier
transform [9], we can define a Gray map from Fℓ

2 × Fℓ
4 to F3ℓ

2 by

(4.1) C = φ(C1, C2) = {(x+ a | x+ b | x+ a+ b) | x ∈ C1, a+ ωb ∈ C2}
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Moreover, C is self-dual if and only if C1 is self-dual with respect to the Euclidean
inner product and C2 is self-dual with respect to the Hermitian inner product.

It is shown in [9] that all such codes can be obtained by this method, from a
binary code over F2 and a quaternary code over F4 both of length ℓ. Here, as in
[1], cubic binary codes of length 3ℓ are viewed as codes of length ℓ over the ring
F2 × F22 .

It is easily verified that, if a, b ∈ C′
2 for some linear code C′

2 over F2, then
C2 = {a+ bω | a, b ∈ C′

2} is a linear code over F22 , where ω2 + ω + 1 = 0. So, if we
begin with two F2-linear codes C′

2 and C1, the construction in (4.1) gives Turyn’s
(a+ x | b+ x | a+ b+ x)-construction. In particular, we obtain the following.

Theorem 4.1. [9] The (x+ a | x+ b | x+ a+ b)-construction which is applied to

two linear codes C1 and C′
2 over F2 of length ℓ, gives an F2-linear code C of length

3ℓ that is quasi-cyclic of index ℓ.

The authors of [1], [3], [4] and [7] completed the classification of binary cubic
self-dual codes of lengths ≤ 48 up to permutation equivalence. The number of cubic
self-dual codes in various cases is given as follows:

(i) for ℓ = 2, unique binary cubic self-dual code of length 6,
(ii) for ℓ = 4, 2 binary cubic self-dual codes of length 12,
(iii) for ℓ = 6, 3 binary cubic self-dual codes of length 18,
(iv) for ℓ = 8, 16 binary cubic self-dual codes of length 24,
(v) for ℓ = 10, 8 binary cubic self-dual codes of length 30,
(vi) for ℓ = 12, 13 binary cubic self-dual codes of length 36,
(vii) for ℓ = 14, 1569 binary cubic self-dual codes of length 42,
(viii) for ℓ = 16, 264 binary cubic self-dual codes of length 48,
(ix) for ℓ = 18, ≥ 13 binary cubic self-dual codes of length 54,
(x) for ℓ = 20, ≥ 3 binary cubic self-dual codes of length 60,
(xi) for ℓ = 22, ≥ 7 binary cubic self-dual codes of length 66.

5. Main Results

5.1. ℓ = 18, [54, 27, 10] codes: The shortest length of binary cubic self-dual codes
for which the classification is not completed is 54. The number of known inequiva-
lent codes that were found in [3] is 13. In this paper, we find 1 more such code by
the cubic construction (4.1).

For the self-dual [54, 27, 10] codes, the following are the only possible weight
enumerators [5]:

W1 = 1 + (351− 8β)y10 + (5031 + 24β)y12 + (48492 + 32β)y14 + . . . 0 ≤ β ≤ 43

W2 = 1 + (351− 8β)y10 + (5543 + 24β)y12 + (43884 + 32β)y14 + . . . 12 ≤ β ≤ 43.

Lemma 5.1. [7] Let C be a binary ℓ-quasi-cyclic self-dual code of length mℓ where
m is prime. If m does not divide the weight i, then m must divide Ai, where
WC(y) =

∑

c∈C
ywt(c) =

∑n

i=0 Aiy
i.

In [3], seven inequivalent codes with W1 for β = 0, 3, 6, 9, 12, 15, 18 and six in-
equivalent codes with W2 for β = 12, 15, 18, 21, 24, 27 are found. Note that β should
be divisible by 3 by the above lemma.

By the construction (4.1), binary codes C of length 54 are formed from a binary
code C1 of length 18 and a quaternary code C2 of length 18. In [1], the following
proposition is proved.
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Proposition 5.2. [1] If C = φ(C1, C2), then d(C) ≤ min(3d(C1), 2d(C2)).

It is known that there are 7 binary [18, 9, 2], 2 binary [18, 9, 4] codes and 244
quaternary [18, 9, 6] and 1 quaternary [18, 9, 8] codes which are all self-dual and
listed in [8]. To obtain more [54, 27, 10] codes, by the help of proposition 5.2, it is
sufficient to take the only 2 binary codes with d = 4 and all quaternary self-dual
codes with a huge number of permutations.

By the construction above, we found eight [54, 27, 10] codes with weight enu-
merator W1 for β = 0, 3, 6, 9, 12, 15, 18, 21 and six [54, 27, 10] codes with weight
enumerator W2 for β = 12, 15, 18, 21, 24, 27 by taking the 2 binary codes for C1 and
18th and 38th [18, 9, 6] self-dual quaternary codes taken from [8] for C2.

These codes are of Type I 18-quasi-cyclic self-dual codes of length 54 since their
binary components are of Type I and self-dual with respect to the Euclidean inner
product.

