Skip to main content
Log in

Infinite families of 2-designs from linear codes

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Interplay between coding theory and combinatorial t-designs has attracted a lot of attention. It is well known that the supports of all codewords of a fixed Hamming weight in a linear code may hold a t-design. In this paper, we first settle the weight distributions of two classes of linear codes, and then determine the parameters of infinite families of 2-designs held in these codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Assmus Jr., E.F., Key, J.D.: Designs and Their Codes, Cambridge Tracts in Mathematics, vol. 103. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  2. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, Vol. II, Encyclopedia of Mathematics and Its Applications, vol. 78, 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  3. Colbourn, C.J., Mathon, R.: Steiner systems. In: Colbourn, C.J. and Dinitz. J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 128–135. Chapman and Hall, Boca Raton (2006)

  4. Coulter, R.S.: Further evaluations of Weil sums. Acta Arith. 86(3), 217–226 (1998)

    Article  MathSciNet  Google Scholar 

  5. Ding, C.: Codes from Difference Sets. World Scientific, Singapore (2015)

    Google Scholar 

  6. Ding, C.: Designs from Linear Codes. World Scientific, Singapore (2018)

    Book  Google Scholar 

  7. Ding, C.: Infinite families of 3-designs from a type of five-weight code. Des. Codes Cryptogr. 86(3), 703–719 (2018)

    Article  MathSciNet  Google Scholar 

  8. Ding, C., Li, C.: Infinite families of 2-designs and 3-designs from linear codes. Discrete Math. 340(10), 2415–2431 (2017)

    Article  MathSciNet  Google Scholar 

  9. Ding, K., Ding, C.: A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Trans. Inf. Theory 61(11), 5835–5842 (2015)

    Article  MathSciNet  Google Scholar 

  10. Du, X., Wang, R., Fan, C.: Infinite families of 2-designs from a class of cyclic codes with two non-zeros. ArXiv preprint arXiv:1904.04242 (2019)

  11. Du, X., Wang, R., Tang, C., Wang, Q.: Infinite families of 2-designs from two classes of binary cyclic codes with three non-zeros. ArXiv preprint arXiv:1903.08153 (2019)

  12. Feng, K., Luo, J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14(2), 390–409 (2008)

    Article  MathSciNet  Google Scholar 

  13. Fitzgerald, R.W., Yucas, J.L.: Sums of Gauss sums and weights of irreducible codes. Finite Fields Appl. 11(1), 89–110 (2005)

    Article  MathSciNet  Google Scholar 

  14. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  15. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, vol. 84, 2nd edn. Springer, New York (1990)

    Book  Google Scholar 

  16. Kasami, T., Lin, S., Peterson, W.W.: Some results on cyclic codes which are invariant under the affine group and their applications. Inf. Control 11, 475–496 (1967)

    Article  MathSciNet  Google Scholar 

  17. Kennedy, G.T., Pless, V.: A coding-theoretic approach to extending designs. Discrete Math. 142(1–3), 155–168 (1995)

    Article  MathSciNet  Google Scholar 

  18. Kim, J.L., Pless, V.: Designs in additive codes over \(GF(4)\). Des. Codes Cryptogr. 30(2), 187–199 (2003)

    Article  MathSciNet  Google Scholar 

  19. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and Its Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  20. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes: I. North-Holland Mathematical Library, vol. 16. North-Holland Publishing Co., Amsterdam (1977)

    Google Scholar 

  21. Reid, C., Rosa, A.: Steiner systems \( S (2, 4, v) \)-a survey. Electron. J. Comb. #DS18, 1–34 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Tonchev, V.D.: Codes and designs. In: Pless, V., Huffman, W.C. (eds.) Handbook of Coding Theory, vol. I and II, pp. 1229–1267. North-Holland, Amsterdam (1998)

    Google Scholar 

  23. Tonchev, V.D.: Codes. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, Discrete Mathematics and Its Applications (Boca Raton), 2nd edn. Chapman & Hall, Boca Raton (2007)

    Google Scholar 

  24. van der Vlugt, M.: Hasse–Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes. J. Number Theory 55(2), 145–159 (1995)

