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Abstract In this note, we employ the techniques of Swan (Pacific J. Math. 12(3): 1099–

1106, 1962) with the purpose of studying the parity of the number of the irreducible factors

of the penatomial Xn +X3s +X2s +Xs +1 ∈ F2[X ], where s is even and n > 3s. Our results

imply that if n 6≡ ±1 (mod 8), then the polynomial in question is reducible.
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1 Introduction

Let F2n be the extension of degree n of F2, the binary field. This field has numerous ap-

plications in practical areas, like cryptography or coding theory. The most common way to

represent such fields is to utilize a polynomial basis, in which case an irreducible polynomial

of degree n over F2 is required. In particular, there are obvious computational advantages

in choosing low-weight polynomials, that is polynomials with as few non-zero coefficients

as possible. Namely, it is advised, see [7], to favor trinomials or pentanomials. It is then

natural to study the irreducibility (or equivalently the lack of it) of binary trinomials and

pentanomials. We refer the interested reader to [9, Section 3.3] and [10, Chapter 3] and the

references therein.

The interest for studying pentanomials was renewed as a result of the computational

advantages that certain families of pentanomials bear [2,11,12]. More specifically, the usage

of the pentanomial

Xn +Xn−s +Xn−2s +Xn−3s +1 ∈ F2[X ],

where s < n/3, has been proposed. In particular, several authors [11,15] have proved the

computational advantages that the usage of such polynomials (known as class 2 pentanomi-

als), as the corresponding Mastrovito multipliers have low complexity. On the other hand,

the number of irreducible polynomials within the family of class 2 pentanomials has been
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observed to be abnormally small, see [11, Remark 4]. In this work, we study class 2 pen-

tanomials, when s is even and we prove the following.

Theorem 1.1 Let f (X) = Xn +Xn−s +Xn−2s +Xn−3s +1 ∈ F2[X ] and g(X) = Xn +X3s +
X2s+Xs+1∈ F2[X ], with s even and n> 3s. If n 6≡ ±1 (mod 8), then f and g are reducible.

In particular, our results explain the small number of irreducible polynomials within the

family of class 2 pentanomials, as a large numbers of representatives of this family are a

priori reducible.

Our method is based on Swan’s [13] techniques, who studied the parity of the number

of irreducible factors of binary trinomials and proved the theorem below.

Theorem 1.2 (Swan) Let n > k > 0. Assume exactly one of n, k is odd. Then Xn +Xk +1 ∈
F2[X ] has an even number of factors (and hence is reducible) in the following cases.

1. n is even, k is odd, n 6= 2k and nk/2 ≡ 0 or 1 (mod 4).
2. n is odd, k is even, k ∤ 2n and n ≡±3 (mod 8).
3. n is odd, k is even, k | 2n and n ≡±1 (mod 8).

In all other cases Xn +Xk +1 has an odd number of factors over F2.

The above has been extended by several authors [3,4,5,6]. In addition, several results are

known for trinomials [6], tetranomials [5] and certain families of binary pentanomials [1,8].

We conclude this note with some observations about the distribution of the binary irre-

ducible polynomials of the form Xn +Xn−s +Xn−2s +Xn−3s + 1, when s is even and n is

small.

2 Preliminaries

The discriminant of the monic polynomial F over an integral domain is defined as

D(F) := ∏
1≤i< j≤n

(αi −α j)
2,

where α1, . . . ,αn are the roots of F counted with multiplicity and deg(F) = n. By using stan-

dard properties of the discriminant, see [5], one can show the following alternative formula

for D(F).

Lemma 2.1 Let F be as above, with derivative F ′ and the additional assumption that its

constant term is equal to 1. Further, let H(X) := nF(X)−XF ′(X). Then

D(F) = (−1)
n(n−1)

2

n

∏
i=1

H(αi).