Remark 5.3. Based on computational evidence, we conjecture that there are no
other [54, 27, 10] self-dual cubic codes over F2.

Our computational results, with β a multiple of 3, are listed below:

Possible values Values Thm.4.1 Conjecture, Rk.5.3

W1 0 ≤ β ≤ 43 β ∈ {0, 3, 6, 9, 12, 15, 18,21} β /∈ {24, 27 · · · , 42}

W2 12 ≤ β ≤ 43 β ∈ {12, 15, 18, 21, 24, 27} β /∈ {30, 33 · · · , 42}

5.2. ℓ = 20, [60, 30, 12] codes: In this case, the number of previously known in-
equivalent codes was 3. In this paper, we find 6 more such codes by the cubic
construction (4.1).

For self-dual [60, 30, 12] codes, the following are the only possible weight enu-
merators [6]:

W1 = 1 + 2555y12 + 33600y14 + 278865y16 + . . .

W2 = 1 + 2619y12 + 33216y14 + 279441y16 + . . .

W3 = 1 + 3195y12 + 29760y14 + 284625y16 + . . .

W4 = 1 + 3451y12 + 24128y14 + 336081y16 + . . .

By Lemma 5.1, we know that there is no code with weight enumerator W4 since
3 ∤ 14 and 3 ∤ 24128.

In [1], three inequivalent extremal codes with W3 are found with automorphism
groups of size 3, 6 and 12.

By the construction (4.1), binary codes C of length 60 are formed from a binary
code C1 of length 20 and a quaternary code C2 of length 20.

It is known that there are 9 binary self-dual [20, 10, 2] codes, 7 binary self-
dual [20, 10, 4] codes and 245 quaternary self-dual [20, 10, 2] codes, 2181 quater-
nary self-dual [20, 10, 4] codes, 999 quaternary self-dual [20, 10, 6] codes and 2 qua-
ternary self-dual [20, 10, 8] codes listed in [8]. To obtain [60, 30, 12] codes, since
d(C) ≤ min(3d(C1), 2d(C2)), it is sufficient to take only the binary codes of min-
imum distance 4 and the quaternary codes of minimum distance 6 and 8 with a
huge number of permutation.

By this construction, we found nine inequivalent [60, 30, 12] codes with weight
enumerator W3 with automorphism groups of size 3,6,9,12,18,24,30,48,60.
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These [60, 30, 12] codes are of Type I 20-quasi-cyclic self-dual codes since their
binary components C1’s are of Type I and self-dual with respect to the Euclidean
inner product.

Remark 5.4. Based on computational evidence, we conjecture that there are no
other [60, 30, 12] self-dual cubic codes over F2.

Our computational results are listed below:

Found values New values Conjecture, Rk.5.4

W3 3, 6, 9, 12, 18, 24, 30, 48, 60 9,18,24,30,48,60 no other codes

5.3. ℓ = 22, [66, 33, 12] codes: The number of previously known inequivalent codes
was 7 [7]. In this paper, we find 50 more such codes by the cubic construction (4.1).

For self-dual [66, 33, 12] codes, there are three possible weight enumerators:

W1 = 1 + (858 + 8α)y12 + (18678 + 24α)y14 + . . . 0 ≤ α ≤ 778

W2 = 1 + (858 + 8α)y12 + (18166 + 24α)y14 + . . . 14 ≤ α ≤ 756

W3 = 1 + 1690y12 + 7990y14 + . . .

Before our work, in [7] it was known that seven inequivalent codes with W1 for
α = 17, 21, 23, 26, 30, 43, 46 are found.

By Lemma 5.1, there is no code with weight enumerators W2 and W3 since
3 ∤ (18166 + 24α) and 3 ∤ 7990. Therefore any binary cubic self-dual [66, 33, 12]
code should have weight enumerator W1.

By the construction (4.1), binary codes C of length 66 are formed from a binary
code C1 of length 22 and a quaternary code C2 of length 22.

It is known that there are 16 binary self-dual [22, 11, 2] codes, 8 binary self-
dual [22, 11, 4] codes, 1 binary self-dual [22, 11, 6] code and 723 quaternary self-dual
[22, 11, 8] codes listed in [8]. To obtain [66, 33, 12] codes, by proposition 5.2, we
take the binary codes of minimum distance 4 and 6, and the quaternary codes of
minimum distance 8 with a huge number of permutation.

By this construction, we found fifty seven inequivalent [66, 33, 12] codes with
weight enumerator W1 for α = 6, 8− 54, 56, 57, 59, 60, 62, 65, 68, 69, 71.

These codes are of Type I 22-quasi-cyclic self-dual codes of length 66 since their
binary components C1’s are of Type I and self-dual with respect to the Euclidean
inner product.

Remark 5.5. Based on computational evidence, we conjecture that there is no other
[66, 33, 12] self-dual cubic code over F2.

Our computational results are listed below:

Possible values Previous values Found values

W1 0 ≤ α ≤ 778 17,21,23,26,30,43,46
6,8-54,56,57,59,60,

62,65,68,69,71
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