A note on the generalized Hamming weights of Reed–Muller codes

Peter Beelen*

Abstract

In this note, we give a very simple description of the generalized Hamming weights of Reed–Muller codes. For this purpose, we generalize the well-known Macaulay representation of a nonnegative integer and state some of its basic properties.

Keywords: Reed–Muller code, Macaulay decomposition, generalized Hamming weight. MSC: 11H71, 94B27

1 Preliminaries

Let \mathbb{F}_q be the finite field with q elements and denote by $\mathbb{A}^m := \mathbb{A}^m(\mathbb{F}_q)$ the *m*-dimensional affine space defined over \mathbb{F}_q . This space consists of q^m points (a_1, \ldots, a_m) with $a_1, \ldots, a_m \in \mathbb{F}_q$. Let $T(m) := \mathbb{F}_q[x_1, \ldots, x_m]$ denote the ring of polynomials in m variables and coefficients in \mathbb{F}_q . Further let $T_{\leq d}(m)$ be the set of polynomials in T(m) of total degree at most d. A monomial $X_1^{\alpha_1} \cdots X_m^{\alpha_m}$ is called reduced if $(\alpha_1, \ldots, \alpha_m) \in \{0, 1, \ldots, q-1\}^m$. Similarly a polynomial $f \in T(m)$ is called reduced if it is an \mathbb{F}_q -linear combination of reduced monomials. We denote the set of reduced polynomials by $T^{\text{red}}(m)$ and define $T_{\leq d}^{\text{red}}(m) :=_{\leq d}^T (m) \cap T^{\text{red}}(m)$.

One reason for considering reduced polynomials comes from coding theory. Indeed Reed–Muller codes are obtained by evaluating certain polynomials in the points of \mathbb{A}^m , but the evaluation map

 $\operatorname{Ev}: T(m) \to \mathbb{F}_q^{q^m}$, defined by $\operatorname{Ev}(f) = (f(P))_{P \in \mathbb{A}}$

is not injective. However, its restriction to $T^{\text{red}}(m)$ is. In fact the kernel of Ev consists precisely of the ideal $I \subset T(m)$ generated by the polynomials $x_i^q - x_i$ $(1 \le i \le m)$. Working with reduced polynomials is simply a convenient way to take this into account, since for two reduced polynomials $f_1, f_2 \in T(m)$ the equality $f_1 + I = f_2 + I$ holds if and only if $f_1 = f_2$.

The Reed-Muller code $\operatorname{RM}_q(d,m)$ is the set of vectors from \mathbb{F}_q^{m} obtained by evaluating polynomials of total degree up to d in the q^m points of \mathbb{A}^m , that is to say:

$$RM_q(d,m) := \{ (f(P))_{P \in \mathbb{A}^m} : f \in T_{\leq d}(m) \}.$$

By the above, we also have $\operatorname{RM}_q(d,m) := \{(f(P))_{P \in \mathbb{A}^m} : f \in T^{\operatorname{red}}_{\leq d}(m)\}$ and moreover, we have

$$\dim \operatorname{RM}_q(d, m) = \dim T_{\leq d}^{\operatorname{red}}(m).$$
(1)

Reed-Muller codes $\operatorname{RM}_q(d, m)$ have been studied extensively for their elegant algebraic properties. Their generalized Hamming weights $d_r(\operatorname{RM}_q(d, m))$ have been determined in [4] by Heijnen and Pellikaan. For a general linear code $C \subseteq \mathbb{F}_q^n$ these are defined as follows:

$$d_r(C) := \min_{D \subseteq C: \dim D = r} |\operatorname{supp}(D)|,$$

^{*}Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark, pabe@dtu.dk

where the minimum is taken over all r-dimensional \mathbb{F}_q -linear subspaces D of C and where $\operatorname{supp}(D)$ denotes the support size of D, that is to say

