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Explicit Maximal and Minimal Curves of Artin-Schreier Type

from Quadratic Forms

Daniele Bartoli1 , Luciane Quoos 2 Zülfükar Saygı3, Emrah Sercan Yılmaz 4

Abstract

In this work we present explicit examples of maximal and minimal curves over finite fields in

odd characteristic. The curves are of Artin-Schreier type and the construction is closely related

to quadratic forms from Fqn to Fq.

1 Introduction

In the interaction between algebraic curves over finite fields and applications in coding theory,

cryptography, quasi-random numbers and related areas it is important to know the number of ra-

tional points of the curve (see, for example, [7, 10, 11, 16, 17]). Artin-Schreier curves over finite

fields is a central theme and many of the known constructions of maximal or minimal curves are

closely related to quadratic forms. Recently, some characterizations and classification results

were obtained in the literature. Let Fq denote the finite field with q elements. For q = 2t a full

classification of quadratic forms from Fqk to Fq of codimension 2 is provided in the following

cases: all the coefficients are from F2 or at least three are in F4; as an application maximal and

minimal curves are obtained, see [4, 5, 12, 13, 14]. Latter on some results on quadratic functions

and maximal Artin-Schreier curves over finite fields having odd characteristic are presented in

[1] and [2]. In [15] by using some techniques developed in [3] a Conjecture presented in [2] is

proved and explicit classes of maximal and minimal Artin-Schreier type curves over finite fields

having odd characteristics are presented.
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Throughout this paper by a curve we mean a smooth geometrically irreducible and projective

curve over a finite field of odd characteristic. For a positive integersm consider the Fq-linearized

polynomial of degree qm

S(x) = s0x+ s1x
q + · · ·+ smx

qm ∈ Fqn[x].

In this work we consider the Artin-Schreier type curves X defined as

X : yq − y = xS(x) =

h∑

i=0

six
qi+1. (1)

First note that such curves have a unique singular point at infinity (which is Fqn-rational). Also,

there is a unique place centered on it; see for instance [16, Proposition 3.7.10]. This means

that the number of Fqn-rational points of X equals the number of degree one places in the

corresponding function field. These curves are related with the quadratic forms (see, Section 2)

Q(x) = Tr(xS(x)) (2)

where Tr(·) denotes the trace map from Fqn to Fq, that is, Tr(x) = x+ xq + · · ·+ xqn−1
.

Let N(X ) be the number of Fqn-rational points of the curve X and N(Q) denote the cardinality

N(Q) = |{x ∈ Fqn | Tr (xS(x)) = 0}| .

From Hilbert’s Theorem 90 we obtain

N(X ) = 1 + qN(Q),

and furthermore by the Hasse-Weil inequality we know that

qn + 1− 2g(X )
√
qn ≤ N(X ) ≤ qn + 1 + 2g(X )

√
qn

where g(X ) is the genus of X .

Curves attaining the Hasse-Weil bounds have special attention. If the number of Fqn rational

points of a curve is qn + 1 + 2g(X )
√
qn then it is called a maximal curve, and if the number of

Fqn rational points of a curve is qn + 1− 2g(X )
√
qn then it is called a minimal curve.

In this work we determine examples of minimal and maximal curves of type (1). Our inves-

tigation is based on the type of the quadratic form associated with the curve. In particular we

generalize curves constructed in [15].
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2 Preliminaries

In this section we first present some definitions and facts that we use in this paper connecting

Artin-Schreier type curves and quadratic forms. A quadratic form Q : Fqn → Fq is a map such

that

i) Q(ax) = a2Q(x) for all a ∈ Fq and x ∈ Fqn .

ii) B(x, y) = Q(x+ y)−Q(x)−Q(y) is a bilinear map over Fqn .

The radical W associated to the quadratic form Q is defined as

W = {x ∈ Fqn : B(x, y) = 0 for all y ∈ Fqn} .

