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ON THE ALGEBRAIC STRUCTURE OF E
(m)
p AND

APPLICATIONS TO CRYPTOGRAPHY

KARAN KHATHURIA, GIACOMO MICHELI, AND VIOLETTA WEGER

Abstract. In this paper we show that the Z/pmZ-module structure of the ring

E
(m)
p is isomorphic to a Z/pmZ-submodule of the matrix ring over Z/pmZ. Us-

ing this intrinsic structure of E
(m)
p , solving a linear system over E

(m)
p becomes

computationally equivalent to solving a linear system over Z/pmZ. As an appli-
cation we break the protocol based on the Diffie-Hellman Decomposition problem

and ElGamal Decomposition problem over E
(m)
p . Our algorithm terminates in a

provable running time of O(m6) Z/pmZ-operations.

1. Introduction

Public key cryptosystems are often based on number theoretical problems, such
as integer factorization as in RSA [1] or the discrete logarithm problem over finite
fields or over elliptic curves. The latter is the base for well known protocols, such
as the ElGamal protocol [2] or the Diffie-Hellman key exchange protocol [3]. In-
creasing computing powers threatens these classical cryptographic schemes and new
ambient spaces are demanded, for example involving noncommutative structures
(see [4, 5, 6, 7, 8]). In nonabelian groups there are two main problems which give
rise to cryptographic schemes; the semigroup action problem (SAP) [9], and the
decomposition problem (DP). For an overview see [10, 11]. These two problems are
very similar: in the SAP one is given a finite semigroup S acting on a finite set
A, for x, y ∈ A, such that there exists an s ∈ S with y = s ⋆ x, one wants to find
t ∈ S, such that y = t ⋆ x. Whereas in the DP one is given a nonabelian group G,
(x, y) ∈ G×G and S ⊂ G, one wants to find z1, z2 ∈ S, such that y = z1xz2.

Based on these two problems J.J. Climent and J.A. López-Ramos proposed three
protocols in [12] over a special ring of matrices involving operations modulo different

powers of the same prime, called E
(m)
p . Similar cryptosystems can be found in [13,

Example 4.3.c]. This ring is a generalization of the ring Ep, Climent, Navarro
and Tartosa introduced in [14]. The first cryptographic scheme based on Ep [15],
was broken in [16]. This attack can be prevented by admitting only few invertible

elements, as it is the case in the ring E
(m)
p [17, Corollary 1]. In addition, another

nice property of such rings is that they do not admit embeddings into matrix rings
over a field (see [18]), which is often the main problem of cryptographic schemes over
matrix rings (see for example [19]) and it prevents a reduction to small extensions
of finite fields as in [20].

The first protocol proposed in [12] by Climent and López-Ramos based on the

semigroup action problem over the ring E
(m)
p was broken by Micheli and Weger in
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[21] using a solution sieve argument. The remaining two protocols proposed in [12]

are based on the decomposition problem over E
(m)
p and happen to be equivalent.

They will be denoted by the Diffie-Hellman Decomposition Problem (DHDP) and the
ElGamal Decomposition Problem (EGDP). A cryptanalysis of these two protocols
was considered by Zhang in [22], where the Cayley-Hamilton Theorem is used to

derive a linear system over E
(m)
p . However, even though the main idea is correct,

the system over E
(m)
p is then directly considered over Z/pmZ, where the system not

necessarily admits a solution, as we will show in an example. The running time of
the claimed attack is O(m7) Z/pmZ-operations.

In this paper we introduce a new approach for solving the decomposition problem

over E
(m)
p , where we consider a Z/pmZ-module isomorphic to E

(m)
p . The implication

is twofold: on one hand, we fix the issue of the inconsistent system (see also beginning
of Section 3 for additional details and an example where the attack in [22] fails in
Subsection 3.2), and on the other hand, we speed up the attack. In particular, this
new approach solves the decomposition problem in O(m6) Z/pmZ-operations.

This paper is organized as follows: in Section 2 we recall the definitions and

properties of the ring E
(m)
p and state the DHDP and EGDP protocols over E

(m)
p . In

Section 3 we present the practical attack on the DHDP protocol, which in turn will
also break the equivalent EGDP protocol. In Subsection 3.2 we show in an example
how the attack works.