$$supp(D) := \#\{i : \exists (c_1, \dots, c_n) \in D, c_i \neq 0\}.$$

In case of Reed–Muller codes, there is a direct relation between generalized Hamming weights and the number of common solutions to systems of polynomial equations. Indeed, if $D \subset \operatorname{RM}_q(d,m)$ is spanned by $(f_i(P))_{P \in \mathbb{A}}$ for $f_1, \ldots, f_r \in T_{\leq d}^{\operatorname{red}}(m)$, then $\operatorname{supp}(D) = q^m - \# Z(f_1, \ldots, f_r)$ where $Z(f_1, \ldots, f_r) := \{P \in \mathbb{A}^m : f_1(P) = \cdots = f_r(P) = 0\}$ denotes the set of common zeros of f_1, \ldots, f_r in the *m*-dimensional affine space \mathbb{A}^m over \mathbb{F}_q . Therefore, if we define

$$\bar{e}_r^{\mathbb{A}}(d,m) := \max\left\{ |\mathsf{Z}(f_1,\ldots,f_r)| : f_1,\ldots,f_r \in T_{\leq d}^{\mathrm{red}}(m) \text{ linearly independent} \right\}, \quad (2)$$

then $d_r(\operatorname{RM}_q(d,m)) = q^m - \bar{e}_r^{\mathbb{A}}(d,m)$. Note that $T^{\operatorname{red}}(m)$ is a vector space over \mathbb{F}_q of dimension q^m and that a reduced polynomial has total degree at most m(q-1). Therefore $T^{\operatorname{red}}(m) = T_{\leq m(q-1)}^{\operatorname{red}}(m)$. This implies in particular that $\operatorname{RM}_q(d,m) = \mathbb{F}_q^{m}$ for $d \geq m(q-1)$. Therefore, we will always assume that $d \leq m(q-1)$.

The result of Heijnen–Pellikaan in [4] on the value of $d_r(\mathrm{RM}_q(d, m))$ can now be restated as follows, see for example [2].

$$\bar{e}_r^{\mathbb{A}}(d,m) = \sum_{i=1}^m \mu_i q^{m-i},\tag{3}$$

where (μ_1, \ldots, μ_m) is the *r*-th *m*-tuple in descending lexicographic order among all *m*-tuples $(\beta_1, \ldots, \beta_m) \in \{0, 1, \ldots, q-1\}^m$ satisfying $\beta_1 + \cdots + \beta_m \leq d$.

Following the notation in [4], we denote with $\rho_q(d, m)$ the dimension of $\operatorname{RM}_q(d, m)$. Equation (1) implies that $\rho_q(d, m) = \dim(T_{\leq d}^{\operatorname{red}}(m))$. In particular, we have

$$\rho_q(d,m) = \dim(T_{\leq d}(m)) = \binom{m+d}{d}, \text{ if } d \leq q-1, \tag{4}$$

since $T_{\leq d}(m) = T_{\leq d}^{\text{red}}(m)$ if d < q. Here as well as later on we use the convention that $\binom{a}{b} = 0$ if a < b. In particular we have $\rho_q(d, m) = 0$ if d < 0. As shown in [1, §5.4], for the general case $d \leq m(q-1)$, we have

$$\rho_q(d,m) = \dim(T_{\le d}^{\text{red}}(m)) = \sum_{i=0}^d \sum_{j=0}^m (-1)^j \binom{m}{j} \binom{m-1+i-qj}{m-1}.$$
(5)

In this note, we will present an easy-to-obtain expression for $\bar{e}_r^{\mathbb{A}}(d,m)$ involving a certain representation of the number $\rho_q(d,m) - r$ that we introduce in the next section.

2 The *d*-th Macaulay representation with respect to q

Let d be a positive integer. The d-th Macaulay (or d-binomial) representation, of a non-negative integer N is a way to write N as sum as certain binomial coefficients. To be precise

$$N = \sum_{i=1}^d \binom{s_i}{i},$$

where the s_i integers satisfying $s_d > s_{d-1} > \cdots > s_1 \ge 0$. The usual convention that $\binom{a}{b} = 0$ if a < b, is used. For example, the *d*-th Macaulay representation of 0 is given

by $0 = \sum_{i=1}^{d} {\binom{i-1}{i}}$. Given d and N the integers s_i exist and are unique. The Macaulay representation is among other things used for the study of Hilbert functions of graded modules, see for example [3]. It is well known (see for example [3]) that if N and M are two nonnegative integers with Macaulay representations given by (k_d, \ldots, k_1) and (ℓ_d, \ldots, ℓ_1) then $N \leq M$ if and only if $(k_d, \ldots, k_1) \preccurlyeq (\ell_d, \ldots, \ell_1)$, where \preccurlyeq denotes the lexicographic order.

