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Abstract

In their seminar paper, Miyaji, Nakabayashi and Takano introduced the first method to construct families
of prime-order elliptic curves with small embedding degrees, namely k = 3, 4, and 6. These curves, so-
called MNT curves, were then extended by Scott and Barreto, and also Galbraith, McKee and Valença
to near prime-order curves with the same embedding degrees. In this paper, we extend the method of
Scott and Barreto to introduce an explicit and simple algorithm that is able to generate all families of
MNT curves with any given cofactor. Furthermore, we analyze the number of potential families of these
curves that could be obtained for a given embedding degree k and a cofactor h. We then discuss the
generalized Pell equations that allow us to construct particular curves. Finally, we provide statistics of
the near prime-order MNT curves.

1 Introduction

Cryptographic pairings were first introduced by Menezes, Okamato and Vanstone in [18] and Frey and
Ruck in [9] as a means of attacking discrete logarithm based cryptosystems. The authors showed that the
discrete logarithm problem on a supersingular elliptic curve could be reduced to the discrete logarithm
problem in a finite field through the Weil and Tate pairings. Cryptographic pairings on elliptic curves
then become a great interest for cryptographic constructions when Joux [14] introduced the first one-
round 3-party Diffie-Hellman key exchange protocol in 2000. Since then, pairing-based cryptography has
had a huge success with some notable breakthroughs such as the first practical Identity-based Encryption
(IBE) scheme [5]. Let E be an elliptic curve defined over a finite field Fq with a subgroup of big prime
order r. We have:

#E(Fq) = h× r,

where h is known as the cofactor. In pairing based cryptography, the elliptic curves used have to fulfill
a special property, namely, the embedding degree k is small enough1. This ensures that cryptographic
pairings are efficient, that is, computable over the extension finite field. An elliptic curve with such a
nice property is called a pairing-friendly elliptic curve.

In [19], Miyaji et al. introduced the first method that is able to systematically construct ordinary
(non-supersingular) elliptic curves of prime order with small embedding degrees k = 3, 4 and 6. Their
curves, so-called MNT curves, are over fields with large prime characteristic q, and the number of points
on these curves E(Fq) is prime, that is, the cofactor h = 1. As analyzed in [21], these families of curves
are more efficient than supersingular elliptic curves when implementing pairing-based cryptosystems.
Scott et al. in [22], and Galbraith et al. in [10] found more ordinary curves of these embedding degrees
where the group order n = #E(Fq) = h× r is ‘nearly prime’, that is, r is a prime and h > 1 is small.

1The embedding degree is the smallest integer k such that r divides (qk − 1).
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1.1 Contributions

While Galbraith et al. use the same analytic technique as in [19] to generate more families of curves
with small cofactors 2 ≤ h ≤ 5, Scott et al.’s method applies the Hasse’s bound to generate specific
elliptic curves, i.e., actual parameters q, r, h and D (see [22, Section 3]). This paper is an extension from
our seminar paper presented at CAI’15 [16]. In this paper, we first extend Scott-Barreto’s method [22]
to introduce an explicit and simple algorithm that allows us to generate families of near prime-order
MNT curves. Given an embedding degree k and any cofactor hmax ≥ 1, we will show that our algorithm
is able to effectively generate all families of near prime-order MNT curves having cofactors h ≤ hmax.
Furthermore, we provide explicit formulas for the number of these families. We also analyze the complex
multiplication equations of these families of curves and show how to transform these complex multipli-
cation equations into generalized Pell equations. Last but not least, we provide some statistics of these
near prime-order MNT curves.

1.2 Organization

The paper is organized as follows: Section2 briefly recalls MNT curves, as well as methods to generate
MNT curves with small cofactors. Section 3 describes our algorithm. We present our families of near
prime-order MNT curves in Section 4. We also discuss the number of potential families and the Pell
equations for some particular cases of MNT curves in this section. Statistics for near prime-order MNT
curves are provided in Section 5. Finally, we conclude in Section 6.

2 Background

Let E(Fq) be an elliptic curve defined over the finite field Fq, where q is a large prime number. Let t
define trace and r be a prime factor of #E(Fq). Let k be the embedding degree. E is a pairing-friendly
elliptic curve if its embedding degree k is small enough. Balasubramanian and Koblitz [2] pointed out
that ordinary elliptic curves generated randomly would have a large embedding degree. Consequently,
these curves would not be suitable for efficient computation of a pairing based protocol. Ordinary elliptic
curves with small embedding degrees thus require specific constructions.

2.1 MNT curves

In [19], Miyaji, Nakabayashi, and Takano presented such a construction that yields ordinary elliptic
curves with embedding degree k ∈ {3, 4, 6}. More particularly, their curves are of prime-order, i.e., the

ρ-value is 1 where the value ρ is defined as ρ = log(q)
log(r) . This is an interest in some applications such as

short signatures [6].
The families of MNT curves are parametrized by q and t as polynomials in Z[x] with #E(Fq) = n(x).