Proof Since F(X) = ∏
n
i=1(X −αi), hence

F ′(X) =
n

∑
i=1

(

∏
j 6=i

(X −α j)

)

,

that is F ′(αi) = ∏ j 6=i(αi −α j), for every 1 ≤ i ≤ n. Then, we get that

n

∏
i=1

F ′(αi) =
n

∏
i=1

∏
1≤ j≤n

j 6=i

(αi −α j) = (−1)
n(n−1)

2 ∏
1≤i< j≤n

(αi −α j)
2 = (−1)

n(n−1)
2 D(F).
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The result follows after observing that

n

∏
i=1

H(αi) = (−1)nα1 · · ·αn

n

∏
i=1

F ′(αi)

and that (−1)nα1 · · ·αn = 1. ⊓⊔

Towards the proof of 1.2, Swan’s main tool was the following.

Lemma 2.2 ([13], Corollary 3) Let f ∈ F2[X ] such that f is square-free and let t f denote

the number of irreducible factors of f over F2. If F is a lift of f in Z, then t f ≡ deg( f )
(mod 2) if and only of D(F) ≡ 1 (mod 8).

Motivated by the above, we calculate D(F) modulo 8. Following the work in [5], we begin

with proving the lemma below.

Lemma 2.3 Let F ∈ Z[X ] be a monic polynomial such that F(0) = 1 with α1, . . . ,αn its

roots counted with multiplicity. Then for every X, with absolute value small enough,

XF ′(X)
∞

∑
i=0

(−1)i+1(F(X)−1)i =
∞

∑
i=1

S
(F)
−i X i,

where for every j ∈ Z, S
(F)
j := ∑

n
i=1 α

j
i .

Proof Notice that for every j ∈ {1, . . . ,n} we have that α j 6= 0. Also, notice that

−
XF ′(X)

F(X)
= X ·

k

∑
j=1

1

α j

·
1

1−X/α j

.

Further, notice that for every j and X with small enough absolute value,

1

1−X/α j

=
∞

∑
i=0

(

X

α j

)i

and that for X with small enough absolute value,

1

F(X)
=

1

1− (1−F(X))
=

∞

∑
i=0

(1−F(X))i =
∞

∑
i=0

(−1)i(F(X)−1)i.

It follows that for X with small enough absolute value,

XF ′(X)
∞

∑
i=0

(−1)i+1(F(X)−1)i =
∞

∑
i=1

(

n

∑
j=1

1

α i
j

)

X i

and the result follows. ⊓⊔

Another useful tool for computing the discriminant of polynomials is the following, see

[9, Theorem 1.75].

Theorem 2.4 (Newton’s formula) Let F(X) = Xn +Fn−1Xn−1 + · · ·+F1X +F0 be a poly-

nomial over some field with roots α1, . . . ,αn, counted with multiplicity and fix some m ∈ Z.

Further, for any integer t, define S
(F)
t = ∑

n
j=1 α t

j, then

S
(F)
m +Fn−1S

(F)
m−1 + · · ·+Fn−l+1S

(F)
m−l+1 +

l

m
Fn−lS

(F)
m−l = 0,

where l := min(m,n).
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3 Proof of the main theorem

From now on let s be an even positive integer and n > 3s. Also, set f (X) := Xn +Xn−s +
Xn−2s + Xn−3s + 1 ∈ F2[X ], the typical class 2 pentanomial, and F(X) := Xn + Xn−s +
Xn−2s +Xn−3s +1 ∈ Z[X ]. It is clear that F is a lift of f in Z[X ]. The case when n is even

is trivial, since then clearly f is a square in F2, hence reducible. So from now on we will

additionally assume that n is odd.

Also, if α1, . . . ,αn are the roots of F counted with multiplicity, then for every integer m,

set

Sm := S
(F)
m =

n

∑
j=1

αm
j and Tm := ∑

1≤i< j≤n

(αiα j)
m,

while one easily verifies that the above, as well as similar expressions, are symmetric expres-

sions of the roots the F . Furthermore, it is well-known that such expressions can be written

as polynomials of the elementary symmetric functions with integer coefficients. This means

that, since F is monic and has integer coefficients, by Vieta’s formulas, the elementary sym-

metric functions have integer values, which implies that all symmetric expressions of the

roots the F with integer coefficients have integer values. Additionally, set

H(X) := nF(X)−XF ′(X) = sXn−s +2sXn−2s +3sXn−3s +n.