Note that W is an Fq-linear subspace of Fqn and let w be the Fq-dimension of W . The difference

n− w is called the codimension of the radical.

For the algebraic curve

X : yq − y = xS(x) =

m∑

i=0

six
qi+1. (3)

we consider the quadratic form Q : Fqn → Fq given by Q(x) = Tr(xS(x)), where Tr denotes

the Trace function from Fqn to Fq. In 2007 Çakçak and Özbudak, using the classification of

quadratic forms, determined the exact value of N(X ), the number of Fqn rational points of the

curve X (see [3, Theorem 3.1]). And we obtain

N(X ) =

{
1 + qn ± (q − 1)q

n+w
2 , if w is even,

1 + qn , if w is odd.

The curve X defined on (3) has genus g(X ) = q−1
2
qm, see [16, Proposition 3.7.10] and for even

w we obtain: the curve X is maximal or minimal over Fqn if and only if the dimension of the

Fq-vector space W is w = 2m.

Now we present a result about the vector space W . Since the proof is short we include it here

for the reader’s convenience.

Lemma 1. [3, Lemma 2.1] Let S(x) = s0+s1x
q+· · ·+smx

qm ∈ Fqn [x] andQ(x) = Tr(xS(x))

be the quadratic form associated to S(x). The elements in W = {x ∈ Fqn : B(x, y) = 0 ∀ y ∈

3



Fqn} are the roots in Fqn of the polynomial

m−1∑

i=0

sq
i

m−ix
qm−i

+ 2sq
m

0 xqm +

m∑

i=1

sq
m

i xqm+i ∈ Fqn [x],

and W has dimension less than 2m+ 1.

Proof. Write B(x, y) = Tr(xS(y)) + Tr(yS(x)). From Tr(aq
k
) = Tr(a), ∀a ∈ Fqn and

k = 0, . . . d and Tr being an additive function, it follows that for any a, b ∈ Fqn

B(a, b) = Tr

(
a

m∑

i=0

sib
qi

)
+ Tr

(
b

m∑

i=0

sia
qi

)

= Tr

(
b

m∑

i=0

(sia)
q−i

)
+ Tr

(
b

m∑

i=0

sia
qi

)

= Tr

(
b

(
m∑

i=0

(sia)
q−i

+
m∑

i=0

sia
qi

))
.

For any a ∈ Fqn , we have that B(a, b) = 0 ∀ b ∈ Fqn if and only if a is a root in Fqn of the

degree q2d polynomial
∑m

i=0(six)
q−i

+
∑m

i=0 six
qi , or equivalently, a root of

∑m
i=0(six)

qd−i
+∑m

i=0 s
qm

i xqm+i
.

The following result was proved in [7] using some tools from algebraic geometry and was also

proved in [15] using only elementary tools.

Proposition 1. Let q be a prime power and let m ≥ 1 be an integer. Consider the curve X over

Fq2m defined by

X : yq − y = x
(
s0x+ s1x

q + · · ·+ smx
qm
)
.

Assume that sm 6= 0 and X is maximal over Fq2m . Then s0 = s1 = · · · = sm−1 = 0 and

sm + sm
qm = 0. The converse holds as well.

Theorem 2 ([15]). Let q be a power of an odd prime and k, m be positive integers with m ≥ 2k.

Let

S(x) = skx
qk + sk+1x

qk+1

+ · · ·+ sm−kx
qm−k ∈ Fq2m [x] with sksm−k 6= 0.

Assume that the radical of the quadratic form Tr(xS(x)) has dimension 2m−2k over Fq. Then

the curve

X : yq − y = xS(x)

is a minimal curve over Fq2m .
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3 Explicit curves from quadratic forms whose radicals have

codimension two

Our first result characterizes maximal curves from quadratic forms whose radicals have codi-

mension two, over Fq2m .