We recall that n(x) = q(x)+1− t(x), n(x) | Φk(q(x)), where Φk(q(x)) is the k-th cyclotomic polynomial
of q(x), and n(x) represents primes in the MNT construction. Their results are summarized in Table 1.

k q(x) t(x)
3 12x2 − 1 −1± 6x
4 x2 + x+ 1 −x or x+ 1
6 4x2 + 1 1± 2x

Table 1: Parameters for MNT curves [19]

2.2 Near prime-order MNT curves

Let E(Fq) be a parameterized elliptic curve with cardinality #E(Fq) = n(x). We define the cofactor
of E(Fq) as the integer h such that n(x) = h × r(x), where r(x) is a polynomial representing primes.
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The original construction of MNT curves gives families of elliptic curves with cofactor h = 1. Scott-
Barreto [22], and Galbraith-McKee-Valença [10] extended the MNT idea by allowing small values of the
cofactor h > 1. This allows us to find many more suitable curves with ρ ≈ 1 than the original MNT
construction.

Definition 2.1 Let E be an elliptic curve defined over a finite field Fq. We call E a near prime order
curve if its group order #E(Fq) is ‘nearly prime’, that is, #E(Fq) = h × r where r is a large prime
number and h is a small integer.

2.2.1 Scott-Barreto’s method

Let Φk(x) = d × r for some x. Scott-Barreto’s method [22] first fixes small integers h and d and then
substitutes r = Φk(t− 1)/d, where t = x+ 1 to obtain the following CM equation:

Dm2 = 4h
Φk(x)

d
− (x− 1)2. (1)

Scott and Barreto used the fact that Φk(t − 1) ≡ 0 (mod r) (see Proposition 2.1). As above, the
right-hand side of the equation (1) is quadratic, and hence, it can be transformed into a generalized
Pell equation by a linear substitution (see [22, §2] for more details). Then, Scott-Barreto found integer
solutions to this equation for small enough D (to facilitate the CM algorithm) and arbitrary m with
the constraint 4h > d. The Scott-Barreto’s method [22] presented near prime-order MNT elliptic curves
with actual parameters, but did not give explicit families of near prime-order MNT elliptic curves.

Proposition 2.1 [8, Proposition 2.4] Let k be a positive integer, E(Fq) be an elliptic curve defined over
Fq with #E(Fq) = q+1− t = hr, where r is prime, and let t be the trace of E(Fq). Assume that r ∤ kq.
Then E(Fq) has embedding degree k with respect to r if and only if Φk(q) ≡ 0 (mod r), or equivalently,
if and only if Φk(t− 1) ≡ 0 (mod r).

2.2.2 Galbraith McKee and Valença’s method

Unlike Scott-Barreto’s method, the mathematical analyses in [10] could lead to explicit families of near
prime-order MNT curves. Galbraith et al. [10] extended the MNT method [19] and gave a complete
characterization of MNT curves with small cofactors 2 ≤ h ≤ 5. As in [19], their analysis applies the
fact that Φk(q) ≡ 0 (mod r). Similar to the method in [19], Galbraith et al. defined λ by the equation
Φk(q) = λr. For example, in the case k = 6, they required λr = Φk(q) = q2 − q + 1. By using
Hasse’s bound, |t| ≤ 2

√
q, they then analyzed and derived possible polynomials q, t from the equation

Φk(q) = λr. Readers are referred to [10, Section 3] for a particular analysis in the case, in which the
embedding degree is k = 6 and the cofactor is h = 2. Their results about curves having embedding
degrees k = 3, 4, 6 with cofactors 2 ≤ h ≤ 5 was summarized in [10, Table 3].

3 Algorithm

In this section, we present an alternative approach to generate explicit families of ordinary elliptic curves
having the embedding degrees 3, 4, or 6 and small cofactors. Unlike the analytic approach in [10], we
obtain families of curves by presenting a very simple and explicit algorithm. Given any cofactor, our
analyses also show that this algorithm is able to effectively find all families of near prime-order MNT
elliptic curves.

3.1 Preliminary observations and facts

Some well-known facts and observations that can be used to find families of curves are noted in this
section. Similar to Scott-Barreto’s method, we use the fact that Φk(t−1) ≡ 0 mod r. Consider cyclotomic
polynomials corresponding to embedding degrees k = 3, 4, 6:
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Φk(t(x) − 1) = t(x)2 − εt(x) + ε,

and, by setting t(x) = ax+ b, we have the following equations:

Φk(t(x)− 1) = a2x2 + a(2b− ε)x+Φk(b− 1), (2)

where ε = 1 (resp. 2, 3) for k = 3 (resp. 4, 6).

Theorem 3.1 The quadratic polynomials Φk(t(x) − 1) for k = 3, 4, 6 are irreducible over the rational
field.

Proof We start with the following lemma that we use later to prove Theorem 3.1.

Lemma 3.2 Let f(x) be a quadratic irreducible polynomial in Q[x]. If we perform any Z-linear change
of variables x 7→ ax+b for any a ∈ Q\{0} and b ∈ Q, f(x) will still be a quadratic irreducible polynomial
in Q[x].

Proof If we assume that f(ax+ b) is not irreducible in Q[X ], then as f(x) is a quadratic polynomial it
means that f(ax+ b) admits a decomposition of the form f(ax+ b) = c(x− c1)(x− c2), for c, c1, c2 ∈ Q.
The values c1 and c2 are rational roots of f(ax+ b) = 0. It is easy to see that ac1 + b and ac2 + b would
then be rational roots of f(x) = 0.

We now prove Theorem 3.1. As the polynomial Φk(x) = x2 − εx+ ε is irreducible in Q[x], according
to Lemma 3.2 the polynomial Φk(t(x) − 1) is also irreducible in Q[x].

