BIROn - Birkbeck Institutional Research Online

Anabanti, Chimere (2016) Three questions of Bertram on locally maximal sum-free sets. Technical Report. Birkbeck, University of London, London, UK.

Downloaded from:

Usage Guidelines:	
Please refer to usage guidelines at contact lib-eprints@bbk.ac.uk.	or alternatively

Three questions of Bertram on locally maximal sum-free sets

By

Chimere S. Anabanti

Three questions of Bertram on locally maximal sum-free sets

C. S. Anabanti*
c.anabanti@mail.bbk.ac.uk

Abstract

Let G be a finite group, and S a sum-free subset of G. The set S is locally maximal in G if S is not properly contained in any other sum-free set in G. If S is a locally maximal sum-free set in a finite abelian group G, then $G=S \cup S S \cup S S^{-1} \cup \sqrt{S}$, where $S S=\{x y \mid x, y \in S\}$, $S S^{-1}=\left\{x y^{-1} \mid x, y \in S\right\}$ and $\sqrt{S}=\left\{x \in G \mid x^{2} \in S\right\}$. Each set S in a finite group of odd order satisfies $|\sqrt{S}|=|S|$. No such result is known for finite abelian groups of even order in general. In view to understanding locally maximal sum-free sets, Bertram asked the following questions: (i) Does S locally maximal sum-free in a finite abelian group imply $|\sqrt{S}| \leq 2|S|$? (ii) Does there exists a sequence of finite abelian groups G and locally maximal sum-free sets $S \subset G$ such that $\frac{|S S|}{|S|} \rightarrow \infty$ as $|G| \rightarrow \infty$? (iii) Does there exists a sequence of abelian groups G and locally maximal sum-free sets $S \subset G$ such that $|S|<c|G|^{\frac{1}{2}}$ as $|G| \rightarrow \infty$, where c is a constant? In this paper, we answer question (i) in the negation, then (ii) and (iii) in affirmation.

Key words and phrases: Sum-free sets, locally maximal, maximal, finite abelian groups.

1 Preliminaries

A non-empty subset S of a group G is sum-free if there is no solution to the equation $x y=z$ for $x, y, z \in S$; equivalently, if $S \cap S S=\varnothing$, where $S S=\{x y \mid x, y \in S\}$. Let S be a sum-free set in a finite group G, and $x \in S$. As $S \cap x S=\varnothing$ and $S \cup x S \subseteq G$, we obtain that $2|S| \leq|G|$; this tells us that a sum-free set in G has size at most $\frac{|G|}{2}$. Sizes of maximal by cardinality sum-free sets in finite abelian groups were studied (among others) by Erdős [10], Yap [20], Diananda and Yap [9], Rhemtula and Street [17], Babai and Sós [5], and Green and Ruzsa [14]. On the other hand, not much is known about the structures and sizes of maximal by inclusion sum-free sets. For a finite group G, a locally maximal sum-free set in G is a maximal by inclusion sum-free set in G; i.e., a sum-free subset S of G such that given any other sum-free set T in G with $S \subseteq T$, then $S=T$. Since every sum-free set in a finite group G is contained in a locally maximal sum-free set in G, we can gain information about sum-free sets in a group by studying its locally maximal sum-free sets. In connection with Group Ramsey Theory, Street and Whitehead [18] noted that every partition of a finite group G (or in fact, of $G^{*}=G \backslash\{1\}$) into sum-free sets can be embedded into a covering by locally maximal sum-free sets, and hence to find such partitions, it is useful to understand locally maximal sum-free sets. Among other results, they calculated locally maximal sum-free sets in groups of small orders, up to 16 in $[18,19]$ as well as a few higher sizes. Going in another direction, Giudici and Hart [13] started the classification of finite groups containing locally maximal sum-free sets. They classified all finite groups containing locally maximal sum-free sets of

[^0]sizes 1 and 2, as well as some of size 3. The size 3 problem was resolved by Anabanti and Hart [3]. Except for a few finite groups containing locally maximal sum-free sets of size 4 classified in [1, 4], the classification problem is open for size $k \geq 4$. A locally maximal sum-free set in an abelian group G can be characterised as a sum-free set S in G satisfying
\[

$$
\begin{equation*}
G=S \cup S S \cup S S^{-1} \cup \sqrt{S} \tag{1.1}
\end{equation*}
$$