Theorem 3. Let q be a power of an odd prime, and let m ≥ 2 be a positive integer. Let

S(x) = s0x+ s1x
q + · · ·+ sm−1x

qm−1 ∈ Fq2m [x] with s0sm−1 6= 0.

Then the curve

X : yq − y = xS(x)

is a maximal curve over Fq2m if and only if the following equations are satisfied

cqs1 = − (c2qsq0 + s0)

cq
2
s2 = −

(
2cqsq0 + cq

2+qsq1 + s1

)

cq
3
s3 = −

(
cqsq1 + cq

3+qsq2 + s2

)

...

cq
i
si = −

(
cqsqi−2 + cq

i+qsqi−1 + si−1

)

...

cq
m−1

sm−1 = −
(
cqsqm−3 + cq

m−1+qsqm−2 + sm−2

)

(4)

and

cqsqm−2 + cq
m+qsqm−1 + sm−1 = 0

csm−1 + (csm−1)
qm = 0

(5)

for some c ∈ Fq2m \{0}.

Proof. Let E1 = Fq2m(x, y) with yq − y = xS(x) be the function field of X . As the dimension

of the radical is 2m − 2, deg(S(x)) = qm−1 and sm−1 6= 0, E1 (or equivalently X ) is either

maximal or minimal over Fq2m . Using [3, Proposition 5.1] we can construct an extension field

E2 of E1 such that

E2 is maximal (minimal) ⇔ E1 is maximal (minimal).

Moreover an affine equation for E2 is also given: E2 = Fq2m(z, t) with

tq − t = zR(z).
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Here [3, Proposition 5.1] proves existence of c ∈ Fq2m \{0} such that

D(x)q = S(xq + cx)− cs0x and

R(x) = cS(xq + cx) +D(x) + cs0x
q (6)

in the polynomial ring Fq2m [x]. Then using (6) we obtain that

D(x)q =
m−1∑

i=0

six
qi+1

+
m−1∑

i=0

si(cx)
qi − cs0x and (7)

R(x) = c

(
m−1∑

i=0

six
qi+1

+

m−1∑

i=0

si(cx)
qi

)
+

(
m−1∑

i=0

s
(1/q)
i xqi +

m−1∑

i=1

s
(1/q)
i (cx)q

i−1

)
+ cs0x

q.

(8)

Using Proposition 1, E2 is maximal if and only if the coefficients of R(x) satisfies the equations

in (4) and (5), which completes the proof.

If we take all the coefficients si of S(x) in Fqm we obtain the following explicit classifications

in Corollaries 1, 2 and 3. These results include the maximal curves obtained in [2] as a very

special subcase. Also note that in [2] only the case q = p (prime case) is considered under the

condition that gcd(p, n) = gcd(p, 2m) = 1. Here we have no such condition.

Corollary 1. Let q be a power of an odd prime and let m ≥ 2 be a positive integer. Let

S(x) = s0x+ s1x
q + · · ·+ sm−1x

qm−1 ∈ Fqm[x] with s0sm−1 6= 0.

Then the radical of the quadratic form Tr(xS(x)) has dimension 2m− 2 over Fq and the curve

X : yq − y = xS(x)

is a maximal curve over Fq2m if and only if q ≡ 3 mod 4, m is odd, s0 ∈ Fqm \{0} and for

1 ≤ i ≤ m− 1 we have

si =

{
0 if i is odd,

2s
(qi+1)/2
0 if i is even.

(9)

Proof. Let m ≥ 2. Since sm−1 ∈ F ∗

qm , we have

csm−1 + (csm−1)
qm = (c+ cq

m

)sm−1 = 0

an so c+ cq
m
= 0. Moreover, we have

cqs1 + c2qsq0 + s0 = 0.
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If we take the powers qm−1 and q2m−1 respectively, since s0, s1 ∈ Fqm we will obtain the

equations

−csq
m−1

1 + c2s0 + sq
m−1

0 = 0

and

csq
m−1

1 + c2s0 + sq
m−1

0 = 0.