Let a triple (t, r, q) parameterize a family of near prime-order MNT curves, and let h be a small
cofactor. Let n(x) be a polynomial representing the cardinality of elliptic curves in the family (t, r, q),
that is, n(x) = h× r(x) = q(x)− t(x) + 1. By Definition 2.7 in [8], we have:

Φk(t(x)− 1) = d× r(x), (3)

where d ∈ Z, and r(x) is a quadratic irreducible polynomial. By Hasse’s bound, 4q(x) ≥ t2(x), we get
the inequality:

4h ≥ d (4)

From Eq. (2), we can see that d is the greatest common divisor (GCD) of the coefficients appearing
in this equation. For instance, when k = 3, d is the GCD of Φ3(b − 1), a2, and a(2b− 1). We recall the
following well-known Lemma, which can be found in [11, Chapter V, §6]:

Lemma 3.3 Let d be prime and k, n > 0. If d divides Φk(n), then d does not divide n, and either d
divides k or d ≡ 1 (mod k).

The above lemma points out that if Φk(n) can be factorized by prime factors di, i.e. Φk(n) =
∏

di,
then, either di | k or di ≡ 1 (mod k).

Example In the case of k = 6, suppose that Φ6(ax + b′) = d × r(x), where b′ = b − 1. Then d will be
the greatest common divisor of a2, a(2b′ + 1) and Φ6(b

′). Moreover, either d|6 or d ≡ 1 (mod 6).

Lemma 3.4 Given t(x) = ax+ b, if d in Eq. (3) does not divide a, then d is square free.

Proof We know that d ∈ Z, and d is the greatest common divisor of factors of Φk(t(x) − 1), i.e. d
divides a2, 2a(2b− 1) or 2a(b − 1) or 2a(2b− 3) and Φk(b − 1) (Eq. (2)). Suppose that d is not square
free, that is d = p2 × d′ with p a prime number greater or equal to 2. By Lemma 3.3, p does not divide
(b − 1) and either p divides k or p ≡ 1 (mod k). We also assume that d divides a2, but does not divide
a, and hence p2 ∤ a, and p is a prime factor of a.
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• k = 3: As p divides Φ3(b−1) = b2−b+1 and p divides 2b−1 we have that p divides (2b−1)+Φ3(b−1),
i.e. p divides b(b− 1). We know that p does not divide (b − 1), and thus p must divide b.

We have p | 2b− 1 = (b − 1) + b, and p | b, and hence, p must divide b − 1. This contradicts with
Lemma 3.3. Thus, d is square free.

• k = 4: We have that p divides 2(b− 1). But, recall from Lemma 3.4 that p does not divide (b− 1),
then p | 2. However, we can show that Φ4(b − 1) ≡ {1, 2} (mod 4). It is thus impossible to have
d = 22 × d′ and d | Φ4(b− 1).

• k = 6: Likewise, as p divides Φ6(b− 1) = b2 − 3b+ 3 and 2b− 3 we have that p divides (2b− 3) +
Φ3(b− 1) = b(b− 1). We know that p does not divide (b− 1), and so we have p divides b.

We have p divides 2b− 3, and p divides b, so p must divides 2b− 3+ b = 3(b− 1). Likewise, p does
not divide (b − 1), and so p divides 3, that is, d = 32 × d′. But, by [20, Theorem 95], this cannot
occur. Thus, d must be square free.

3.2 The proposed algorithm

We start this section by presenting the following definition:

Definition 3.1 Let t(x), t′(x), r(x), r′(x) be polynomials with integer coefficients.

• The 2-tuple (t(x), r(x)) is deduced from (t′(x), r′(x)) if (t(x), r(x)) = (t′(ux + v), r′(ux + v)),
u, v ∈ Z, u 6= 0.

• Equivalence relation: The 2-tuple (t(x), r(x)) is equivalent to (t′(x), r′(x)) if both tuples can be
deduced from each other, or equivalently, if (t(x), r(x)) = (t′(±x+ v), r′(±x+ v)), v ∈ Z.

• The 2-tuple (t(x), r(x)) is primitive if it cannot be deduced from a
non-equivalent tuple.

Algorithm 1 explicitly describes our method. Given an embedding degree k and a cofactor hmax,
Algorithm 1 will output a list of all possible families of near prime-order MNT curves (t(x), r(x), q(x))
with the cofactors h ≤ hmax.

Algorithm 1: Generate families of near prime-order MNT curves

Input: An embedding degree k, a cofactor hmax.
Output: A list of polynomials (t(x), r(x), q(x)).

L← {}; T ← {} ;

for a = −amax to amax do

for b = −bmax to bmax do

t(x)← ax+ b ;
f(x)← Φk(t(x)− 1) ;
Let f(x) = d · r(x), where d ∈ Z and r(x) is an irreducible quadratic polynomial;
if (t(x), r(x)) couldnt be deduced from any 2-tuple (t′(x), r′(x)) in T then

T ← T + {(d, t(x), r(x))} ;
for h = ⌈d/4⌉ to hmax do

q(x)← h · r(x) + t(x)− 1 ;
if q(x) is irreducible and gcd(q(x), r(x) : x ∈ Z) = 1 then

L← L+ {(t(x), r(x), q(x), h)} ;
end

end

end

end

end

return L
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Basically, given an embedding degree k and a maximum cofactor hmax, our method works as follows:

1. Firstly, we set the Frobenius trace polynomial to be t(x) = ax+ b, for a ∈ Z \ {0} and b ∈ Z. The
possible values of a, b for a given cofactor h are determined by Lemma 3.5.