    Article  MathSciNet  Google Scholar 

  25. Xiang, C., Ling, X., Wang, Q.: Combinatorial \(t\)-designs from quadratic functions. Des. Codes Cryptogr. 88(3), 553–565 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

X. Du was partially supported by the National Natural Science Foundation of China under Grant 61772022. C. Tang was partially supported by the National Natural Science Foundation of China under Grant 11871058. Q. Wang was partially supported by the National Natural Science Foundation of China under Grant 61672015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 5 The value distribution of S(abc) when m is odd
Table 6 The value distribution of S(abc) when m is even

Proof

(Proof of Theorem 3) For each nonzero codeword \({\mathbf {c}}(a,b,c,h)=(c_0, c_1,\ldots , c_n)\) in \({\overline{{{\mathcal {C}}_1}^{\bot }}}^{\bot },\) the Hamming weight of \({\mathbf {c}}(a,b,c,h)\) is

$$\begin{aligned} w_H({\mathbf {c}}(a,b,c,h))=n+1-T(a,b,c,h)=p^m-T(a,b,c,h), \end{aligned}$$
(6)

where

$$\begin{aligned} T(a,b,c,h)=|\{x: Tr(ax^{p^l+1}+bx^2+cx)+h=0,\, x,a,b,c \in {\mathbb {F}}_q, h\in {\mathbb {F}}_p\}|. \end{aligned}$$

Then

$$\begin{aligned} T(a,b,c,h)= & {} \frac{1}{p}\sum \limits _{y \in {\mathbb {F}}_p}\sum \limits _{x \in {\mathbb {F}}_q}\zeta _p^{y(Tr(ax^{p^l+1}+bx^2+cx)+h)}\\= & {} \frac{1}{p}\sum \limits _{y \in {\mathbb {F}}_p}\zeta _p^{yh}\sum \limits _{x \in {\mathbb {F}}_q}\zeta _p^{yTr(ax^{p^l+1}+bx^2+cx)}\\= & {} p^{m-1}+\frac{1}{p}\sum \limits _{y \in {\mathbb {F}}_p^*}\zeta _p^{yh}\sigma _y(S(a,b,c)). \end{aligned}$$

By Lemma 7, for \(\varepsilon =\pm 1, j \in {\mathbb {F}}_p^*\) and \(0\le i\le 2,\) we have \(\ell =\frac{m+i}{2}\) if \(m-i\) is even, and \( \ell =\frac{m+i-1}{2}\) if \(m-i\) is odd, and then

$$\begin{aligned} S(a,b,c)=\{\varepsilon p^\ell , \varepsilon \sqrt{p^*}p^\ell , 0 , \varepsilon p^\ell \zeta _p^j, \varepsilon \sqrt{p^*}\zeta _p^jp^\ell , p^m\}. \end{aligned}$$

Hence from Lemma 8, it follows that

$$\begin{aligned} \sigma _y(S(a,b,c))=\left\{ \begin{array}{ll} 0 &{} \mathrm {if}\,\ S(a,b,c)=0 ,\\ \varepsilon p^\ell &{} \mathrm {if}\,\ S(a,b,c)=\varepsilon p^\ell ,\\ \varepsilon p^\ell \sqrt{p^*}\eta '(y) &{} \mathrm {if}\,\ S(a,b,c)=\varepsilon p^\ell \sqrt{p^*} ,\\ \varepsilon p^\ell \zeta _p^{yj} &{} \mathrm {if}\,\ S(a,b,c)=\varepsilon p^\ell \zeta _p^j ,\\ \varepsilon p^\ell \sqrt{p^*}\eta '(y) \zeta _p^{yj}&{} \mathrm {if}\,\ S(a,b,c)=\varepsilon \sqrt{p^*}p^\ell \zeta _p^j ,\\ p^m &{} \mathrm {if}\,\ S(a,b,c)=p^m. \end{array} \right. \end{aligned}$$