It is clear from Lemma 2.2 that we are interested in computing D(F) modulo 8. Towards

this end, we compute

n

∏
i=1

H(αi) = nn +nn−1sSn−s +2nn−1sSn−2s +3nn−1sSn−3s+

nn−2s2Tn−s +nn−2s2Tn−3s +3nn−2s2(Sn−sSn−3s −S2n−4s)+8K,

for some K ∈ Z, where we note that s is even, hence the terms that include 4s, 2s2 or sk for

k ≥ 3 are divisible by 8, so one can sum them up as 8K. Since n is odd, we have that n2 ≡ 1

(mod 8), hence

n

∏
i=1

H(αi)≡ n+ sSn−s +2sSn−2s +3sSn−3s +ns2Tn−s +ns2Tn−3s

+3ns2(Sn−sSn−3s −S2n−4s) (mod 8). (1)

Next, we apply Lemma 2.3 on the reciprocal of F and, for small enough X , we get:

(nXn + sX s +2sX2s +3sX3s)
∞

∑
i=0

(−1)i+1(Xn +X s +X2s +X3s)i =
∞

∑
i=1

SiX
i.

In the LHS of the above equation, we observe that the only non-zero coefficients of terms

with degree smaller than n have in fact a degree that is a multiple of s, i.e. are even since

s is even. This implies that all the terms of odd degree that are smaller than n are zero. In

particular, n− ks is odd and strictly smaller than n, hence in the LHS of the equation, the

coefficient of Xn−ks is zero. It follows that the same holds for the RHS, that is

Sn−ks = 0. (2)
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Now, Eq. (1) yields

n

∏
i=1

H(αi)≡ n+ns2(Tn−s +Tn−3s)−3ns2S2n−4s (mod 8). (3)

Furthermore, since we are only interested in the value of D(F) modulo 8 and since s is even,

Eq. (3) implies that for our purposes it suffices to compute Tn−s +Tn−3s and S2n−4s modulo

2. First, we observe that

S2n−4s ≡
n

∑
i=1

α2n−4s
i ≡

(

n

∑
i=1

αn−2s
i

)2

≡ (Sn−2s)
2 ≡ 0 (mod 2), (4)

from Eq. (2). Also, by applying Theorem 2.4 for the polynomial in question for m = 2n−2s

and m = 2n−3s, we get

{

S2n−2s +S2n−3s +S2n−4s +S2n−5s +Sn−2s = 0, and

S2n−3s +S2n−4s +S2n−5s +S2n−6s +Sn−3s = 0.

By subtracting the above equations, and with Eq. (2) in mind, we conclude that S2n−2s =
S2n−6s. This combined with the identity Tk =(S2

k −S2k)/2 implies Tn−s =Tn−3s, hence Tn−s+
Tn−3s ≡ 0 (mod 2). The latter, along with Eqs. (3) and (4) yields

n

∏
i=1

H(αi)≡ n (mod 8).

This, combined with Lemma. 2.1 gives

D(F)≡ (−1)n(n−1)/2n ≡

{

1 (mod 8), if n ≡±1 (mod 8),

5 (mod 8), if n ≡±3 (mod 8).

The combination of the above with Lemma 2.2 implies the following.

Proposition 3.1 Set f (X) = Xn +Xn−s +Xn−2s +Xn−3s ∈ F2[X ] and let t f be the number

of irreducible factors of f in F2[X ]. Then

t f ≡

{

1 (mod 2), if n ≡±1 (mod 8),

0 (mod 2), otherwise.