2. Next, we determine d and r(x) thanks to Eq. (3).

3. If 2-tuple (t(x), r(x)) could not be deduced from any 2-tuple in the list T , Algorithm 1 adds this
tuple into the list. This ensures that the algorithm does not generate any equivalent family of
curves (see more details in Section 4).

4. Then, for given t(x), r(x) and d, we compute the corresponding polynomials q(x) for all cofactors
h ≤ hmax.

Algorithm 1 involves two parameters amax and bmax. The following section will discuss these values.

3.3 Completeness

The Lemma 3.5 gives the boundary for the values amax, bmax in order to find all the possible families of
curves.

Lemma 3.5 Given an embedding degree k, and a cofactor hmax, we have amax = 4hmax, and bmax <
amax.

Proof We first demonstrate that amax = 4hmax. Suppose that d | a2, but d ∤ a. Then, by Lemma 3.4,
d must be square free. This is a contradiction, and thus we have d | a.

Suppose that the algorithm outputs a family of curves with t(x) = ax + b, and a is a multiple of d,
that is, a = m× d. By a Z-linear transformation, we know that this family is equivalent to a family of
curves with t(x) = dx+ b. For the simplest form, the value of the coefficient a of polynomial t(x) should
be equal to d. Due to the inequality (4), the maximum value of a, amax = 4hmax.

Likewise, if b > a, we can make a transformation x 7→ x + ⌊b/a⌋, and b′ = b mod a. The value of
bmax thus should be chosen less than amax.

4 Families of near prime-order MNT curves

Algorithm 1 outputs a list of primitive polynomials (t(x), r(x), q(x)) for all cofactors h ≤ hmax. The
families of elliptic curves having embedding degrees k = 3, 4, 6 and cofactors h ≤ 6 are summarized in
Table 2. Our algorithm executes an exhaustive search based on the given parameters, and thus it is
able to generate all families of elliptic curves of small embedding degrees 3, 4 and 6. In these tables,
we present only families of curves with cofactors 1 ≤ h ≤ 6, but it is worth to note that given any
cofactor, families of near prime-order MNT curves can be easily found by adjusting the parameters of
Algorithm 1.

Theorem 4.1 Table 2 gives all families of elliptic curves of the embedding degrees k = 3, 4, 6 with
different cofactors 1 ≤ h ≤ 6.

In comparison to results in [10, Table 3], note that we provide the primitive polynomials of t(x),
r(x) and q(x) as defined in Definition 3.1. For example, for h = 2, k = 3, the family with parameters
q(x) = 8x2 + 2x + 1, and t(x) = −2x in [10, Table 3] can be deduced to our family with parameters
q(x) = 2x2+x+1, and t(x) = −x. For the case of k = 4, even though Table 3 in [10] listed more families
than our results, several families of their curves with a given cofactor in [10, Table 3] are curves with a
higher cofactor. For example, when the cofactor is stated to be h = 2, with q(x) = 8x2 + 6x + 3, and
t(x) = −2x, we find that the polynomial r(x) is the following: r(x) = 2(2x2+2x+1). In this form, r(x)
must be divided by 2 before representing primes. Consequently, the cofactor for this family of curves is
in fact equal to 4. This mismatch between the stated cofactor and the real one comes from the fact that
in GMV’s method the polynomial r(x) does not necessarily represent primes.

We list here the similar cases in Table 3 of [10] in the case k = 4:
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• h = 2: t = −2x.

• h = 3: t = −2x, t = −10x− 2, and t = 10x+ 4.

• h = 4: t = −2x, t = −10x− 2, t = 10x+ 4, t = 26x− 4, and t = 26x+ 6.

• h = 5: t = −2x, t = 26x− 4, t = 26x+ 6, and t = −34x− 12, t = 34x+ 14.

For all these cases, the cofactors are in fact higher than that claimed in [10, Table 3]. Besides, some
families of curves are equivalent by Definition 3.1. For example, the two families (t, q) = ((−10x −
1), (60x2 +14x+1)) and ((10x+4), (60x2 +46x+9)) are equivalent. As a result, the number of elliptic
curve families is fewer than their claimed number.

Proposition 4.2 Let q(x), r(x) and t(x) be non-zero polynomials that parameterize a family of near
prime-order MNT curves in Table 2. Then q′(x) = q(x)− 2t(x) + ε, r(x), and t′(x) = ε− t(x) represent
a family of curves with the same group order r(x) and the same cofactor h, where ε = 1 (resp. 2, and
3) for k = 3 (resp. 4, and 6).

Proof Let q(x), r(x) and t(x) parameterize a family of curves with embedding degrees k = 3, 4 or 6, a
small cofactor h ≥ 1, and let n(x) = h · r(x) represent the number of points on this family of curves.
From Eq. (2), we have Φk(t(x) − 1) = t(x)2 − εt(x) + ε. Now,

Φk(t
′(x)− 1) = Φk(ε− t(x)− 1) = t(x)2 − εt(x) + ε

= Φk(t(x)− 1).

Since r(x) | Φk(t(x)− 1), we have that r(x)|Φk(t
′(x)− 1) and q(x) = n(x) + t(x) − 1. Now,

q′(x) = q(x)− 2t(x) + ε = n(x)− t(x) + ε− 1

= n(x) + t′(x) − 1.