For our purposes it is more convenient to define $m_i := s_i - i$. We then obtain

$$N = \sum_{i=1}^{d} \binom{m_i + i}{i},\tag{6}$$

where m_i are integers satisfying $m_d \ge m_{d-1} \ge \cdots \ge m_1 \ge -1$. The reason for this is that for $d \le q-1$ we have $\rho_q(d,m) = \binom{m+d}{d}$. Therefore, we can interpret Equation (6) as a statement concerning dimensions of the Reed–Muller codes $\operatorname{RM}_q(i,m_i)$. For a suitable choice of N, it turns out that the m_i completely determine the value of $\bar{e}_r^{\mathbb{A}}(d,m)$ if $d \le q-1$. For $d \ge q$, even though the dimension $\rho_q(d,m)$ is not longer given by $\binom{m+d}{d}$, there exists a variant of the usual d-th Macaulay representation that turns out to be equally meaningful for Reed–Muller codes. Before stating this representation, we give a lemma.

Lemma 2.1. Let $m \ge 1$ be an integer. We have

$$\rho_q(d,m) = \sum_{i=0}^{\min\{d,q-1\}} \rho_q(d-i,m-1).$$

Proof. Any polynomial $f \in T(m)$ can be seen as a polynomial in the variable X_m with coefficients in T(m-1). This implies that $T(m) = \sum_{i\geq 0} X_m^i T(m)$, where the sum is a direct sum. Similarly we can write

$$T_{\leq d}^{\rm red}(m) = \sum_{i=0}^{\min\{d,q-1\}} X_m^i T_{\leq d-i}^{\rm red}(m-1).$$

The result now follows.

A consequence of this lemma is the following.

Corollary 2.2. Let d = a(q-1) + b for integers a and b satisfying $a \ge 0$ and $1 \le b \le q-1$. Further suppose that $m \ge a$. Then

$$\rho_q(d,m) - 1 = \sum_{j=0}^{a-1} \sum_{\ell=0}^{q-2} \rho_q(d-j(q-1)-\ell, m-j-1) + \sum_{i=1}^{b} \rho_q(i, m-a-1).$$

Proof. This follows using Lemma 2.1 repeatedly. First applying the lemma to each sum within the double summation on the right-hand side, we see that

$$\sum_{j=0}^{a-1} \sum_{\ell=0}^{q-2} \rho_q (d-j(q-1)-\ell, m-j-1) = \sum_{j=0}^{a-1} \left(\rho_q (d-j(q-1), m-j) - \rho_q (d-(j+1)(q-1), m-j-1) \right) = \rho_q (d,m) - \rho_q (d-a(q-1), m-a) = \rho_q (d,m) - \rho_q (b,m-a).$$

Using the same lemma to rewrite the single summation on the right-hand side in Equation (9) we see that if m > a

$$\sum_{i=1}^{b} \rho_q(i, m-a-1) = \rho_q(b, m-a) - \rho_q(0, m-a-1) = \rho_q(b, m-a) - 1,$$

while if m = a, the single summation equals 0 and the double summation simplifies to $\rho_q(d,m) - 1$. In either case, we obtain the desired result

We can now show the following.

Theorem 2.3. Let $N \ge 0$ and $d \ge 1$ be integers and q a prime power. Then there exist uniquely determined integers m_1, \ldots, m_d satisfying

- 1. $N = \sum_{i=1}^{d} \rho_q(i, m_i),$
- $2. -1 \le m_1 \le \cdots \le m_d,$
- 3. for all *i* satisfying $1 \le i \le d q + 1$, either $m_{i+q-1} > m_i$ or $m_{i+q-1} = m_i = -1$.