That is,

$$\begin{aligned} T(a,b,c,h)=\left\{ \begin{array}{ll} p^{m-1} &{} \mathrm {if}\,\ S(a,b,c)=0 ,\\ p^{m-1}+\varepsilon p^{\ell -1}(p-1) &{} \mathrm {if}\,\ S(a,b,c)=\varepsilon p^\ell \, \mathrm {and}\,\ h=0,\\ p^{m-1}+\varepsilon p^{\ell -1}(-1) &{} \mathrm {if}\,\ S(a,b,c) =\varepsilon p^\ell \, \mathrm {and}\,\ h\ne 0 ,\\ p^{m-1}+\varepsilon p^{\ell -1}\sqrt{p^*}\eta '(y)G(\eta ', \chi '_1) &{} \mathrm {if}\,\ S(a,b,c)=\varepsilon \sqrt{p^*}p^\ell ,\\ p^{m-1}+\varepsilon p^{\ell -1}(p-1)&{} \mathrm {if}\,\ S(a,b,c)=\varepsilon p^\ell \zeta _p^j\, \mathrm {and}\,\ h+j=0, \\ p^{m-1}+\varepsilon p^{\ell -1}(-1)&{} \mathrm {if}\,\ S(a,b,c)=\varepsilon p^\ell \zeta _p^j \, \mathrm {and}\,\ h+j\ne 0, \\ p^{m-1}+\varepsilon p^{\ell -1}\sqrt{p^*}\eta (h+j)G(\eta ',\chi '_1) &{} \mathrm {if}\,\ S(a,b,c)=\varepsilon \sqrt{p^*}p^\ell \zeta _p^j ,\\ p^m&{} \mathrm {if}\,\ S(a,b,c)=p^m \, \mathrm {and}\,\ h=0 ,\\ 0&{} \mathrm {if}\,\ S(a,b,c)=p^m\, \mathrm {and}\,\ h \ne 0 . \end{array} \right. \end{aligned}$$

Obviously, when m is odd, by Lemmas 34, 7 and Eq. (6) we have

\(w_1=p^m-p^{m-1},\)

\(A_{w_1}=pw+2n_{1,0,0}+2n_{1,2,0}+(p-1)[(n_{1,0,1}+n_{-1,0,1})+(n_{1,2,1}+n_{-1,2,1})],\)

\(w_2=p^m-[p^{m-1}+p^{\frac{m-1}{2}}(p-1)],\)

\(A_{w_2}=n_{1,1,0}+(p-1)n_{1,1,1},\)

\(w_3=p^m-[p^{m-1}-p^{\frac{m-1}{2}}(p-1)],\)

\(A_{w_3}=n_{-1,1,0}+(p-1)n_{-1,1,1},\)

\(w_4=p^m-(p^{m-1}-p^{\frac{m-1}{2}}),\)

\(A_{w_4}=(p-1)n_{1,1,0}+(p-1)^2n_{1,1,1}+{\frac{p-1}{2}}(n_{1,0,0}+n_{-1,0,0})+{\frac{p-1}{2}}{(p-1)}(n_{1,0,1}+n_{-1,0,1}),\)

\(w_5=p^m-(p^{m-1}+p^{\frac{m-1}{2}}),\)

\(A_{w_5}=(p-1)n_{-1,1,0}+(p-1)^2n_{-1,1,1}+2\cdot {\frac{p-1}{2}}n_{\pm 1,0,0}+2\cdot {\frac{(p-1)^2}{2}}n_{\pm 1,0,1},\)

\(w_6=p^m-(p^{m-1}-p^{\frac{m+1}{2}}),\)

\(A_{w_6}=2\cdot {\frac{p-1}{2}}n_{\pm 1,2,0}+2\cdot {\frac{(p-1)^2}{2}}n_{\pm 1,2,1},\)

\(w_7=p^m-(p^{m-1}+p^{\frac{m+1}{2}}),\)

\(A_{w_7}=A_{w_6},\)

\(A_{p^m}=p-1.\) When m is even, by Lemmas 3, 4, 7 and Eq. (6) we get

\(w_1=p^m-p^{m-1},\)

\(A_{w_1}=pw+2n_{\pm 1,1,0}+2(p-1)n_{\pm 1,1,1},\)