It is easy to verify that q′(x) is the image of q(x) by a Z-linear transformation of t(x) 7→ ε − t(x).
According to Lemma 3.2, since q(x) is irreducible, it follows that q′(x) is also irreducible. If n′(x) = n(x),
then the quadratic polynomial q′(x) represents the characteristic of the family of curves.

Now we need to prove that q′(x) and t′(x) satisfy the Hasse’s theorem, i.e. t′(x)2 ≤ 4q′(x). Suppose
that t(x) = ax + b, then t′(x) = −ax− b + 1. It is clear that the leading coefficient of q′(x) is equal to
that of q(x). Since h > m/4, 4q(x) would be greater than t2(x) for some value of x. Thus, q′(x) and
t′(x) satisfy Hasse’s theorem whenever q(x), t(x) involve some big values of x.

7



k = 3 k = 4 k = 6
h q r t q r t q r t

1 3x2
− 1 3x2 + 3x+ 1 −3x− 1 x2 + x+ 1 x2 + 2x+ 2 −x x2 + 1 x2 + x+ 1 −x+ 1

2
2x2 + x+ 1 x2 + x+ 1 −x 4x2 + 2x+ 1 2x2 + 2x+ 1 −2x 2x2 + x+ 2 x2 + x+ 1 −x+ 1
14x2 + 3x− 1 7x2 + 5x+ 1 −7x− 2 6x2 + 3x+ 1 3x2 + 3x+ 1 −3x
14x2 + 17x+ 4 7x2 + 5x+ 1 7x+ 3

3

3x2 + 2x+ 2 x2 + x+ 1 −x 5x2 + 9x+ 9 x2 + 2x+ 2 −x 3x2 + 2x+ 3 x2 + x+ 1 −x+ 1
25x2 + 15x+ 3 5x2 + 4x+ 1 −5x− 1 9x2 + 6x+ 2 3x2 + 3x+ 1 −3x
25x2 + 25x+ 7 5x2 + 6x+ 2 −5x− 2 21x2 + 8x+ 1 7x2 + 5x+ 1 −7x− 1

21x2 + 22x+ 6 7x2 + 5x+ 1 7x+ 4

4

4x2 + 3x+ 3 x2 + x+ 1 −x 8x2 + 6x+ 3 2x2 + 2x+ 1 −2x 4x2 + 3x+ 4 x2 + x+ 1 −x+ 1
12x2 + 9x+ 2 3x2 + 3x+ 1 −3x− 1 28x2 + 13x+ 2 7x2 + 5x+ 1 −7x− 1
28x2 + 13x+ 1 7x2 + 5x+ 1 −7x− 2 28x2 + 27x+ 7 7x2 + 5x+ 1 7x+ 4
28x2 + 27x+ 6 7x2 + 5x+ 1 7x+ 3 52x2 + 15x+ 1 13x2 + 7x+ 1 −13x−2

52x2 + 41x+ 8 13x2 + 7x+ 1 13x+ 5

5

5x2 + 4x+ 4 x2 + x+ 1 −x 5x2 + 9x+ 9 x2 + 2x+ 2 −x 5x2 + 4x+ 5 x2 + x+ 1 −x+ 1
35x2 + 18x+ 2 7x2 + 5x+ 1 −7x− 2 25x2 + 15x+ 3 5x2 + 4x+ 1 −5x− 1 15x2 + 12x+ 4 3x2 + 3x+ 1 −3x
35x2 + 32x+ 7 7x2 + 5x+ 1 7x+ 3 25x2 + 25x+ 7 5x2 + 6x+ 2 −5x− 2 35x2 + 18x+ 3 7x2 + 5x+ 1 −7x− 1
65x2 + 22x+ 1 13x2 + 7x+ 1 −13x−3 65x2 + 37x+ 5 13x2+10x+2 −13x−4 35x2 + 32x+ 8 7x2 + 5x+ 1 7x+ 4
65x2 + 48x+ 8 13x2 + 7x+ 1 13x+ 4 65x2 +63x+15 13x2+10x+2 13x+ 6 65x2 + 22x+ 2 13x2 + 7x+ 1 −13x−2
95x2 + 56x+ 7 19x2 +15x+3 −19x−7 85x2 + 23x+ 1 17x2 + 8x+ 1 −17x−3 65x2 + 48x+ 9 13x2 + 7x+ 1 13x+ 5
95x2 + 94x+ 22 19x2 +15x+3 19x+ 8 85x2 + 57x+ 9 17x2 + 8x+ 1 17x+ 5 95x2 + 56x+ 8 19x2 + 5x+ 3 −19x−6

95x2 +94x+23 19x2 + 5x+ 3 19x+ 9

6

6x2 + 5x+ 5 x2 + x+ 1 −x 12x2 + 10x+ 5 2x2 + 2x+ 1 −2x 6x2 + 5x+ 6 x2 + x+ 1 −x+ 1
18x2 + 15 + 4 3x2 + 3x+ 1 −3x− 1 60x2 + 26x+ 3 10x2 + 6x+ 1 −10x−2 18x2 + 15x+ 5 3x2 + 3x+ 1 −3x
78x2 + 29x+ 2 13x2 + 7x+ 1 −13x−3 60x2 + 46x+ 9 10x2 + 6x+ 1 10x+ 4 42x2 + 23x+ 4 7x2 + 5x+ 1 −7x− 1
78x2 + 55x+ 9 13x2 + 7x+ 1 13x+ 4 102x2 +31x+2 17x2 + 8x+ 1 −17x−3 42x2 + 37x+ 9 7x2 + 5x+ 1 7x+ 4
114x2 +71x+10 19x2 +15x+3 −19x−7 102x2+65x+10 17x2 + 8x+ 1 17x+ 5 78x2 + 29x+ 3 13x2 + 7x+ 1 −13x−2
114x2+109x+25 19x2 +15x+3 19x+ 8 78x2 +55x+10 13x2 + 7x+ 1 13x+ 5
126x2 + 33x+ 1 21x2 + 9x+ 1 −21x−4
126x2 +75x+10 21x2 + 9x+ 1 21x+ 5