Theorem 1.1 is an immediate consequence of Proposition 3.1, once we notice that Xn +
X3s +X2s +Xs + 1 ∈ F2[X ] and Xn +Xn−s +Xn−2s +Xn−3s + 1 ∈ F2[X ] are reciprocal to

each other, that is they share reducibility and irreducibility.
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4 Concluding remarks

In Theorem 1.1, we proved that all the irreducible polynomials of the form Xn +Xn−s +
Xn−2s +Xn−3s + 1 ∈ F2[X ], with s even, satisfy n ≡ ±1 (mod 8). In order to obtain some

insight about the distribution of irreducible polynomials of that form, a computer search

was performed with the computer algebra system SAGEMATH. Namely, we did an exhaus-

tive search of all possible values for odd n and even s, for 7 ≤ n < 3000 and a total of

374,250 polynomials were checked for irreducibility. The search revealed that 804 of them

are irreducible1 and the pairs (n,s) that yielded irreducible polynomials are presented in

Table 1.

The results confirm that all 804 class 2 irreducible polynomials satisfy n≡±1 (mod 8).
Out of these, roughly half, i.e. 401 out of 804, satisfy n ≡ 1 (mod 8) and the other 403

satisfy n ≡−1 (mod 8). Another interesting observation is that the irreducible polynomials

seem to be also uniformly distributed among the even values of s modulo 8. In particular, 214

polynomials satisfy s ≡ 2 (mod 8), 188 satisfy s ≡ 4 (mod 8), 198 satisfy s ≡ 6 (mod 8)
and the rest 204 satisfy s ≡ 0 (mod 8).

Regarding the frequency of irreducibility within the class 2 pentanomials tested, we

have observe that out of the 749 values of n considered (i.e. such that 7 ≤ n ≤ 3000 and

n ≡ ±1 (mod 8)), 408 of them yield irreducible polynomials for some s and the other 341

do not. What is more interesting however, is that it seems to be more possible for a class 2

pentanomial with n ≡ ±1 (mod 8) and s even to be irreducible than an arbitrarily chosen

binary polynomial of degree n. More precisely, out of the 187,125 class 2 pentanomials with

those specifications we tested, 804 turned out to be irreducible, hence we had a frequency

∼ 0.43%. In contrast, the corresponding frequency for an arbitrary binary polynomial of the

same degrees is ∼ 0.13%, even if we exclude the obviously reducible polynomials (i.e. those

with roots in F2).

An extension of Theorem 1.1 for s odd does not hold, as a quick computer search ver-

ifies. Namely, we performed an exhaustive search in the interval 7 ≤ n < 3000, for s odd.

We checked 749,996 polynomials for irreducibility and identified 1707 irreducible polyno-

mials. We had a sample roughly double the size compared to the one from our previous test

and we found roughly double the number of irreducible polynomials. This suggests that if

one excludes the obviously reducible class 2 pentanomials (when n and s are even), then

the possibility of the arbitrary class 2 pentanomial to be irreducible is almost the same for

both s odd and even. However, after also counting Theorem 1.1 in, we see that one such

polynomial with s even and n ≡ ±3 (mod 8) looks more likely to be irreducible than one

with s odd, while it is worth mentioning that irreducibility seems to be close to uniformly

distributed for different values of (odd) s modulo 8, but we found zero pairs (n,s) with 8 | n

and very few with n ≡ 3,5 (mod 8).

We conclude this note with two final remarks. First, since reducibility implies the lack

of primitivity, the pentanomials described in Theorem 1.1 are also non-primitive. A quick

computer test suggests that among the irreducible pentanomials of Table 1, one finds a rea-

sonable number of primitive polynomials without any obvious pattern. Second, we note

that class 2 pentanomials share many similarities with equally spaced polynomials, that is

polynomials of the form f (Xn) ∈ F2[X ]. Such polynomials can also be used to construct

low complexity multipliers [14]. It is natural to wonder about connections between the two

families or special properties of pentanomials that belong in both families.