1.1. Notation. Let T be a subset of a (possibly non-commutative) ring S. We will
denote the centralizer of T by

Cen(T ) = {U ∈ S | UR = RU ∀ R ∈ T}.

When T = S, then Cen(S) is said to be the center of S and will be denoted by
Z(S). Let N denote the natural numbers, i.e. N = {1, 2, . . .} and N0 = N∪ {0}. For
any commutative ring R, and any two positive integers k,m ∈ N we will denote by
Matk×m(R) the set of k by m matrices with coefficients in R. If M is an abelian
group and R is a ring acting onM , we denote by EndR(M) the set of endomorphisms
of M as an R-module. Notice that EndR(M) has a natural ring structure. Let
φ ∈ EndR(M), we denote by R[φ] the smallest subring of EndR(M) which contains
R and φ.

2. The ring E
(m)
p and the decomposition problem

Let us recall the definition of the matrix ring E
(m)
p and its center, which were first

introduced in [17, Theorem 1].

Definition 1. Let E
(m)
p be the following set of matrices.

E(m)
p =

{

(aij)i,j∈{1,...,m} | aij ∈ Z/piZ if i ≤ j, and aij ∈ pi−j
Z/piZ if i > j

}

.

To shorten the notation we will write [aij ] = (aij)i,j∈{1,...,m}. This set forms a ring
with the addition and multiplication defined, respectively, as follows

[aij ] + [bij ] =
[

(aij + bij) mod pi
]

,

[aij ] · [bij ] =

[(

m
∑

k=1

aikbkj

)

mod pi

]

.
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Let us denote by V the set Z/pZ× · · · ×Z/pmZ. The ring E
(m)
p acts on V by the

usual matrix multiplication.

Theorem 2. [12, Theorem 2] The center Z
(

E
(m)
p

)

of E
(m)
p is given by the set







[aij ] ∈ E
(m)
p

∣

∣ aii =
i−1
∑

j=0

pjuj , with uj ∈ {0, . . . , p − 1} and aij = 0 if i 6= j







.

For M ∈ E
(m)
p , let us denote by Cen(M) the centralizer of M , i.e. the set of

elements X ∈ E
(m)
p , such that XM =MX. Define the set

H(M) =

{

k
∑

i=0

CiM
i
∣

∣ Ci ∈ Z(E(m)
p ), k ∈ N

}

.

Let us recall the Diffie-Hellman decomposition problem, proposed in [11, Example
3].

Definition 3 (DH Decomposition Problem (DHDP)). Let G be a semigroup, A,B ⊆
G be two subsemigroups such that ab = ba for every a ∈ A and b ∈ B and assume
that x ∈ G. Given two elements a1xa2 and b1xb2, with a1, a2 ∈ A and b1, b2 ∈ B,
find the element a1b1xb2a2.

In [12], Climent and López-Ramos proposed two protocols based on the decom-

position problem over E
(m)
p , one of the protocols is a Diffie-Hellman key exchange

and the other one is an ElGamal protocol, both analogous to the Diffie-Hellman key
exchange [3] and the ElGamal cryptosystem [2] respectively.

Protocol 4 (DHDP protocol). Alice and Bob agree on two public elements M,X ∈

E
(m)
p such that M /∈ Cen(X).

1. Alice chooses A1, A2 ∈ H(M) and sends GA = A1XA2 to Bob.
2. Bob chooses B1, B2 ∈ Cen(M) such that B1X 6= XB2 and sends GB =
B1XB2 to Alice.

3. Alice computes A1GBA2.
4. Bob computes B1GAB2.

Since Ai and Bi commute for all i ∈ {1, 2}, it is clear that Alice and Bob share a
common value.

Protocol 5 (EGDP protocol). Alice and Bob agree on a public element M ∈ E
(m)
p .

Let S ∈ E
(m)
p be the secret that Bob wants to send Alice.

1. Alice chooses N ∈ E
(m)
p such that NM 6= MN and two elements A1, A2 ∈

H(M) and publishes her public key (N,A1NA2).
2. Bob chooses randomly two elements B1, B2 ∈ Cen(M) and sends (F,D) =

(B1NB2, S +B1A1NA2B2) to Alice.
3. Alice recovers S by computing D −A1FA2.

Since Ai and Bi commute for all i ∈ {1, 2} we have that

D −A1FA2 = S +B1A1NA2B2 −A1B1NB2A2 = S.