Table 2: Valid q, r, t corresponding to the embedding degrees k = 3, 4, 6
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4.1 The number of potential families

Let k ∈ {3, 4, 6}. The families with parameters (t(x), r(x), q(x)) of near prime-order MNT curves built
by Algorithm 1 are characterized by the following properties :

(1) t(x) = ax+ b, a, b ∈ Z, a 6= 0,

(2) r(x) is the Z-irreducible polynomial such that Φk(t(x) − 1) = d× r(x) for some d ∈ N,

(3) q(x) = hr(x) − t(x) − 1, where h is a positive integer satisfying 4h ≥ d.

If h is a fixed positive integer, we see that the number of such families is equal to

4h
∑

d=1

Nd,

where Nd is the number of primitives classes having a representation (t(x), r(x)) satisfying properties (1)
and (2). The purpose of this section is to give an explicit formula for the value of Nd. Let us recall
equations (2) and (3) in Section 3.1:

Φk(t(x)− 1) = a2x2 + a(2b− ε)x+Φk(b− 1),

where ε = 1 (resp. 2, 3) for k = 3 (resp. 4, 6). The integer d, satisfying the equation

Φk(t(x) − 1) = d× r(x)

is the gcd of a2, a(2b − ε) and Φk(b − 1). It is proved in Lemmas 3.3 and 3.4 that d divides a, so d is
also the gcd of a and Φk(b − 1). Moreover, it is easy to see that (t(x), r(x)) is always deduced from the
couple (dx+ b,Φk(dx+ b− 1)/d), so any primitive couple must have a = d, or equivalently, a|Φk(b− 1).

Lemma 4.3 Let d be a fixed positive integer. We have

Nd = #{b mod d, d | Φk(b − 1)}.

Proof Taking into account the discussion above, it is easy to check that we have a bijection between the
set of primitives classes having a representation (t(x), r(x)) satisfying (1) and (2) and {b mod d, d |
Φk(b− 1)} which is given by (t(x), r(x)) 7→ b mod d.

Proposition 4.4 Let d be a fixed positive integer and write d = pu0qu1

1 . . . qus

s , where p is the biggest
prime factor of k (so p = 2 or 3), q1, . . . , qs are distinct primes and distinct from p, and u0, . . . , us ∈ N.
We have that

Nd =











1 if d = 1 or d = p,

2s if qi = 1 mod k, i = 1, . . . , s, and u0 ≤ 1,

0 otherwise.

Proof By Lemma 4.3, we are reduced to find the number of elements in the set {a mod d, d | Φk(a)}.
We remark that it is trivial that N1 = 1. For the higher value of d, we will make use of the results
from [20].

• Case d = p: Let k = mpe, p ∤ m (so m = 1 or 2). There is exactly one a ∈ Z/pZ such that
ordp(a) = m, so by [20, Theorem 95], we have Np = 1.

• Case d = pu0 : We have Npu0 = 0 by [20, Theorem 95].
• Case d = q, q prime distinct from p: By [20, Theorem 95], Nq is the number of a ∈ Z/qZ such that

ordp(a) = k, which is equal to ϕ(k) = 2 if q = 1 mod k and 0 otherwise.
• Case d = qu, q prime distinct from p: By Hansel’s Lemma, we have Nqu = Nq (Hansel’s Lemma

applies because the only prime factor of the discriminant of Φk is p).
• General case: By the Chinese Remainder Theorem, we have Npu0q

u1

1
...qus

s

= Npu0Nq
u1

1

. . . Nqus

s

.
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4.2 Solving the Pell Equations

Solving the Pell equations for MNT curves was studied in papers [15] and [7]. The authors proved that
MNT curves are sparse, that is, Pell equations admit only a few solutions. In this section, we extend
their ideas to solve the Pell equations for near prime-order MNT curves.

Let t(x) = ax + b, Φk(t(x) − 1) = d · r(x), where k = 3, 4, 6 and #E(Fq) = h · r(x). Let ε = 1
(resp. 2, and 3) when k = 3 (resp. 4, and 6). In order to remove the linear term in the CM equation
Dm2 = 4q(x) − t2(x) of the near prime order MNT curves, we substitute x = (y − ak)/n, where
n = a(4h− d), and ak = 2h(2b− ε)− (b − 2)d for k = 3, 4, or 6. The CM equation can be transformed
into a generalized Pell equation of the form:

y2 − gm2 = fk, (5)

where g = d(4h− d)D and fk = a2k − ((4h− d)b)2 + 4(4h− d)(b − 1)(εh− d).
By fixing a = 1 and b = 1, one can get the values ak and fk as analyzed in [22, Section 2]. Note that

there is a typo in the value of fk in [22, Section 2]. Indeed, fk must be set to a2k − b2 instead of a2k + b2.
The following section illustrates our method for k = 6 and h = 4 as follows.