\]

where $S S=\{x y \mid x, y \in S\}, S S^{-1}=\left\{x y^{-1} \mid x, y \in S\right\}$ and $\sqrt{S}=\left\{x \in G \mid x^{2} \in S\right\}$ (see [13, Lemma 3.1]). Each (locally maximal sum-free) set S in a finite (abelian) group of odd order satisfies $|\sqrt{S}|=|S|$. No such result is known for finite abelian groups of even order in general. Bertram [6, p.41] showed that there are some examples of locally maximal sum-free sets S in abelian groups of even order satisfying $|\sqrt{S}|=2|S|$. His examples were in the cyclic group $C_{4 n}=\left\langle x \mid x^{4 n}=1\right\rangle$ of order $4 n$ with the locally maximal sum-free set S given as $\left\{x^{2}, x^{6}, x^{10}, x^{14}, \cdots, x^{4 n-2}\right\}$, as well as the multiplicative group $C_{4}^{2}=\left\langle x_{1}, x_{2} \mid x_{1}^{4}=1=x_{2}^{4}, x_{1} x_{2}=x_{2} x_{1}\right\rangle$, with $S=\left\{x_{1}^{2}, x_{1}^{2} x_{2}^{2}, x_{1}^{2} x_{2}^{3}, x_{1}^{2} x_{2}\right\}$. He remarked that there is ample evidence that every locally maximal sum-free set S in an abelian group of even order satisfies $|\sqrt{S}| \leq 2|S|$. While giving example with $\left\{x_{1}^{2}, x_{1}^{2} x_{2}^{2}, x_{1}^{2} x_{2}^{3}\right\}$ in C_{4}^{2}, he emphasized that his assertion is not necessarily true for sum-free sets which are not locally maximal. To better understand locally maximal sum-free sets, Bertram [6, Section 5] asked the following questions:

Question 1. Does every locally maximal sum-free set S in a finite abelian group satisfy $|\sqrt{S}| \leq 2|S|$?
Question 2. Does there exists a sequence of finite abelian groups G and locally maximal sum-free sets $S \subset G$ such that $\frac{|S S|}{|S|} \rightarrow \infty$ as $|G| \rightarrow \infty$?

Question 3. Does there exists a sequence of finite abelian groups G and locally maximal sum-free sets $S \subset G$ such that $|S|<c|G|^{\frac{1}{2}}$ as $|G| \rightarrow \infty$, where c is a constant?

This paper is aimed at answering these questions. In the next section, we answer the first question in the negation, and the other two questions in affirmation.

2 Main results

Suppose S is a locally maximal sum-free set in a finite abelian group G satisfying $|\sqrt{S}|>2|S|$. As each element of a finite group of odd order has exactly one square root, $|G|$ must be even. Now,

$$
\begin{equation*}
\frac{-1+\sqrt{12|G|-23}}{6} \leq|S|<\frac{|G|}{4} \tag{2.1}
\end{equation*}
$$

The first inequality of (2.1) follows from Theorem 4(iii) of [6] which can be proved from the observation that $|S S| \leq \frac{|S|(|S|+1)}{2},\left|S S^{-1}\right| \leq|S|^{2}-|S|+1$ and $|\sqrt{S}| \leq \frac{|G|}{2}$. We note that $|\sqrt{S}| \leq \frac{|G|}{2}$ follows from the fact that \sqrt{S} is sum-free in an abelian group whenever S is sum-free, and that a sum-free set in a finite group G has size at most $\frac{|G|}{2}$. The latter inequality of (2.1) follows from the hypothesis that $2|S|<|\sqrt{S}|$ as well as $|\sqrt{S}| \leq \frac{|G|}{2}$. Guided by (2.1), we wrote a series of programs in GAP[12] to check for locally maximal sum-free sets S in abelian groups G of even order less than or equal to 52 such that $|\sqrt{S}|>2|S|$. For faster computation in [12], we exempt the following groups all of whose locally maximal sum-free sets S clearly satisfy $|\sqrt{S}| \leq 2|S|$: finite cyclic groups, elementary abelian 2-groups and all groups of odd order. Among abelian groups of even order up to 52 , only in two groups of order $40\left(C_{2} \times C_{4} \times C_{5}\right.$ and $\left.C_{2}^{3} \times C_{5}\right)$, a group of order $44\left(C_{2}^{2} \times C_{11}\right)$ and two
groups of order $48\left(C_{2}^{4} \times C_{3}\right.$ and $\left.C_{4}^{2} \times C_{3}\right)$ that we found locally maximal sum-free sets S satisfying $|\sqrt{S}|>2|S|$. We note here that the locally maximal sum-free sets S satisfying $|\sqrt{S}|>2|S|$ in the listed groups of order less than 52 are all of size 7 . However, a group of order 60 (viz. $C_{2}^{2} \times C_{3} \times C_{5}$) contains locally maximal sum-free sets S of sizes 7 and 9 satisfying $|\sqrt{S}|>2|S|$. We are thereby moved by these experimental results to answer Question 1 in the negation (see Theorem 2.1 below).

