Skip to main content
Log in

Some new linear codes from skew cyclic codes and computer algebra challenges

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

One of the main problems of coding theory is to construct codes with best possible parameters. Cyclic codes and their various generalizations, such as quasi-twisted codes, have been a fruitful source in achieving this goal. Recently, a new generalization of cyclic codes that are known as skew cyclic codes have been introduced and some new codes obtained from this class. Unlike many other types of codes considered in algebraic coding theory, skew cyclic codes require one to work in a non-commutative ring called skew polynomial ring. In this paper, we present some new linear codes obtained from the class of skew cyclic codes and describe computational challenges in working with this class of codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1997)

    MATH  Google Scholar 

  2. Roman, S.: Coding and Information Theory. Springer, New York (1992)

    MATH  Google Scholar 

  3. Grassl, M.: Table of bounds on linear codes. http://www.codetables.de. Accessed 4 Mar 2019

  4. Bosma, W., Cannon, J.: Discovering Mathematics with Magma: Reducing the Abstract to Concrete. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  5. MAGMA computer algebra system web site available at http://magma.maths.usyd.edu.au/magma/MagmaInfo.html. Accessed 4 Mar 2019

  6. Vardy, A.: The Intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theory. 43(6), 1757–1766 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Prange, E.: Cyclic Error-Correcting Codes in Two Symbols. Air Force Cambridge Research Center-TN-57-103, Cambridge (1957)

    Google Scholar 

  8. Prange, E.: Some Cyclic Error-Correcting Codes with Simple Decoding Algorithm. Air Force Cambridge Research Center-TN-58-156, Cambridge (1958)

    Google Scholar 

  9. Chen, E.Z.: Six new binary quasi-cyclic codes. IEEE Trans. Inf. Theory. 40(5), 1666–1667 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gulliver, T.A., Bhargava, V.K.: New good rate \((m-1)/pm\) ternary and quaternary quasi-cyclic codes. Des. Codes Cryptogr. 7(3), 223–233 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Daskalov, R., Gulliver, T.A.: New quasi-twisted quaternary linear codes. IEEE Trans. Inf. Theory. 46(7), 2642–2643 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aydin, N., Siap, I.: New quasi-cyclic codes over \(\mathbb{F}_5\). Appl. Math. Lett. 15(7), 833–836 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daskalov, R., Hristov, P.: New quasi-twisted degenerate ternary linear codes. IEEE Trans. Inf. Theory 49(9), 2259–2263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daskalov, R., Hristov, P.: New binary one-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 49(11), 3001–3005 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daskalov, R., Hristov, P., Metodieva, E.: New minimum distance bounds for linear codes over GF(5). Discrete Math. 275(1–3), 97–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ackerman, R., Aydin, N.: New quinary linear codes from quasi-twisted codes and their duals. Appl. Math. Lett. 24(4), 512–515 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Boucher, D., Geiselmann, W., Ulmer, F.: Skew-cyclic codes. Appl. Algebra Eng. Commun. Comput. 18(4), 379–389 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boucher, D., Geiselmann, W., Ulmer, F.: Coding with skew polynomial rings. J. Symb. Comput. 44(12), 1644–1656 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34(3), 480–508 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jacobson, N.: The Theory of Rings. American Mathematical Society, New York (1943)

    Book  MATH  Google Scholar 

  21. McDonald, B.R.: Finite Rings with Identity. Marcel Dekker Inc., New York (1974)

    MATH  Google Scholar 

  22. Siap, I., Abualrub, T., Aydin, N., Seneviratne, P.: Skew quasi-cyclic codes of arbitrary length. Int. J. Inf. Coding Theory 2(1), 10–20 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Abualrub, T., Ghrayeb, A., Aydin, N., Siap, I.: On the construction of skew quasi-cyclic codes. IEEE Trans. Inf. Theory. 56(5), 2080–2090 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Abualrub, T., Aydin, N., Seneviratne, P.: Theta-cyclic codes over \(\mathbb{F}_2 + v\mathbb{F}_2\). Australas. J. Comb. 54, 115–126 (2012)

    MATH  Google Scholar 

  25. Giesbrecht, M.: Factoring in skew-polynomial rings over finite fields. J. Symb. Comput. 26(4), 463–486 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Caruso, X., Le Borgne J.: Some algorithms for skew polynomials over finite fields. pre-print, http://arxiv.org/pdf/1212.3582v1.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuh Aydin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, N. Some new linear codes from skew cyclic codes and computer algebra challenges. AAECC 30, 185–191 (2019). https://doi.org/10.1007/s00200-019-00383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-019-00383-1

Keywords

Mathematics Subject Classification

Navigation