Proof. We start by showing uniqueness. Suppose that

$$N = \sum_{i=1}^{d} \rho_q(i, m_i) = \sum_{i=1}^{d} \rho_q(i, n_i)$$
(7)

and the integers n_1, \ldots, n_d and m_1, \ldots, m_d satisfy the conditions from the theorem. First of all, if $m_d = -1$ or $n_d = -1$ then N = 0. Either assumption implies that $(m_d, \ldots, m_1) =$ $(-1, \ldots, -1) = (n_d, \ldots, n_1)$. Indeed $n_i \ge 0$ or $m_i \ge 0$ for some *i* directly implies that N > 0. Therefore we from now on assume that $m_d \ge 0$ and $n_d \ge 0$. To arrive at a contradiction, we may assume without loss of generality that $n_d \le m_d - 1$.

Define e to be the smallest integer such that $n_e \ge 0$. Equation (7) can then be rewritten as

$$N = \sum_{i=1}^{d} \rho_q(i, m_i) = \sum_{i=e}^{d} \rho_q(i, n_i)$$
(8)

Condition 3 from the theorem implies that $n_{i-q+1} < n_i$ for all *i* satisfying $e \le i \le d$. Now write d - e + 1 = a(q-1) + b for integers *a* and *b* satisfying $a \ge 0$ and $1 \le b \le q-1$. With this notation, we obtain that for any $0 \le j \le a-1$ and $0 \le \ell \le q-2$ we have that

$$n_{d-j(q-1)-\ell} \le n_d - j \le m_d - j - 1.$$

In particular choosing j = a - 1 and $\ell = 0$, this implies that $m_d \ge a + n_{q-1+b} \ge a + 1 + n_b \ge a$. Using these observations, we obtain from Equation (7) that

$$\rho_q(d, m_d) \le N = \sum_{i=e}^d \rho_q(i, n_i) \le \sum_{j=0}^{a-1} \sum_{\ell=0}^{q-2} \rho_q(d-j(q-1)-\ell, m_d-j-1) + \sum_{i=1}^b \rho_q(e+i-1, m_d-a-1)$$
(9)

Applying the same technique as in the proof of Corollary 2.2, we derive that

$$\sum_{j=0}^{a-1} \sum_{\ell=0}^{q-2} \rho_q(d-j(q-1)-\ell, m_d-j-1) = \rho_q(d, m_d) - \rho_q(b+e-1, m_d-a)$$

and Equation (9) can be simplified to

$$\rho_q(d, m_d) \le \rho_q(d, m_d) - \rho_q(b + e - 1, m_d - a) + \sum_{i=1}^b \rho_q(e + i - 1, m_d - a - 1).$$
(10)

For $m_d = a$ the right-hand side equals $\rho_q(d, m_d) - 1$, leading to a contradiction. If $m_d > q$, Equation (10) implies

$$\rho_q(b+e-1, m_d-a) \leq \sum_{i=1}^{b} \rho_q(e+i-1, m_d-a-1) \\
= \sum_{j=0}^{b-1} \rho_q(e+b-1-j, m_d-a-1) \\
< \sum_{j=0}^{\min\{e+b-1, q-1\}} \rho_q(e+b-1-j, m_d-a-1) \\
= \rho_q(b+e-1, m_d-a),$$

where in the last equality we used Lemma 2.1. Again we arrive at a contradiction. This completes the proof of uniqueness of the d-th Macaulay representation with respect to q.

Now we show existence. Let d, N and q be given. We will proceed with induction on d. For d = 1, note that $\rho_q(1, m) = m + 1$ for any $m \ge -1$. Therefore, for a given $N \ge 0$, we can write $N = \rho_q(1, N - 1)$.

Now assume the theorem for d-1. There exists $m_d \ge -1$ such that

$$\rho_q(d, m_d) \le N < \rho_q(d, m_d + 1).$$
(11)

Applying the induction hypothesis on $N - \rho_q(d, m_d)$, we can find m_{d-1}, \ldots, m_1 satisfying the conditions of the theorem for d-1. In particular we have that

- 1. $N \rho_q(d, m_d) = \sum_{i=1}^{d-1} \rho_q(i, m_i),$
- 2. $-1 \le m_1 \le \cdots \le m_{d-1}$,
- 3. $m_{i+(q-1)} > m_i$ for all $1 \le i \le d-q$.