Theorem 2.1. There exists a locally maximal sum-free set S in the group $C_{2}^{3} \times C_{5}$ of order 40 such that $|\sqrt{S}|>2|S|$.

Proof. Let $G=C_{2}^{3} \times C_{5}$, where $C_{2}^{3} \times C_{5}=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right| x_{1}^{2}=1=x_{2}^{2}, x_{3}^{2}=1=x_{4}^{5}, x_{i} x_{j}=$ $x_{j} x_{i}$ for $\left.1 \leq i, j \leq 4\right\rangle$. We define a subset S of G as $S:=\left\{x_{3}, x_{1} x_{2}, x_{2} x_{3}, x_{4}^{2}, x_{1} x_{4}^{2}, x_{4}^{3}, x_{1} x_{4}^{3}\right\}$. Our claim is that S is locally maximal sum-free in G, and $|\sqrt{S}|>2|S|$. The sum-free property of S is easy to verify. For the local maximality condition, as $S=S^{-1}$, in the light of Equation (1.1), we only show that $G=S \cup S S \cup \sqrt{S}$. Now, $S S=\left\{1, x_{1}, x_{2}, x_{4}, x_{1} x_{3}, x_{1} x_{4}, x_{1} x_{2} x_{3}, x_{2} x_{4}^{2}, x_{3} x_{4}^{2}, x_{1} x_{2} x_{4}^{2}\right.$, $\left.x_{1} x_{3} x_{4}^{2}, x_{2} x_{3} x_{4}^{2}, x_{2} x_{4}^{3}, x_{3} x_{4}^{3}, x_{4}^{4}, x_{1} x_{2} x_{3} x_{4}^{2}, x_{1} x_{2} x_{4}^{3}, x_{1} x_{3} x_{4}^{3}, x_{1} x_{4}^{4}, x_{2} x_{3} x_{4}^{3}, x_{1} x_{2} x_{3} x_{4}^{3}\right\}$ and $\sqrt{S}=\left\{x_{4}\right.$, $x_{4}^{4}, x_{3} x_{4}, x_{3} x_{4}^{4}, x_{2} x_{4}, x_{2} x_{4}^{4}, x_{2} x_{3} x_{4}, x_{2} x_{3} x_{4}^{4}, x_{1} x_{4}, x_{1} x_{4}^{4}, x_{1} x_{3} x_{4}, x_{1} x_{3} x_{4}^{4}, x_{1} x_{2} x_{4}, x_{1} x_{2} x_{4}^{4}, x_{1} x_{2} x_{3} x_{4}$, $\left.x_{1} x_{2} x_{3} x_{4}^{4}\right\}$. Thus, $S \cup S S \cup \sqrt{S}=G$ and we conclude that S is locally maximal. Our calculation shows that $|\sqrt{S}|=16>14=2|S|$. This completes the proof!