1 As a confirmation of our results, we verified our results with MAGMA for 7 ≤ n ≤ 1000 and found

identical results
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n s n s n s n s n s

7 2 17 2, 4 23 6 25 6 31 2, 6, 8
47 14 49 4 55 8, 16 65 6 71 2, 6, 12
73 14, 16 79 20 95 26, 28 97 2, 4 103 10, 24, 30
113 10 121 6, 10 127 10, 40, 42 137 34 151 22, 28, 36, 40
161 6, 20 167 2, 30, 36, 44 169 14, 28 175 2, 6 185 8, 48
191 6, 40 193 36, 40 199 44 209 2, 54 215 38, 46, 64
217 22, 44 223 44 239 12 247 34 257 4, 16, 64, 72
265 14, 46 287 54, 72 289 12, 28 295 16 305 34
313 64, 78 319 12 329 18 337 66, 94 343 46
353 46, 60, 70, 86 377 112 383 30, 36 385 2, 8, 18 391 120
407 112 415 34, 84 425 4, 14, 22, 78 431 40 433 124
439 52, 98, 102, 130 449 94 457 70, 80, 132 463 56 481 46
487 120 497 26, 72, 76 505 52, 58 511 72, 160 521 16, 56
527 66, 96, 160 529 14, 38, 124 551 80 553 86, 148 559 70
569 70, 164 575 86 577 184 593 36, 158 599 10, 70
623 104, 124, 146 625 52, 164 631 108 641 12, 118, 182, 210 647 50, 104, 144, 214
649 192, 204 655 64 665 48, 64, 116, 132, 204 673 84, 100, 138 679 22, 72
689 112, 170 713 224 719 50, 58, 140, 154 721 90, 146 727 60, 170
737 244 743 30, 48, 70, 168, 178 745 86, 112, 114 751 6, 188 761 28, 46
767 56 769 40, 72 775 136, 186 785 198 791 10, 36, 180
793 180 799 258 809 70, 192, 224 815 112 817 154, 210
823 244 833 206, 228 839 18 841 48 847 92
857 86, 90, 134, 212, 214, 246 865 76, 162, 288 871 126 881 26, 28 887 112, 190
889 104, 240, 254 895 4 905 188 911 68, 126 913 158, 274
919 12, 112, 130 937 240 943 8, 150 953 56 959 104, 188, 272
961 6 967 12, 70 977 160 983 114 985 74
991 266 1001 18, 118, 328 1007 32 1009 318 1015 62, 86
1025 98, 102, 214 1031 220, 248 1033 36, 110, 166 1049 130, 252, 274 1055 8
1057 66, 146, 242 1063 56 1079 94, 114 1081 8, 106, 116, 282 1087 80, 202, 210, 214
1103 344, 346 1105 32, 222 1111 366 1121 306, 336, 338 1127 270
1129 342 1135 12 1145 306 1151 30, 342 1153 204, 218, 246, 304
1159 22 1169 38, 332 1177 42, 62, 96 1183 36 1193 340
1199 38 1201 120 1207 232 1223 196 1225 78, 226
1231 130, 238, 292, 322 1241 18 1247 30 1249 354 1255 222
1265 184, 192, 266, 298, 382 1271 150, 406, 418 1273 56 1279 72 1289 68
1297 66, 244, 320 1313 118, 308 1327 124, 316, 350 1337 34, 136 1343 116, 120
1345 264 1351 50, 262, 370 1361 126 1369 120, 314 1375 42, 228, 246, 326
1385 4, 242, 256 1391 28 1393 100, 114 1399 88, 180, 270, 380, 448 1415 94, 346
1417 114 1423 76, 264, 378 1447 114, 242, 382 1463 296 1465 174
1471 482 1481 390 1487 92 1489 84 1495 272, 418
1505 82, 122, 398 1511 96 1513 230, 234 1519 164, 262 1529 20, 62, 214, 322
1537 364, 460 1543 226, 366 1553 84, 306, 358 1559 324, 480 1561 186, 356
1567 480 1577 270, 292, 412 1583 138, 280, 300 1591 152 1607 146, 176