These equations gives us

s1 = 0 and c2 = −sq
m−1

−1
0 .

This shows that the case m = 2 cannot happen since s0s1 = 0. Let us assume m ≥ 3. For

i = 2, . . . , m− 1 we have the equations

cq
i

si + cqsqi−2 + cq
i+qsqi−1 + si−1 = 0.

These equations give us when q ≡ 3 mod 4

si =

{
0 if i is odd,

2s
(qi+1)/2
0 if i is even,

and when q ≡ 1 mod 4

si =

{
0 if i is odd,

(−1)i/2 2s
(qi+1)/2
0 if i is even

where i ∈ {1, . . . , m− 1}.

Since sm−1 6= 0, we have m − 1 is even, so m must be odd. Moreover, since sm−2 = 0 and

cq
m
= −c, the equation

cqsqm−2 + cq
m+qsqm−1 + sm−1 = 0

gives us

cq+1 = s1−q
m−1

and so

(−sq
m−1

−1
0 )(q+1)/2 = (2s

(qm−1+1)/2
0 )1−q

and so

(−1)(q+1)/2 = 1.

7



This can only happen when q ≡ 3 mod 4.

Assume q ≡ 3 mod 4, m is odd and

si =

{
0 if i is odd,

2s
(qi+1)/2
0 if i is even

and let

Q(x) = Tr

(
x

m−1∑

i=0

six
qi

)
.

Then

Tr(Q(x+ y)−Q(x)−Q(y)) = Tr


2s0xy +

(m−1)/2∑

i=1

s
(q2i+1)/2
0 (xq2iy + xyq

2i

)




= Tr

(
s
(qm−1)/2
0 yq

m
m−1∑

i=0

s
(q2i+1+1)/2
0 xq2i+1

)
= Tr

(
s
(qm−1)/2
0 syq

m
m−1∑

i=0

(sx)q
2i+1

)

with fixing a square root s of s0 in Fq2m . Since

(sx)q
2m − (sx) = s(xq2m − x)

and since

deg
(
(x+ x3 + · · ·+ x2m−1, x2m − 1)

)
= 2m− 2,

we have the result.

Remark. The maximal curves in Corollary 1 have genus qm−1(q − 1)/2 . By [3, Theorem

6.12] such curves are covered by the corresponding Hermitian curve. Note that subcovers of

the Hermitian curves with the same genus could be also obtained using [6, Proposition 3.1].

Corollary 2. Let q ≡ 1 mod 4 be a power of an odd prime and let m ≥ 2 be a positive odd

integer. Let

S(x) = s0x+ s1x
q + · · ·+ sm−1x

qm−1 ∈ Fqm[x] with s0sm−1 6= 0

where

si =

{
0 if i is odd,

2s
(qi+1)/2
0 if i is even

for i = 1, · · · , m− 1. Then the radical of the quadratic form Tr(xS(x)) has dimension 2m− 2

over Fq and the curve is a minimal curve over Fq2m .
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Proof. The calculation of the dimension of Tr(xS(x)) in Corollary 1 works here too. Since its

dimension is 2m− 2 and since the curve X is not maximal by Corollary 1, X is minimal.

Corollary 3. Let q ≡ 1 mod 4 be a power of an odd prime and let m ≥ 2 be a positive even

integer. Let

S(x) = s0x+ s1x
q + · · ·+ sm−1x

qm−1 ∈ Fqm[x] with s0sm−1 6= 0

where

si =

{
0 if i is even,

s
(qi+1)/(q+1)
1 if i is odd

for i = 0, . . . , m− 1. Then the radical of the quadratic form Tr(xS(x)) has dimension 2m− 2

over Fq and the curve is a minimal curve over Fq2m .

Proof. Let

Q(x) = Tr

(
x

m−1∑

i=0

six
qi

)
.