It will also be interesting to determine whether or not there exists a sequence of finite abelian groups G and locally maximal sum-free sets $U \subset G$ such that $|\sqrt{U}|>2|U|$. At the moment, we haven't been able to obtain such a sequence. For the rest of the section, we focus on answering Questions 2 and 3 of Section 1. Suppose $S=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ is a locally maximal sum-free set in a finite abelian group G. As $S S \subseteq\left\{x_{1} x_{1}, \cdots, x_{1} x_{m}\right\} \cup\left\{x_{2} x_{2}, \cdots, x_{2} x_{m}\right\} \cup \cdots \cup\left\{x_{m-1} x_{m-1}, x_{m-1} x_{m}\right\}$ $\cup\left\{x_{m} x_{m}\right\}$, we have that $|S S| \leq m+(m-1)+\cdots+2+1=\frac{m(m+1)}{2}$. If $|S S| \approx \frac{|S|(|S|+1)}{2}$, then $\frac{|S S|}{|S|} \approx \frac{|S|+1}{2}$. So there could be a possibility of answering Question 2 in affirmation. We think of a possible group whose elements are either in S or $S S$ for a locally maximal sum-free set S so that $|S|$ will be as small as possible. From the study of groups with similar properties [18, 4, 2], the kind of groups that come to mind are the elementary abelian 2 -groups since if S is a locally maximal sum-free set in an elementary abelian 2-group G, then $S S=S S^{-1}$ and $\sqrt{S}=\varnothing$; so equation (1.1) yields $G=S \cup S S$. But $|S S| \leq \frac{|S|(|S|+1)}{2}-|S|+1$ because $\left|S^{2}\right|=\#\left\{x^{2} \mid x \in S\right\}=1$; so $|G| \leq \frac{|S|^{2}+|S|+2}{2}$. Thus, if an elementary abelian 2-group G contains a locally maximal sum-free set S, then $|S| \geq \frac{-1+\sqrt{8|G|-7}}{2}$. This bound is tight since the set $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{1} x_{2} x_{3} x_{4}\right\}$ is locally maximal sum-free in $C_{2}^{4}=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right| x_{i}^{2}=1, x_{i} x_{j}=x_{j} x_{j}$ for $\left.1 \leq i, j \leq 4\right\rangle$. We are now faced with the question of what possibly the minimal size of a locally maximal sum-free set in such groups can be? To the best of our knowledge, the problem of obtaining minimal sizes of locally maximal sum-free sets in finite groups was first raised by Street and Whitehead [18, p. 226], and subsequently by Babai and Sós [5, p. 111]. This problem is also of great interest to finite geometers who study the packing problem: determination of minimal size of a complete cap in $\mathrm{PG}(n-1,2)$. The projective space of dimension n over $\mathrm{GF}(q)$ is denoted by $\mathrm{PG}(n, q)$. A k-cap in $\mathrm{PG}(n, q)$ is a set of k points, no three of which are collinear. A k-cap (see [11]) is called complete if it is not contained in a $(k+1)$-cap of the same projective space. Complete caps in $\mathrm{PG}(n-1,2)$ are synonymous to locally maximal sum-free sets in C_{2}^{n}. Klopsch and Lev [16, Section 3] described its connection with Coding theory. A number of researchers (for instance, $[7,8,15]$) have proved some bounds for the minimal sizes of locally maximal sum-free sets in elementary abelian 2-groups. An interested reader may see [8] for analogue of the best known bound on the minimal sizes of locally maximal sum-free sets in elementary abelian 2-groups. A direct analogue of the results of [7] gave rise to Theorem 2.2 below.

Notation. We write $C_{2}^{n}=\left\langle x_{1}, \cdots, x_{n} \mid x_{i}^{2}=1, x_{i} x_{j}=x_{j} x_{i}, 1 \leq i, j \leq n\right\rangle$ for the elementary abelian 2 -group of finite rank n. In C_{2}^{n}, we call the identity element the unique word of length 0 , elements with single letter are called words of length 1 , elements with double letters (example $x_{i} x_{j}$, $i \neq j$) are called words of length 2 , and so on. We denote the length of a word w by $l(w)$, and write $w_{i j}$ for words of length i in C_{2}^{j}; i.e., $w_{i j}:=\left\{w \in C_{2}^{j} \mid l(w)=i\right\}$. Finally, we write $\delta(G)$ for the minimal size of a locally maximal sum-free set in G.

Theorem 2.2. For $t \geq 2, \delta\left(C_{2}^{2 t}\right) \leq 2^{t+1}-3$ and $\delta\left(C_{2}^{2 t+1}\right) \leq 3\left(2^{t}\right)-3$.
Proof. The result follows from Claims 2.0.1 and 2.0.2 below.
Claim 2.0.1. For $n \geq 4$, let $G=C_{2}^{n}=C_{2}^{q} C_{2}^{r}$, where $q+r=n$ and $q=r+1$ or $q=r+2$ according as n being odd or even. With the generators of C_{2}^{q} and C_{2}^{r} given as $\left\{x_{1}, \cdots, x_{q}\right\}$ and $\left\{x_{q+1}, \cdots, x_{q+r}\right\}$ respectively, the set

$$
V:=\left\{x_{2}, \cdots, x_{n}\right\} \cup\left\{x_{1} x_{q+1}, \cdots, x_{1} x_{q+r}\right\} \cup \bigcup_{i=2}^{r}\left(w_{i r} x_{i} \cup w_{i r} x_{1} x_{i}\right) \cup \bigcup_{\substack{i \geq 3 \\ \text { and odd }}} w_{i q}
$$

is locally maximal sum-free in G.
Claim 2.0.2. The locally maximal sum-free set V constructed above attains the defined upper bound, with $r=t$ or $t-1$ according as n being odd or even.