4.2.1 Case k = 6 and h = 4

Elliptic curves with the cofactor h = 4 may be put in the form x2 + y2 = 1 + dx2y2 with d a non-
square integer. Such curves called Edwards curves were introduced to cryptography by Bernstein and
Lange [4]. They showed that the addition law on Edwards curves is faster than all previously known
formulas. Edwards curves were later extended to the twisted Edwards curves in [3]. Readers also can
see [1] [17] for efficient algorithms to compute pairings on Edwards curves. We give in this section some
facts to solve Pell equation for Edwards curves with embedding degree k = 6. By using Eq. (5), we
obtain the following Pell equations:

y21 − g1m
2 = −176, (6)

y22 − g2m
2 = −80, (7)

y23 − g3m
2 = −80, (8)

y24 − g4m
2 = 16, (9)

y25 − g5m
2 = 16, (10)

where yi = (x− ai)/bi, gi = biD, for i ∈ [1, 5], and

a1 = −7, a2 = −19, a3 = −26, a4 = −4, a5 = −17,
b1 = 15, b2 = 63, b3 = 63, b4 = 39, b5 = 39.

Karabina and Teske [15, Lemma 1] showed that if 4 | fk, then the set of solutions to y2 − gm2 = fk
does not contain any ambiguous class, i.e., there exists no primitive solution α = y + v

√
g such that α

and its conjugate α′ = y− v
√
g are in the same class. Consequently, equations (6)–(10) do not have any

solution that contains an ambiguous class.
If equations (6)–(10) have solutions with yi ≡ −ai mod bi, and a fixed positive square-free integer gi

relatively prime to bi, for 1 ≤ i ≤ 5, then triple t, r, q in Table 2 with k = 6 and h = 4 represent a family
of pairing-friendly Edwards curves with embedding degree 6.

5 Statistics of near prime-order MNT curves

In [13], Jiménez Urroz, Luca and Shparlinski provided statistics of MNT curves in the case k = 6. In
this section, we generalize their arguments to the near prime-order MNT curves.
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Theorem 5.1 ( [13], Theorem 8) Let E(z) be the number of MNT curves with k = 6 and co-factor
h = 1 having CM discriminant less than z. Then, assuming the Generalized Bateman-Horn Conjecture,
the lower bound

E(z) ≥ (S0 + o(1))

√
z

log z
,

holds as z → ∞, where S0 ≃ 0.237615.

5.1 Assumptions

Let D denote the CM discriminant. We first rewrite Eq. (5) in the following form:

∆(x) = Dum2, (11)

where ∆(x) = (w0x + w1)
2 + w2, w0 = a(4h − d), w1 = b(4h − d)2(εh − d), w2 = 4h(4 − ε)(εh − d),

u = d(4h− d), and parameters a, b, h, d and ǫ are defined as in Section 4.2. Note that these parameters
were straightforwardly deduced from Eq. (5).

In order to fulfil the conditions of the generalized Bateman-Horn conjecture given in [13, Section 3.4],
we assume that the products r(n)q(n)∆(n), n ∈ Z have no fixed prime divisor. We have the following
lemma whose proof is straightforward.

Lemma 5.2 Under the above assumptions, for any prime p and any integer β such that ∆(β) = 0
mod p2, we have ∆′(β) 6= 0 mod p.

Proof If p is an odd prime that doesnt divide the leading coefficient of ∆(x), then the equation ∆(x) = 0
mod p2 is equivalent to (∆′(x))2−Disc(∆(x)) = 0 mod p2, and we see that if this equation has a solution
β such that ∆′(β) = 0 mod p, then p2 must divide Disc(∆(x)).

If p is an odd prime dividing the leading coefficient of ∆(x). Under these conditions, it is easy to
check that if ∆(x) has a root modulo p, then either ∆(x) is identically zero modulo p (which is excluded,
since ∆(x) is irreducible over Z[x]), or ∆′(x) has no root modulo p.

Finally, we can easily check that ∆(x) has no root modulo 2.

Similar to Jiménez Urroz et al.’s analysis, we proceed in two steps:

• in the first step, letm be an fixed integer, B(m) be the set of residues modulem2, and let β ∈ B(m).
We seek to estimate Em,β(z), the number of positive integers of the form n = β+km2 that satisfies
the following conditions:

(1) q(n) is prime,

(2) r(n) is prime,

(3) ∆(n)/m2 is a square-free integer ≤ z, for some positive integer m.

• the second step will give a lower bound of the sum of all the Em,β(z).

5.2 Preparations

If n = β + km2 (that is, n ≡ β mod m2) satisfying the above conditions (1)–(3), then from Eq. (11),
the class of n modulo m2 is an element of the set B(m) of solutions of the following equation:

∆(n) = 0 mod m2 (12)

From the condition D ≤ z, we get
w2

0k
2m4 ≤ ∆(n) ≤ zum2

11



so k ≤ √
zu/(w0m). If the conditions (1)–(3) were independent events, the number of positive integers

of the form n = β + km2 satisfying these conditions would behave like

Fm,β(z) =

√
zu

ζ(2)w0m(log(zm2))2
.

