Skip to main content
Log in

Cyclic codes over \({\mathbb {F}}_2 +u{\mathbb {F}}_2+v{\mathbb {F}}_2 +v^2 {\mathbb {F}}_2 \) with respect to the homogeneous weight and their applications to DNA codes

  • OriginalPaper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper, we study cyclic codes and their duals over the local Frobenius non-chain ring \(R={\mathbb {F}}_2[u,v] / \langle u^2=v^2,uv \rangle \), and we obtain optimal binary linear codes with respect to the homogeneous weight over R via a Gray map. Moreover, we characterize DNA codes as images of cyclic codes over R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abualrub, T., Oehmke, R.: On the generators of Z4 codes of length 2e. IEEE Trans. Inform. Theory 49(9), 2126–2133 (2003)

    Article  MathSciNet  Google Scholar 

  2. Abualrub, T., Siap, I.: Cyclic codes over \( Z_2+ uZ_2 \) and \( Z_2 + uZ_2 + u^2Z_2 \). Des. Codes Cryptogr. 42, 273–287 (2007)

    Article  MathSciNet  Google Scholar 

  3. Abulraub, T., Ghrayeb, A., Nian Zeng, X.: Construction of cyclic codes over \(GF(4)\) for DNA computing. J. Frankl. Inst. 343(4–5), 448–457 (2006)

    Article  MathSciNet  Google Scholar 

  4. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  5. Adleman, L., Rothemund, P.W.K., Roweis, S., Winfree, E.: On applying molecular computation to the data encryption standard. J. Comput. Biol. 6(1), 53–63 (1999)

    Article  Google Scholar 

  6. Bayram, A., Oztas, E.S., Siap, I.: Codes over \(F_4 + v F_4\) and some DNA applications. Des. Codes Cryptogr. 80(2), 379–393 (2015)

    Article  Google Scholar 

  7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  8. Brandão, M.M., et al.: Ancient DNA sequence revealed by error-correcting codes. Sci. Rep. 5, 12051 (2015). https://doi.org/10.1038/srep12051

    Article  Google Scholar 

  9. Chen, E.Z.: Online database of two-weight codes. http://www.tec.hkr.se/~chen/research/2-weight-codes/search.php. Accessed 2 Apr 2019

  10. Constantinescu, I., Heise, W.: A metric for codes over residue class rings of integers. Problemy Peredachi Informatsii 33(3), 22–28 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Darehmiraki, M.: A semi-general method to solve the combinatorial optimization problems based on nanocomputing. Int. J. Nanosci. 9(5), 391–398 (2010)

    Article  Google Scholar 

  12. Dinh, H.Q., Lopez-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50(8), 1728–1744 (2004)

    Article  MathSciNet  Google Scholar 

  13. Dougherty, S.T., Kaya, A., Salturk, E.: Cyclic codes over local Frobenius rings of order 16. Adv. Math. Commun. 11(1), 99–114 (2017)

    Article  MathSciNet  Google Scholar 

  14. Faria, L.C., Rocha, A.S., Kleinschmidt, J.H., Silva-Filho, M.C., Bim, E., Herai, R.H., Yamagishi, M.E., Palazzo Jr., R.: Is a genome a codeword of an error-correcting code? PLoS ONE 7(5), e36644 (2012)

    Article  Google Scholar 

  15. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 2 Apr 2019

  16. Gaborit, P., Otmani, A.: Tables of self-dual optimal codes. http://www.unilim.fr/pages_perso/philippe.gaborit/SD/index.html. Accessed 2 Apr 2019

  17. Greferath, M., Schmidt, S.E.: Gray isometries for finite chain rings and a nonlinear ternary \((36, 3^{12}, 15)\) code. IEEE Trans. Inform. Theory 45(7), 2522–2524 (1999)

    Article  MathSciNet  Google Scholar 

  18. Greferath, M., Schmidt, S.E.: Finite-ring combinatorics and MacWilliams’ equivalence theorem. J. Combin. Theory Ser. A 92, 17–28 (2000)

    Article  MathSciNet  Google Scholar 

  19. Guozhen, X., Mingxin, L., Lei, Q., Xuejia, L.: New field of cryptography: DNA cryptography. Chin. Sci. Bull. 51, 1413–1420 (2006)

    Article  MathSciNet  Google Scholar 

  20. Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The Z4 -linearity of Kerdock Preparata Goethals and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994)

    Article  Google Scholar 

  21. Hesketh, E.E., Sayir, J., Goldman, N.: Improving communication for interdisciplinary teams working on storage of digital information in DNA. F1000Research 7, 39 (2018)

    Article  Google Scholar 

  22. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inform. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  Google Scholar 