We now answer Questions 2 and 3 respectively (in affirmation) in Observations 2.3 and 2.4 below.
Observation 2.3. Theorem 2.2 guarantees the existence of a locally maximal sum-free set (example with the locally maximal sum-free set V in the proof of Theorem 2.2) of size $2^{n+1}-3$ in $C_{2}^{2 n}$ and size $3\left(2^{n}\right)-3$ in $C_{2}^{2 n+1}$ for $n \geq 2$. In the first case,

$$
\frac{|V V|}{|V|}=\frac{2^{2 n}-2^{n+1}+3}{2^{n+1}-3}>2^{n-1}-1 \rightarrow \infty \text { as } n \rightarrow \infty
$$

and for the latter case, we have

$$
\frac{|V V|}{|V|}=\frac{2^{2 n+1}-3\left(2^{n}\right)+3}{3\left(2^{n}\right)-3}>\frac{2^{n+1}-3}{3} \rightarrow \infty \text { as } n \rightarrow \infty
$$

Observation 2.4. Let G be an elementary abelian 2-group of finite rank $2 n$ for $n \geq 2$. Theorem 2.2 guarantees the existence of a locally maximal sum-free set (example with the locally maximal sum-free set V in the proof of Theorem 2.2) of size $2^{n+1}-3$ in G. Indeed, V satisfies the condition of Question 3 as

$$
|V|=2^{n+1}-3<2^{n+1}=2\left(|G|^{\frac{1}{2}}\right) \text { as }|G| \rightarrow \infty
$$

with $c=2$.

References

[1] C. S. Anabanti, On locally maximal product-free sets in 2-groups of coclass 1, Quasigroups and Related Systems, 24(2) (2016), 151-156.
[2] C. S. Anabanti, G. Erskine and S. B. Hart, Groups whose locally maximal product-free sets are complete, arXiv: 1609.09662 (2016), 16pp.
[3] C. S. Anabanti and S. B. Hart, Groups containing small locally maximal product-free sets, International Journal of Combinatorics, vol. 2016, Article ID 8939182 (2016), 5pp.
[4] C. S. Anabanti and S. B. Hart, On a conjecture of Street and Whitehead on locally maximal product-free sets, Australasian Journal of Combinatorics, 63(3) (2015), 385-398.
[5] L. Babai and V. T. Sós, Sidon sets in groups and induced subgraphs of Cayley graphs, European Journal of Combinatorics, 6 (1985), 101-114.
[6] E. A. Bertram, Some applications of Graph Theory to Finite Groups, Discrete Mathematics, 44 (1983), 31-43.
[7] W. E. Clark and J. Pedersen, Sum-free sets in vector spaces over $G F(2)$, Journal of Combinatorial Theory Series A 61 (1992), 222-229.
[8] A. A. Davydov, E. M. Gabidulin and L. M. Tombak, Linear codes with covering radius 2 and other new covering codes, IEEE Trans. Information Theory, 37(1) (1991), 219-224.
[9] P. H. Diananda and H. P. Yap, Maximal sum-free sets of elements of finite groups, Proceedings of the Japan Academy, 45(1) (1969), 1-5.
[10] P. Erdős, Extremal problems in Number theory, Proc. Sympos. Pure Math., American Mathematical Society Providence 8 (1965), 181-189.
[11] G. Faina and F. Pambianco, On the spectrum of the values k for which a complete k-cap in $P G(n, q)$ exists, Journal of Geometry, 62 (1998), 84-98.
[12] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.8.6; 2016, (http://www.gap-system.org).
[13] M. Giudici and S. Hart, Small maximal sum-free sets, Electron. J. Combin., 16 (2009), 17pp.
[14] B. Green and I. Z. Ruzsa, Sum-free sets in abelian groups, Israel Journal of Mathematics, 147 (2005), 157-188.
[15] J. J. E. Imber and D. L. Wehlau, A family of small complete caps in $P G(n, 2)$, European Journal of Combinatorics, 24 (2003), 613-615.
[16] B. Klopsch and V. F. Lev, How long does it take to generate a group? Journal of Algebra, 261 (2003), 145-171.
[17] A. H. Rhemtulla and A. P. Street, Maximal sum-free sets in finite abelian groups, Bull. Austral. Math, Soc. 2 (1970), 289-297.
[18] A. P. Street and E. G. Whitehead Jr., Group Ramsey Theory, Journal of Combinatorial Theory Series A, 17 (1974), 219-226.
[19] A. P. Street and E. G. Whitehead, Jr., Sum-free sets, difference sets and cyclotomy, Comb. Math., Lect. notes in Mathematics, Springer-Verlag, 403 (1974), 109-124.
[20] H. P. Yap, Maximal sum-free sets of group elements, J. Lond. Math. Soc., 44 (1969), 131-136.

[^0]: *The author is supported by a Birkbeck PhD Scholarship.