As observed in [12, Theorem 4], breaking the EGDP protocol is equivalent to
breaking the DHDP protocol.
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3. Solving the decomposition problem in O(m6) Z/pmZ operations

In this section we provide an algorithm to solve the decomposition problem over

E
(m)
p and therefore to break the DHDP protocol. It is worth mentioning that in [22]

the author claims to have an attack that runs with O(m7) Z/pmZ-operations. Even
though the main idea of the attack is correct (i.e. reducing the problem to solving a

system of linear equations over E
(m)
p ), it presents an issue when building the actual

linear equations. In fact, the equations have different moduli, depending on which
row is considered, so the claim that it is enough to solve the system over Z/pmZ

is incorrect (we provide an explicit example where the attack fails in Subsection
3.2). Moreover, the aforementioned attack would run in O(m7) Z/pmZ-operations,
instead our attack runs in O(m6) Z/pmZ-operations, reducing the complexity of the
DHDP. As mentioned in Protocol 4 and Protocol 5, the two subgroups used are

H(M) and Cen(M) for a publicly known M ∈ E
(m)
p .

Lemma 6. The center of the ring E
(m)
p is isomorphic to Z/pmZ as rings.

Proof. It is easy to see that the following map is a ring isomorphism

ψ : Z/pmZ → Z(E(m)
p )

z 7→ [aij ],

where aii = z mod pi and aij = 0 for i 6= j. �

A direct generalization of Theorem 5 in [23] shows that if one considers Z/pZ ×

· · ·×Z/pmZ as a Z-module, then E
(m)
p is isomorphic to EndZ(Z/pZ×· · ·×Z/pmZ).

Using this fact and the Cayley-Hamilton Theorem, we can prove that the subring

generated by a matrix in E
(m)
p is a finite dimensional Z-module. To see this in detail,

let us now recall the general statement of the Cayley-Hamilton Theorem.

Theorem 7. [24, Proposition 2.4] Let R be a ring, let M be a finitely generated
R-module, let φ : M → M be a module morphism and let I ⊂ R be an ideal of R,
such that φ(M) ⊆ IM . Let n ∈ N be the number of elements needed to generate M .
Then there exist an−1, . . . , a0 ∈ I, such that

φn + an−1φ
n−1 + · · · a0 = 0.

We now prove the corollary we are interested in.

Corollary 8. For every A ∈ E
(m)
p , there exists a0, . . . , am−1 ∈ Z, such that

Am = a0 + a1A+ · · · am−1A
m−1.

Proof. In Theorem 7, set I = R = Z and M = Z/pZ × · · · × Z/pmZ, hence n = m

and φ is a matrix in E
(m)
p . It follows now immediately that Z[φ] has dimension less

than or equal to m (as a Z-module). �

Remark 9. Notice that in the statement and the proof of Corollary 8, Z could as
well be replaced by Z/pmZ since any element in pmZ acts as the zero morphism over
M .

Lemma 10. Let M ∈ E
(m)
p . Then the map ψ : (Z/pmZ) [x] → H(M) given by

ψ(f(x)) = f(M) is a surjective Z/pmZ-algebra homomorphism.
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Proof. First, using Lemma 6 one can identify the center of E
(m)
p with Z/pmZ, from

which follows that the map is well defined. To see that ψ is a surjective homomor-

phism, it is enough to consider E
(m)
p as EndZ/pmZ(Z/pZ×· · ·×Z/pmZ) and to notice

that H(M) ∼= (Z/pmZ)[M ]: in fact, using Lemma 6, there exist u0, . . . , uk ∈ Z/pmZ

such that each Ci of a matrix in H(M) can be written as the diagonal matrix with
entries (ui mod p, ui mod p2, . . . , ui mod pm).

�

Proposition 11. Let M,X ∈ E
(m)
p and GA = A1XA2 for some A1, A2 ∈ H(M).

Then there exists λ11, λ12, . . . , λmm ∈ Z/pmZ such that GA =
∑m−1

i,j=0 λijM
iXM j .