Then

Tr(Q(x+ y)−Q(x)−Q(y) = Tr




m/2∑

i=1

s
(q2i−1+1)/(q+1)
1 (xq2i−1

y + xyq
2i−1

)




= Tr

(
s
(qm−1)/(q+1)
1 yq

m
m−1∑

i=0

s
(q2i+1+1)/(q+1)
1 xq2i+1

)
= Tr

(
s
(qm−1)/(q+1)
1 syq

m
m−1∑

i=0

(sx)q
2i+1

)

with fixing a (q + 1)-th root of s1 in Fq2m , we called it s. Since

(sx)q
2m − (sx) = s(xq2m − x)

and since

deg
(
(x+ x3 + · · ·+ x2m−1, x2m − 1)

)
= 2m− 2,

we have the result.

Remark 1. Corollary 1 and Corollary 2 are true when m = 1. The proof can be found in [9]

(Lemma 5) where p can be replaced by q and x2 can be replaced by s0x
2 for s0 ∈ Fq.

9



4 Explicit curves using cyclotomic polynomials

Assume that d is not divisible by the characteristic of Fq. The d-th cyclotomic polynomialΦd(x)

over Fq is defined as

Φd(x) =

d∏

s=1
gcd(s,d)=1

(x− ξs),

where ξ is a primitive dth root of unity over Fq. In particular Φd(x) is always a divisor of xd−1,

but not necessarily irreducible over Fq. The following are well-known results about cyclotomic

polynomials (see, for example [8]).

Lemma 4. The coefficients of the cyclotomic polynomial Φd(x) are in Fp for all d ≥ 1 with

gcd(d, p) = 1.

Lemma 5. Let d > 1 be relatively prime to p, and set Φd(x) =
φ(d)∑
k=0

akx
k. Then aφ(d)−i = ai for

all 0 ≤ i ≤ φ(d).

If Φd(x) =
φ(d)∑
k=0

akx
k then we define ϕd(x) =

φ(d)∑
k=0

akx
qk .

Theorem 6. Let k be a positive even integer and d be a positive divisor of k which is bigger

than 2. Then the curve

X : yq − y = x

n
2k

−1∑

j=0

ϕd(x)
qa+kj

is minimal over Fqn where n divisible by 2k and φ(d) + 2a = k.

Proof. By Lemma 1 we have

W =



x ∈ Fqn |

n
k
−1∑

j=0

(ϕ(x))q
kj

= 0



 .

Therefore the corresponding associated polynomial to
∑n

k
−1

j=0 (ϕ(x))
qkj is

Φd(x)(1 + xk + · · ·+ xn−k)

and deg gcd
(
Φd(x)(1 + xk + · · ·+ xn−k), xn − 1

)
= n− k + φ(d) = n− 2a. Now the result

follows from Theorem 2.

10



Remark 2. Here we remark that Theorem 6 includes the explicit classes of minimal curves given

in [15, Theorem 3.4 and Theorem 3.5]. If we use φ2(x) = x2−x+1, that is, ϕ2(x) = xq2−xq+x,

then Theorem 6 reduces to [15, Theorem 3.4]. Furthermore, if we use φ4(x) = x2 + x+ 1, that

is, ϕ4(x) = xq2 + xq + x, then Theorem 6 reduces to [15, Theorem 3.5].

Theorem 7. Let k be a positive even integer and d ≥ 2 a divisor of k. Then the curve

X : yq − y = x

n−k
2k

−1∑

j=0

ϕd(x)
qa+kj

+ x

φ(d)
2

−1∑

i=0

cix
qk−a−i

+
cφ(d)/2

2
x2

is minimal over Fq2n where n ≡ k mod 2k, n > k and φ(d) + 2a = 2k.

Proof. By Lemma 1 we have

W =



x ∈ Fqn |

n
k
−1∑

j=0

(ϕ(x))q
kj

= 0



 .