Clearly this implies that $N = \sum_{i=1}^{d} \rho_q(i, m_i)$, but it is not clear a priori that m_1, \ldots, m_d satisfy conditions 2 and 3 as well. Conditions 2 and 3 would follow once we show that $m_d \ge m_{d-1}$ and either $m_d > m_{d-q+1}$ or $m_d = m_{d-q+1} = -1$. First of all, if $m_d = -1$, then N = 0 and $(m_d, \ldots, m_1) = (-1, \ldots, -1)$. Hence there is nothing to prove in that case. Assume $m_d \ge 0$. From Equation (11) and Lemma 2.1 we see that

$$N - \rho_q(d, m_d) < \rho_q(d, m_d + 1) - \rho_q(d, m_d) = \sum_{i=1}^{\min\{d, q-1\}} \rho_q(d-i, m_d).$$
(12)

First suppose that $d \leq q - 1$. First of all, Condition 3 is empty in that setting. Further, Equation (12) implies

$$N - \rho_q(d, m_d) < \sum_{i=1}^d \rho_q(d-i, m_d) = \sum_{i=1}^{d-1} \rho_q(d-i, m_d) + 1$$

and hence

$$N - \rho_q(d, m_d) \le \sum_{i=1}^{d-1} \rho_q(d-i, m_d) = \sum_{j=0}^{d-2} \rho_q(d-1-j, m_d) < \rho_q(d-1, m_d+1).$$

This shows that $m_{d-1} \leq m_d$ as desired.

Now suppose that $d \ge q$. In this situation Equation (12) implies

$$N - \rho_q(d, m_d) < \sum_{i=1}^{q-1} \rho_q(d-i, m_d) = \sum_{j=0}^{q-2} \rho_q(d-1-j, m_d) < \rho_q(d-1, m_d+1).$$

Hence $m_{d-1} \leq m_d$ as before. Finally assume that $m_d \leq m_{d-q+1}$. Then by the previous and Condition 2, we have $m_d = m_{d-1} = \cdots = m_{d-q+1}$. Hence $N \geq \sum_{i=0}^{q-1} \rho_q(d-i, m_d) = \rho_q(d, m_d + 1)$ which is in contradiction with Equation (11). This concludes the induction step and hence the proof of existence.

We call the representation of N in the above theorem the d-th Macaulay representation of N with respect to q. One retrieves the usual d-th Macaulay representation letting q tend to infinity. We refer to (m_d, \ldots, m_1) as the coefficient tuple of this representation. A direct corollary of the above is the following.

Corollary 2.4. The coefficient tuple (m_d, \ldots, m_1) of the d-th Macaulay representation with respect to q of a nonnegative integer N can be computed using the following greedy algorithm: The coefficient m_{d-i} can be computed recursively (starting with i = 0) as the unique integer $m_{d-i} \ge -1$ such that

$$\rho_q(d-i, m_{d-i}) \le N - \sum_{j=d-i+1}^d \rho_q(j, m_j) < \rho_q(d-i, m_{d-i}+1).$$

Proof. From the existence-part of the proof of Theorem 2.3 it follows directly that the given greedy algorithm finds the desired coefficients. \Box

A further corollary is the following. As before \leq denotes the lexicographic order.

Corollary 2.5. Suppose the N and M are two nonnegative integers whose respective coefficient tuples are (n_d, \ldots, n_1) and (m_d, \ldots, m_1) . Then

$$N \leq M$$
 if and only if $(n_d, \ldots, n_1) \leq (m_d, \ldots, m_1)$.

Proof. Assume $(n_d, \ldots, n_1) \preceq (m_d, \ldots, m_1)$. It is enough to show the corollary in case $n_d < m_d$. We know from the previous corollary that n_d and m_d may be determined using the given greedy algorithm. In particular this implies that $n_d < m_d$ implies

$$N < \rho_q(d, n_d + 1) \le \rho_q(d, m_d) \le M$$

Assume that $N \leq M$. We use induction on d. The induction basis is trivial: If d = 1, then $m_1 = M - 1$ and $n_1 = N - 1$. For the induction step, note that $N \leq M < \rho_q(d, m_d + 1)$ implies by the greedy algorithm that $n_d \leq m_d$. If $n_d < m_d$, we are done. If $n_d = m_d$, we replace N with $N - \rho_q(d, m_d)$ and M with $M - \rho_q(d, m_d)$ and use the induction hypothesis to conclude that $(n_d, \ldots, n_1) \leq (m_d, \ldots, m_1)$.