Proof. Combining Lemma 10 and Corollary 8, we can write A1 =
∑m−1

i=0 uiM
i and

A2 =
∑m−1

i=0 viM
i for some u0, . . . , um−1, v0, . . . , vm−1 ∈ Z/pmZ. Then

GA = A1XA2

=

(

m−1
∑

i=0

uiM
i

)

X





m−1
∑

j=0

vjM
j





=

m−1
∑

i=0

m−1
∑

j=0

uivjM
iXM j

=

m−1
∑

i=0

m−1
∑

j=0

λijM
iXM j ,

for λij = uivj . �

3.1. The pseudo-E
(m)
p Approach. In this subsection we solve the linear system

given in Proposition 11 by defining the following Z/pmZ-modules:

Definition 12. Let F
(m)
p ⊆ Matm×m(Z/pmZ) be the following set of matrices.

F (m)
p =

{

(aij)i,j∈{1,...,m} | aij ∈ pℓZ/pmZ where ℓ = max(m− i,m− j)
}

.

It is easy to check that F
(m)
p is a Z/pmZ-submodule of Matm×m(Z/pmZ). More-

over the following proposition shows that F
(m)
p is isomorphic to E

(m)
p as Z/pmZ-

modules, where the scalar multiplication in E
(m)
p is as follows: for r ∈ Z/pmZ and

[ai,j] ∈ E
(m)
p we have that

r[ai,j] = [rai,j] =
(

rai,j mod pi
)

i,j∈{1,...,m}
.

Proposition 13. E
(m)
p is isomorphic to F

(m)
p as Z/pmZ-modules.

Proof. One can easily check that the following map is an isomorphism between E
(m)
p

and F
(m)
p

δ : E(m)
p → F (m)

p

(aij)i,j∈{1,...,m} 7→
(

aijp
m−i

)

i,j∈{1,...,m}
.

�
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Corollary 14. LetM1,M2, . . . ,Mk, G ∈ E
(m)
p . Then λ = (λ1, λ2, . . . , λk) ∈ (Z/pmZ)k

is a solution for
∑k

i=1 λiMi = G if and only if
∑k

i=1 λiδ(Mi) = δ(G).

Proof. The proof follows directly by applying the isomorphism δ to both sides of the

equation
∑k

i=1 λiMi = G. �

Now we are ready for the main result.

Theorem 15. DHDP protocol over E
(m)
p can be broken in polynomial time.

Proof. Let M,X ∈ E
(m)
p such that MX 6= XM , and let A1, A2 ∈ H(M) and

B1, B2 ∈ Cen(M). Given M,X,GA = A1XA2 and GB = B1XB2, we have to find
A1GBA2.

Using Proposition 11, we know that there exist λ11, . . . , λmm ∈ Z/pmZ such that

GA =
∑m−1

i,j=0 λijM
iXM j . We use Corollary 14 to solve this system of linear equa-

tions for λ11, λ12 . . . , λmm. Then the exchanged secret is given by

m−1
∑

i,j=0

λijM
iGBM

j =
m−1
∑

i,j=0

λijM
iB1XB2M

j

=
m−1
∑

i,j=0

λijB1M
iXM jB2

= B1





m−1
∑

i,j=0

λijM
iXM j



B2

= A1GBA2 = B1GAB2.

Algorithm 1 provides a formal way to solve the DHDP protocol over E
(m)
p .

�

Running time. The running time of Algorithm 1 is given by solving m2 linear
equations in m2 unkowns over Z/pmZ, which costs O((m2)3) Z/pmZ-operations,
or O(m8 log(p)2) bit operations. In [17], Climent et. al. proposed to use the
DHDP protocol and EGDP protocol for the parameters p = 2 and m = 128. In
our implementation, Algorithm 1 took 23.1 days to break these parameters. The
results were obtained by a MAGMA [25] implementation using a personal com-
puter with processor Intel Core 6C i7-8700K at 3.7 GHz and 64 GB RAM (see
www.math.uzh.ch/aa/uploads/media/attack_CLR.txt).

3.2. A 2 × 2 example. In the following we provide an example, which serves two
purposes, first it shows the Algorithm 1 in practice and second it provides an example
where the claimed attack in [22] does not work.

Let m = 2, p = 5 and let M =

[

4 3
15 20

]

and X =

[

0 4
15 4

]

be public elements.