However, these events are actually not independent, so the estimate Fm,β(z) needs to be corrected
by a constant which takes in account the local behaviors of q(n), r(n), ∆(n)/m2. This gives:

Em,β(z) ∼
∏

p

(

1− Nm,p

p2

)(

1− 1

p

)−2 √
zu

w0m(log(zm2))2
,

where Nm,p is the number of solutions in the arithmetic progression n = β mod m2 of the congruence

(q(n)r(n))2
∆(n)

m2
= 0 mod p2. (13)

Let Cp be the number of solutions of the congruence:

(q(n)r(n))2 ∆(n) = 0 mod p2. (14)

1. If p ∤ m, then we see that Nm,p = Cp. The Cp’s can be computed by using the fact that almost all
primes p divide at most one of q(n), r(n) and ∆(n), and for these primes, we can get the solutions
of (14) by counting separately the roots of q(n), r(n) and ∆(n) modulo p. In particular, we have
Cp = O(p). The remaining primes should be treated “by hand” (such primes must divide 2u or
the resultant of two polynomials in {q(n), r(n),∆(n)}).

2. If p | m, then we have two possibilities:

(i) either p | q(β) (resp. p | r(β)) and then q(β + km2) ∈ Z[k] (resp. r(β + km2)) does not
take any prime value (this can happen only for a finite number of primes, namely, the primes
which divide Res (q(x),∆(x)) Res (r(x),∆(x)));

(ii) or p ∤ q(β)r(β), so p ∤ q(n)r(n) for any n = β+ km2 and the Hansel’s Lemma and Lemma 5.2
ensure that there exists an unique solution modulo p2 to the equation

∆(β + km2)

m2
= 0 mod p2,

and therefore, we have Nm,p = 1.

5.3 Lower bound on near prime-order MNT curves

Let β ∈ B′
m = {β ∈ Bm | ∀p dividing m, q(β)r(β) 6= 0 mod p}, and define ρ(m) = #B′

m. The following
lemma gives some basic properties of the function ρ:

Lemma 5.3 Let β ∈ B′
m = {β ∈ Bm | ∀p dividing m, q(β)r(β) 6= 0 mod p}. The function ρ(m) =

#B′
m verifies that:

1. The function ρ is multiplicative.

2. For almost all primes, we have ρ(pe) = ρ(p), ∀e ∈ N∗.

12



3. Let w′
2 be the product of the odd prime divisors of the non-square part of w2 and ℓ = 2ϕ(w′

2). Then
there exist exactly ℓ classes c1, . . . , cℓ modulo 8w′

2 (which can be explicitly computed) such that for
almost all primes, we have

ρ(p) =

{

2 if p = ci mod 8w′
2, for some i ∈ {1, . . . , ℓ},

0 otherwise.

Proof Point (1) follows directly from the Chinese Remainder Theorem. For almost all primes p and all
e ∈ N, ρ(pe) is just the number of solutions to (12) with m = pe, so point (2) follows from the Hansel
Lemma. As for point (3), notice that for almost all primes p, the number of solutions to ∆(x) = 0
mod p is 2 if −w2 is a square modulo p, and 0 otherwise. We conclude the proof by using the Law of
Quadratic Reciprocity.

Let E(z) be the number of near prime order MNT curves having CM discriminant D < z and let M
be an integer. We have

E(z) ≥
∑

m≤M

∑

β∈Bm

Em,β(z) ≥ S1

√
zu

w0

∑

m≤M

f(m)

m(log(zm2))2 (15)

where

S1 =
∏

p

(

1− Cp

p2

)(

1− 1

p

)−2

,

and

f(m) =
∏

p|m

(

1− 1

p

)2 (

1− Cp

p2

)−1

ρ(p),

With the notation of Lemma 5.3, we have

f(p) =

{

2 +O(1/p) if p = ci mod 8w′
2, for some i ∈ {1, . . . , ℓ},

0 otherwise.
(16)

Now, let

S(t) =
∑

m≤t

µ(m)2
f(m)

m
,

where µ is the Möbius function. By using (16), we can follow exactly the method given at the beginning
of the proof of [13], Theorem 8. This gives

S(t) = S2 log(t) +O(1), (17)

where

S2 =
∏

p

(

1− 1

p

)(

1 +
f(p)

p

)

(18)

Still following the proof of [13], Theorem 8, we use the partial summation (see [12], Section 1.5) and
Equation 17 we found that

∑

m≤M

µ(m)2
f(m)

m(log(zm2))2
≥ S2

2

( −1

log(zM2)
+

1

log(z)

)

+O

(

1

log(z)2

)

(19)

Taking M = z1/2 in (19), we get the following theorem.
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Theorem 5.4 Let E(z) be the number of curves in the family with parameters (t, r, q) polynomials in
x, an embedding degree k and a co-factor h having discriminant D less than z. Given:

S1 =
∏

p

(

1− Cp

p2

)(

1− 1

p

)−2

,

and

S2 =
∏

p

(

1− 1

p

)(

1 +
f(p)

p

)

.

Then, the lower bound

E(z) ≥ (S0 + o(1))

√
z

log(z)
,

holds as z → ∞, where S0 =
√
u

4w0

S1S2.

6 Conclusion

In this paper, we first extended Scott-Barreto’s method and presented an explicit and efficient algorithm
that is able to generate all families of the near prime-order MNT curves, given an embedding degree k
and a cofactor h. Furthermore, we provided explicit formulas for the number of these families. Then, we
analyzed the generalized Pell equations of these curves. Finally, we gave statistics of the near prime-order
MNT curves.
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