3 A simple expression for $\bar{e}_r^{\mathbb{A}}(d,m)$

We are now ready to state and prove the relation between the Macaulay representation with respect to q and $\bar{e}^{A}_{\pi}(d, m)$.

Theorem 3.1. For $1 \le r \le \rho_q(d,m)$, let the d-th Macaulay representation of $\rho_q(d,m) - r$ with respect to q be given by

$$\rho_q(d,m) - r = \sum_{i=1}^d \rho_q(i,m_i).$$

Denoting the floor function as $\lfloor \cdot \rfloor$, we have

$$\bar{e}_r^{\mathbb{A}}(d,m) = \sum_{i=1}^d \lfloor q^{m_i} \rfloor.$$

Proof. We know from Equation (3) that we need to show that

$$\sum_{i=1}^{d} \lfloor q^{m_i} \rfloor = \sum_{i=1}^{m} \mu_i q^{m-i},$$

with (μ_1, \ldots, μ_m) is the r-th element in descending lexicographic order among all m-tuples $(\beta_1, \ldots, \beta_m)$ in $\{0, 1, \ldots, q-1\}^m$ satisfying $\beta_1 + \cdots + \beta_m \leq d$. First of all note that since $r \geq 1$, we have $\rho_q(d, m) - r < \rho_q(d, m)$. In particular this implies that $m_d \leq m-1$. Therefore the coefficients of the d-tuple (m_d, \ldots, m_1) are in $\{-1, 0, \ldots, m-1\}$. Now for $1 \leq i \leq m+1$ define $\mu_i := |\{j : m_j = m - i\}|$. Since the d-tuple (m_d, \ldots, m_1) is nonincreasing by Condition 2 from Theorem 2.3, we can reconstruct it uniquely from the (m+1)-tuple $(\mu_1, \mu_2, \ldots, \mu_{m+1})$. Moreover, Condition 3 from Theorem2.3, implies that $(\mu_1, \ldots, \mu_m) \in \{0, 1, \ldots, q-1\}^m$, but note that μ_{m+1} could be strictly larger than q-1. Further by construction we have $\mu_1 + \cdots + \mu_m + \mu_{m+1} = d$, implying that $\mu_1 + \cdots + \mu_m \leq d$. Note that μ_{m+1} is determined uniquely by (μ_1, \ldots, μ_m) , since $\mu_0 = d - \mu_1 - \cdots - \mu_m$. Therefore the correspondence between the d-tuples (m_d, \ldots, m_1) of coefficients of the d-th Macaulay representations with

respect to q of integers $0 \le N < \rho_q(d, m)$ and the m-tuples $(\mu_1, \ldots, \mu_m) \in \{0, 1, \ldots, q-1\}^m$ satisfying $\mu_1 + \cdots + \mu_m \le d$, is a bijection. Moreover by construction we have

$$\sum_{i=1}^{d} \lfloor q^{m_i} \rfloor = \sum_{j=1}^{m+1} \mu_j \lfloor q^{m-j} \rfloor = \sum_{j=1}^{m} \mu_j q^{m-j}.$$