Alice chooses

A1 =

[

1 3
15 17

]

A2 =

[

0 3
15 11

]

www.math.uzh.ch/aa/uploads/media/attack_CLR.txt
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Algorithm 1 Break protocol based on DHDP over E
(m)
p using pseudo-E

(m)
p

Input: M,X,GA, GB ∈ E
(m)
p

Output: the exchanged secret A1GBA2 ∈ E
(m)
p

1: Construct the matrix of linear equations arising from A1XA2 = GA using Propo-
sition 11, given by

GA =

m−1
∑

i,j=0

λijM
iXM j ,

where λij ’s are unknown.
2: Apply the Z/pmZ-module isomorphism δ mentioned in Lemma 13 to the above

equation

δ(GA) =

m−1
∑

i,j=0

λijδ(M
iXM j).

3: Solve the system of m2 linear equations in m2 unknowns over Z/pmZ, generated
by equating entries of above matrix equality. By Proposition 11 and Corollary
14, such a solution exists.

4: Return
∑m−1

i,j=0 λijM
iGBM

j .

and publishes GA =

[

0 1
20 23

]

. Bob chooses

B1 =

[

3 3
15 9

]

B2 =

[

3 0
0 18

]

and publishes GB =

[

0 2
5 3

]

. The shared secret is then

A1GBA2 = B1GAB2 =

[

0 1
15 21

]

.

The attacker sees only M,X,GA, GB and wants to find A1GBA2 ∈ E
(2)
5 .

In Step 1 of Algorithm 1, the attacker constructs

GA =
m−1
∑

i,j=0

λijM
iXM j

= λ00

[

0 4
15 4

]

+ λ01

[

10 5
20 0

]

+ λ10

[

20 3
0 15

]

+ λ11

[

0 20
0 0

]

.(3.1)

In the second step the attacker applies δ getting

δ(GA) =

[

0 5
20 23

]

= λ00

[

0 20
15 4

]

+ λ01

[

0 0
20 0

]

+ λ10

[

0 15
0 15

]

+ λ11

[

0 0
0 0

]

.
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From this we get the system of m2 linear equations in m2 unknowns λij, but since
we applied δ these are now equations over Z/pmZ:

0λ00 + 0λ01 + 0λ10 + 0λ11 = 0,

20λ00 + 0λ01 + 15λ10 + 0λ11 = 5,

15λ00 + 20λ01 + 0λ10 + 0λ11 = 20,

4λ00 + 0λ01 + 15λ10 + 0λ11 = 23.

One particular solution of this system over Z/pmZ is given by

(λ00, λ01, λ10, λ11) = (2, 22, 1, 0) .

The attacker now computes

m−1
∑

i,j=0

λijM
iGBM

j = 2GB + 22GBM + 1MGB + 0MGBM

=

[

0 1
15 21

]

= A1GBA2.

Compared to our attack, the approach presented in [22] does not make use of

Lemma 6, Lemma 10 and Corollary 14. Instead the elements of Z(E
(m)
p ) are seen

as diagonal matrices having entries (a0, a0 + pa1, . . . , a0 + pa1 + · · · + pm−1am−1)
where 0 ≤ a0, a1, . . . , am−1 ≤ p− 1. Using this representation and Cayley-Hamilton

theorem results in a linear system over E
(m)
p of m2 equations in m3 unknowns, as

mentioned in Theorem 2 of [22]. One should observe that this system does not
necessarily admit a solution over Z/pmZ, which is the approach used in [22]. The
above mentioned example provides an instance where this approach fails.

Using the approach in [22], the analogue of equation (3.1) is

GA =
m−1
∑

i,j=0

WijM
iXM j ,

where Wij =

[

aij0 0

0 aij0 + 5aij1

]

∈ Z(E
(m)
p ). This results in the following system of

linear equations:

0a000 + 0a001 + 0a010 + 0a011 + 0a100 + 0a101 + 0a110 + 0a111 = 0 mod 5,

4a000 + 0a001 + 0a010 + 0a011 + 15a100 + 0a101 + 0a110 + 0a111 = 5 mod 5,

15a000 + 0a001 + 20a010 + 0a011 + 0a100 + 0a101 + 0a110 + 0a111 = 20 mod 25,

4a000 + 20a001 + 0a010 + 0a011 + 15a100 + 5a101 + 0a110 + 0a111 = 23 mod 25.

In Section 4 of [22], the author claims that it is enough to consider this system
over Z/25Z. However in this example the claim does not hold and shows that the

approach used in [22] to solve a linear system over E
(m)
p is incorrect.
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