Therefore the corresponding associated polynomial to
∑n

k
−1

j=0 (ϕ(x))
qkj is

Φd(x)(1 + xk + · · ·+ xn−k)

and deg gcd
(
Φd(x)(1 + xk + · · ·+ xn−k), xn − 1

)
= n − k + φ(d) = n − k + φ(d). Since

W ⊂ Fqn and the dimension of W over Fq is even, X is maximal or minimal over Fqn and

hence it is minimal over Fq2n .

Remark 3. Here we remark that Theorem 7 includes the explicit classes of minimal curves

given in [15, Theorem 3.7 and Theorem 3.8]. Similar to Remark 2 if we use φ2(x) = x2−x+1

and φ4(x) = x2 + x+ 1, then Theorem 7 reduces to the minimal curves given in [15, Theorem

3.7] and [15, Theorem 3.8] respectively.

5 Some generalizations

In the previous section, the proofs work for divisors of xk − 1 that are symmetric in the coeffi-

cients but are not necessarily cyclotomic polynomials. Therefore, in the following theorems we

start from divisors of xk − 1, where k ≥ 2 divides n. We consider an integer r ≥ 1 and

f(x) =

2r∑

i=0

aix
i ∈ Fq[x], where f(x) | xk − 1, and ar−i = ar+i ∀ i = 1, . . . , r. (10)

11



Theorem 8. Let n ≥ 2 be even and k ≡ 2 (mod 4) a divisor of n/2. Let

G(x) =

r∑

i=1

ar+ix
qk/2−i

+ arx
qk/2 +

r∑

i=1

ar+ix
qk/2+i

.

Then the curve Xf,k defined by the affine equation yq − y = x
∑ n

2k
−1

j=0 G(x)q
jk

is minimal over

Fqn .

Proof. The genus of the curve Xf,k is g = q−1
2
q

n
2
−

k
2
+r. For w the Fq-dimension of the radical

W associated to the quadratic form Q(x) = Tr(xS(x)) we have: X is minimal or maximal

over Fqn if and only if w = n− k + 2r. We have

W =




x ∈ Fqn :

n
k
−1∑

j=0

G(x)q
jr

= 0






=



x ∈ Fqn :

n
k
−1∑

j=0

(
arx

qr +

r∑

i=1

(ar−ix
qr−i

+ ar+ix
qr+i

)

)qjk

= 0



 .

Therefore the corresponding associated polynomial to
∑n

k
−1

j=0

(
arx

qr +
∑r

i=1(x
qr−i

+ xqr+i
)
)qjk

is

f(x)(1 + xk + x2k + · · ·+ xn−k)

and deg
(
(gcd

(
f(x)(1 + xk + x2k + · · ·+ xn−k), xn − 1

))
= n−k+2r = w. This shows that

the curve Xf,k is either maximal of minimal over Fqn . Since the highest and the lowest powers

in S(x) are q
n
2
−

k
2
+k and q

k
2
−k, by Theorem 2 we conclude that Xf,k is minimal.

Now we construct a family of curves over Fqn that are either maximal or minimal over Fqn and.

We omit the proof since it is very similar to the proof of Theorem 8.

Theorem 9. Let 4 ≤ n = (2s+ 1)k be even. Let

G(x) =
ar
2
x+

r∑

i=1

ar+ix
qi ,

G̃(x) =

r∑

i=1

ar−ix
qk−i

+ arx
qk +

r∑

i=1

ar+ix
qk+i

.

Then the curve Yf,k of affine equation yq − y = x

(∑n−k
2k

−1

j=0

(
G̃(x)

)qkj)
+ xG(x) is either

maximal or minimal.
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Finally, we give some examples of polynomials f(x) satisfying the properties in (10).