What remains to be shown is that the constructed *m*-tuple coming from the integer $\rho_q(d,m) - r$ is in fact the *r*-th in descending lexicographic order. First of all, by Corollary 2.2 we see that for r = 1 and d = aq + b that the *m*-tuple associated to $\rho_q(d,m) - 1$ equals $(q - 1, \ldots, q - 1, b, 0, \ldots, 0)$, which under the lexicographic order is the maximal *m*-tuple among all *m*-tuples $(\beta_1, \ldots, \beta_m) \in \{0, 1, \ldots, q - 1\}^m$ satisfying $\beta_1 + \cdots + \beta_m \leq d$. Next we show that the conversion between *d*-tuples (m_d, \ldots, m_1) to *m*-tuples (μ_1, \ldots, μ_m) preserves the lexicographic order. Suppose therefore that $1 \leq r \leq s \leq \rho_q(d,m)$. We write $N := \rho_q(d,m) - s$ and $M := \rho_q(d,m) - r$. and denote their Macaulay coefficient tuples with (n_d, \ldots, n_1) and (m_d, \ldots, m_1) . Since $N \leq M$, Corollary 2.5 implies that $(n_d, \ldots, n_1) \preceq (m_d, \ldots, m_1)$. Also, since these *d*-tuples are nonincreasing, this implies that their associated *m*-tuples (ν_1, \ldots, ν_m) and (μ_1, \ldots, μ_m) satisfy $(\nu_1, \ldots, \nu_m) \preceq (\mu_1, \ldots, \mu_m)$. Indeed assuming without loss of generality that $\nu_1 < \mu_1$ we see that $m_i = n_i = m - 1$ for $d - \nu_1 \leq i \leq d$ but $n_i < m_i = m - 1$ for $i = \nu_1 + 1$. Now the desired result follows immediately.

Combining this theorem with the greedy algorithm in Corollary 2.4, it is very simple to compute values of $\bar{e}_r^{\mathbb{A}}(d,m)$ or equivalently of $d_r(\mathrm{RM}_q(d,m))$. We illustrate this in the two following examples. The parameters in these example also occur in examples from [4].

Example 3.2. Let q = 4, r = 8, d = m = 3. Since $d \le q - 1$, we may work with the usual Macaulay representation when applying Theorem 3.1. We have $\rho_q(d,m) = \binom{6}{3} = 20$ and hence

$$\rho_q(d,m) - r = 12 = \binom{5}{3} + \binom{2}{2} + \binom{1}{1} = \rho_4(3,2) + \rho_4(2,0) + \rho_4(1,0)$$

is the 3-rd Macaulay representation of 12. Theorem 3.1 implies that $\bar{e}_8^{\mathbb{A}}(3,3) = 4^2 + 4^0 + 4^0 = 18$ and hence $d_8(\mathrm{RM}_4(3,3)) = 64 - 18 = 46$ in accordance with Example 6.10 in [4].

Example 3.3. Let q = 2, r = 10, d = 3 and m = 5. We have $\rho_2(3,5) = 26$ by Equation (5) and hence applying the greedy algorithm from Corollary 2.4, we compute that

$$\rho_q(d,m) - r = 16 = 15 + 1 + 0 = \rho_2(3,4) + \rho_2(2,0) + \rho_2(1,-1)$$

is the 3rd Macaulay representation of 16 with respect to 2. Theorem 3.1 implies that $\bar{e}_{10}^{\mathbb{A}}(3,3) = 2^4 + 2^0 = 17$ and hence $d_8(\mathrm{RM}_2(3,5)) = 32 - 17 = 15$ in accordance with Example 6.12 in [4].

Remark 3.4. Theorem 3.1 is somewhat similar in spirit as Theorem 6.8 from [4] in the sense that in both theorems a certain representation in terms of dimensions of Reed–Muller codes is used to give an expression for $d_r(\mathrm{RM}_q(d,m))$. Where we studied decompositions of $\rho_q(d,m) - r$, in [4] the focus was on r itself. This suggest there may exist a duality between the two approaches, but the similarities seem to stop there. The representation in [4] is not the Macaulay representation with respect to q that we have used here. For us it is for example very important that each degree i between 1 and d occurs once in Theorem 2.3 (implying that the greedy algorithm terminates after at most d iterations), while this is not the case in Theorem 6.8 [4]. It could be interesting future work to determine if a deeper lying relationship between the two approaches exists.

References

- E.F. Assmus Jr. and J.D. Key, Designs and their Codes, Cambridge University Press, 1992.
- [2] P. Beelen and M. Datta, Generalized Hamming weights of affine Cartesian codes, Finite Fields and Applications 51, 130–145, 2018.
- [3] M. Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, In: Algebraic Curves and Projective Geometry, Lecture Notes in Mathematics 1389, 76–86, 2006.
- P. Heijnen and R. Pellikaan, Generalized Hamming weights of q-ary Reed-Muller codes, IEEE Trans. Inform. Theory 44(1), 181–196, 1998.