  23. Kuekes, P.J., Robinett, W., Roth, R.M., Seroussi, G., Snider, G.S., Williams, R.S.: Resistor-logic demultiplexers for nano electronics based on constant-weight codes. Nanotechnology 17(4), 1052–1061 (2006)

    Article  Google Scholar 

  24. Liebovitch, L.S., Tao, Y., Todorov, A.T., Levine, L.: Is there an error correcting code in the base sequence in DNA? Biophys. J. 71(3), 1539–1544 (1996)

    Article  Google Scholar 

  25. Martinez-Moro, E., Szabo, S.: On codes over local Frobenius non-chain rings of order 16. Contemp. Math. 634, 227–241 (2015)

    Article  MathSciNet  Google Scholar 

  26. Moon, J.N.J., Hughes, L.A., Smith, D.H.: Assignment of frequency lists in frequency hopping networks. IEEE Trans. Veh. Technol. 54(3), 1147–1159 (2005)

    Article  Google Scholar 

  27. Oztas, E.S., Siap, I.: Lifted polynomials over \(F_{16}\) and their applications to DNA codes. Filomat 27(3), 459–466 (2013)

    Article  MathSciNet  Google Scholar 

  28. Oztas, E.S., Siap, I.: On a generalization of lifted polynomials over finite fields and their applications to DNA codes. Int. J. Comput. Math. 92(9), 1976–1988 (2015)

    Article  MathSciNet  Google Scholar 

  29. Oztas, E.S., Yildiz, B., Siap, I.: On DNA codes from a family of chain rings. J. Algebra Comb. Discrete Struct. Appl. 4(1), 93–102 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Shi, M., Wu, R., Qian, L., Sok, L., Solé, P.: New classes of p-ary few weight codes. Bull. Malays. Math. Sci. Soc. 42(4), 1393–1412 (2019)

    Article  MathSciNet  Google Scholar 

  31. Shi, M., Zhang, Y.: Quasi-twisted codes with constacyclic constituent codes. Finite Fields Appl. 39, 159–178 (2016)

    Article  MathSciNet  Google Scholar 

  32. Shi, M., Qian, L., Sok, L., Aydın, N., Solé, P.: On constacyclic codes over \(Z4[u]/ \langle u^2-1 \rangle \) and their Gray images. Finite Fields Appl. 45, 86–95 (2017)

    Article  MathSciNet  Google Scholar 

  33. Siap, I., Abulraub, T., Ghrayeb, A.: Cyclic DNA codes over the ring \(F_2[u]/(u^2-1)\) based on the deletion distance. J. Frankl. Inst. 346(8), 731–740 (2009)

    Article  Google Scholar 

  34. Sok, L., Shi, M., Solé, P.: Construction of optimal LCD codes over large finite fields. Finite Fields Appl. 50, 138–153 (2018)

    Article  MathSciNet  Google Scholar 

  35. UbaidurRahman, N.H., Balamurugan, C., Mariappan, R.: A novel DNA computing based encryption and decryption algorithm. Proc. Comput. Sci. 46, 463–475 (2015)

    Article  Google Scholar 

  36. van Lint, J.H., Schrijver, A.: Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields. Combinatorica 1(1), 63–73 (1981)

    Article  MathSciNet  Google Scholar 

  37. Wang, X., Bao, Z., Hu, J., Wang, S., Zhan, A.: Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction. BioSystems 91(1), 117–125 (2008)

    Article  Google Scholar 

  38. Yildiz, B., Karadeniz, S.: Cyclic codes over \({\mathbb{F}}_2+u {\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2\). Des. Codes Cryptogr. 58(3), 221–234 (2011)

    Article  MathSciNet  Google Scholar 

  39. Yildiz, B., Kelebek, I.G.: The homogeneous weight for \( R_k \), related Gray map a new binary quasi-cyclic codes. Filomat 31(4), 885–897 (2017)

    Article  MathSciNet  Google Scholar 

  40. Yildiz, B., Siap, I.: Cyclic codes over \(F_2[u]/(u^4-1)\) and applications to DNA codes. Comput. Math. Appl. 63(7), 1169–1176 (2012)

    Article  MathSciNet  Google Scholar 

  41. Zhu, S., Wang, Y., Shi, M.: Some results on cyclic codes over \({F}_{2}+v{F}_{2}\). IEEE Trans. Inform. Theory 56(4), 1680–1684 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Bulut Yılgör.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulut Yılgör, M., Gürsoy, F., Öztaş, E.S. et al. Cyclic codes over \({\mathbb {F}}_2 +u{\mathbb {F}}_2+v{\mathbb {F}}_2 +v^2 {\mathbb {F}}_2 \) with respect to the homogeneous weight and their applications to DNA codes. AAECC 32, 621–636 (2021). https://doi.org/10.1007/s00200-020-00416-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00416-0

Keywords

Mathematics Subject Classification

Navigation