Proposition 2. Let r, s, k ≥ 1 be integers. The following polynomials f(x) satisfy (10) in the

following cases.

i) f(x) =
∑2r

i=0 x
i where 2r + 1 | k.

ii) f(x) =
∑2r

i=0(−1)ixi where 2(2r + 1) | k.

iii) f(x) =
∑2r/s

i=0 xis where s | r, s(2r + 1) | k.

iv) f(x) =
∑2r/s

i=0 (−1)ixis where s | r and 2s(2r + 1) | k.

v) f(x) = x2r +
(∑2r−2

i=2 xi
)
+ 1 where s =

{
6, r ≡ 0, 1 (mod 3)
2, r ≡ 2 (mod 3)

and s(2r − 1) | k.

vi) f(x) = x2r+
(∑2r−2

i=2 (−1)ixi
)
+1 where s =

{
6, r ≡ 0, 1 (mod 3)
2, r ≡ 2 (mod 3)

and s(2r−1) | k.

Proof. The first four statements follows immediately from the factorization of xk − 1. The last

two itens are proved as folllows.

v) We have that f(x) = x2r +
(∑2r−2

i=2 xi
)
+ 1 = (1 + x + x2 + · · ·+ x2r−2)(x2 − x + 1).

Suppose r ≡ 0, 1 (mod 3), then 6(2r − 1) | k. Since x6(2r−1) − 1 divides xk − 1 it is

enough to show that f(x) | x6(2r−1) − 1. We have that

x6(2r−1) − 1 = (x2r−1 − 1)(1 + x2r−1 + x2(2r−1) + x3(2r−1) + x4(2r−1) + x5(2r−1))

= (x− 1)(1 + x+ x2 + · · ·+ x2r−2)(1 + x2r−1 + x2(2r−1))(1 + x3(2r−1))

= (x− 1)(1 + x+ x2 + · · ·+ x2r−2)(1 + x2r−1 + x2(2r−1)) ·
·(1 + x3)(1− x3 + x6 − · · ·+ x3(2r−1)−3)

and f(x) | x6(2r−1) − 1. Suppose now r ≡ 2 (mod 3) then 3 | 2r − 1, 2(2r − 1) | k.

Since x2(2r−1) − 1 divides xk − 1 it is enough to show that f(x) | x2(2r−1) − 1. We have

that

x2(2r−1) − 1 = (x2r−1 − 1)(x2r−1 + 1)

= (x− 1)(1 + x+ · · ·+ x2r−2)(1 + x3)(1− x3 + · · ·+ x2r−1−3)

and f(x) | x2(2r−1) − 1.
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(vi) We have that f(x) = x2r+
(∑2r−2

i=2 (−1)ixi
)
+1 = (1−x+x2−· · ·+x2r−2)(x2+x+1).

Suppose r ≡ 0, 1 (mod 3) and therefore 6(2r− 1) | k. Since x6(2r−1) − 1 divides xk − 1

it is enough to show that f(x) | x6(2r−1) − 1. We can write

x6(2r−1) − 1 = (x3(2r−1) − 1)(x3(2r−1) + 1)

= (x3(2r−1) − 1)(x2r−1 + 1)(x2(2r−1) − x2r−1 + 1)

= (x3 − 1)(1 + x3 + · · ·+ x3(2r−1)−3)(x+ 1) ·
·(1− x+ x2 − · · ·+ x2r−2)(x2(2r−1) − x2r−1 + 1)

and f(x) | x6(2r−1) − 1. Suppose now r ≡ 2 (mod 3) then 3 | 2r − 1, 2(2r − 1) | k.

Since x2(2r−1) − 1 divides xk − 1 it is enough to show that f(x) | x2(2r−1) − 1. We have

that

x2(2r−1) − 1 = (x2r−1 − 1)(x2r−1 + 1)

= (x3 − 1)(1 + x3 + · · ·+ x2r−1−3)(x+ 1)(1− x+ · · ·+ x2r−2)

and f(x) | x2(2r−1) − 1.
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