1615 504 1625 216, 408 1633 490 1639 310, 404 1649 220
1655 534 1663 448 1673 30, 356 1679 14, 68, 400 1681 436
1687 216, 432, 516, 552 1697 140, 256, 274 1703 514 1705 54, 248, 496 1721 100, 228
1729 72 1735 294, 336 1745 234 1753 326 1769 294
1775 162 1777 306, 520 1783 408, 448 1793 38 1799 104
1807 146 1817 446 1823 228, 310 1831 440 1841 22
1847 60, 256, 530 1849 600 1855 416 1865 246, 254, 448, 604 1873 370, 558
1879 58, 284, 422 1889 464, 620 1903 310 1913 154 1919 240
1921 156 1927 56, 592, 634 1937 310 1943 20, 176, 320, 644 1945 96, 98, 618
1951 610 1961 332 1967 386, 506, 590 1969 182, 598 1975 378
1985 224, 258, 558 1991 182 1993 254, 630 1999 244, 544 2009 18, 50
2015 14, 186, 238 2017 110, 180, 476 2023 424 2033 384 2039 280, 364, 628
2047 22, 410, 512 2057 604 2063 16, 190, 448, 570 2065 306, 656 2081 538
2087 450, 506 2089 50, 282, 412, 580 2095 468, 496, 546 2111 440, 560 2113 184, 576
2119 28, 144, 282 2129 178 2135 96, 696 2137 216, 602 2153 194, 496
2159 2, 260 2167 280, 432 2183 54, 410 2185 108 2191 218, 240, 298
2201 386, 532, 686 2207 146, 280 2209 272, 580 2225 726 2231 218, 246, 396
2233 204, 590 2239 40, 408, 544 2249 42, 272, 360 2255 332, 496 2257 476
2273 210, 358, 410 2279 92, 222, 490 2281 522 2287 486, 492 2303 34, 554
2305 396, 552 2311 408, 700 2321 588 2327 44, 524, 634 2329 112, 430
2335 594 2345 214, 772 2353 586 2359 272, 394 2369 98, 648, 764
2375 66, 202, 724 2383 494, 778 2393 778 2399 690, 764 2401 388, 600, 736, 740, 780
2407 450, 730, 772 2417 642 2423 34, 208, 370, 378 2425 226, 494 2431 210, 336, 696
2441 270 2447 262, 420 2449 378 2455 714 2465 224
2473 514 2479 24, 600 2495 232, 414, 666 2497 442 2513 804
2519 414, 490, 558 2521 142 2537 450, 646, 812, 820 2543 80 2551 490, 816
2561 620 2569 522 2585 228, 252, 774 2591 528 2593 454, 630, 644
2599 612, 770 2609 164, 728 2615 318 2617 154, 270, 644 2623 318, 484, 554, 738
2633 464 2639 48, 814 2641 402 2647 516, 530 2657 642
2665 504 2671 418, 580 2681 218, 416, 682 2687 380, 602, 802 2689 12
2695 684 2711 230 2713 280, 434 2719 34, 48, 140, 662, 778 2729 32, 280
2737 156, 344, 404, 514 2743 760 2753 326 2759 430, 474 2761 36, 490, 510, 630
2767 34, 206, 564 2783 56, 138, 734 2785 508, 812 2791 280 2807 90, 772
2815 28, 252 2825 96, 404 2831 62, 582 2833 280, 550, 808 2839 602
2849 38, 438 2855 278, 938 2857 252 2863 908 2879 734, 910
2881 560 2887 554, 806 2897 546 2903 410 2905 246
2911 308, 742 2921 160, 188, 332 2927 616 2945 504, 606, 792, 806, 868 2951 512
2953 890 2959 228, 938 2969 192, 212 2975 64, 334, 542 2977 42, 146
2983 110, 490, 566, 838 2993 680, 808 2999 350, 498, 554

Table 1 Pairs (n,s) with 7 ≤ n < 3000 and s even, such that Xn + Xn−s +Xn−2s + Xn−3s + 1 ∈ F2[X ] is

irreducible.
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