\(w_2=p^m-[p^{m-1}+p^{\frac{m}{2}-1}(p-1)],\)

\(A_{w_2}=n_{1,0,0}+(p-1)n_{1,0,1},\)

\(w_3=p^m-[p^{m-1}+p^{\frac{m}{2}}(p-1)],\)

\(A_{w_3}=n_{1,2,0}+(p-1)n_{1,2,1},\)

\(w_4=p^m-[p^{m-1}-p^{\frac{m}{2}-1}(p-1)],\)

\(A_{w_4}=n_{-1,0,0}+(p-1)n_{-1,0,1},\)

\(w_5=p^m-[p^{m-1}-p^{\frac{m}{2}}(p-1)],\)

\(A_{w_5}=n_{-1,2,0}+(p-1)n_{-1,2,1},\)

\(w_6=p^m-[p^{m-1}-p^{\frac{m}{2}}(p-1)],\)

\(A_{w_6}=(p-1)n_{1,0,0}+(p-1)^2n_{1,0,1},\)

\(w_7=p^m-(p^{m-1}-p^{\frac{m}{2}}),\)

\(A_{w_7}=(p-1)n_{1,2,0}+(p-1)^2n_{1,2,1}+2\cdot {\frac{p-1}{2}}n_{\pm 1,1,0}+2\cdot {\frac{(p-1)^2}{2}}n_{\pm 1,1,1},\)

\(w_8=p^m-(p^{m-1}+p^{\frac{m}{2}-1}),\)

\(A_{w_8}=(p-1)n_{-1,0,0}+(p-1)^2n_{-,0,1},\)

\(w_9=p^m-(p^{m-1}+p^{\frac{m}{2}}),\)

\(A_{w_9}=(p-1)n_{-1,2,0}+(p-1)^2n_{-1,2,1}+2\cdot {\frac{p-1}{2}}n_{\pm 1,1,0}+2\cdot {\frac{(p-1)^2}{2}}n_{\pm 1,1,1},\)

\(A_{p^m}=p-1.\)

Thus we complete the proof of Theorem 3. \(\square \)

Proof

(Proof of Theorem 4) For each nonzero codeword \({\mathbf {c}}(a,b,h)=(c_0,\ldots ,c_n)\) in \({\overline{{{\mathcal {C}}_2}^{\bot }}}^{\bot },\) the Hamming weight of \({\mathbf {c}}(a,b,h)\) is

$$\begin{aligned} w_H({\mathbf {c}}(a,b,h))=p^m-T(a,b,h), \end{aligned}$$
(7)

where

$$\begin{aligned} T(a,b,h)=|\{x:Tr(ax^{p^l+1}+bx)+h=0,\, x,a,b \in {\mathbb {F}}_q, h \in {\mathbb {F}}_p\}|. \end{aligned}$$

Then

$$\begin{aligned} T(a,b,h)= & {} {\frac{1}{p}}\sum \limits _{y \in {\mathbb {F}}_p}\sum \limits _{x \in {\mathbb {F}}_q}\zeta _p^{yTr\left(ax^{p^l+1}+bx\right)+hy}\\= & {} p^{m-1}+{\frac{1}{p}}\sum \limits _{y\in {\mathbb {F}}_p^*}\zeta _p^{hy}\sum \limits _{x \in {\mathbb {F}}_q}\zeta _p^{yTr\left(ax^{p^l+1}+bx\right)}. \end{aligned}$$

If \(a=b=h=0\), then \({\mathbf {c}}(a,b,h)\) is the zero codeword.

If \(a=b=0, h\ne 0\), then \(T(a,b,h)=p^{m-1}+p^{m-1}\sum \limits _{y \in {\mathbb {F}}_p^*}\zeta _p^{hy}=0.\)

If \(a=0, b\ne 0\), then \( T(a,b,h)=p^{m-1}+{\frac{1}{p}}\sum \limits _{y \in {\mathbb {F}}_p^*}\zeta _p^{hy}\sum \limits _{x\in {\mathbb {F}}_q}\zeta _p^{yTr(bx)}=p^{m-1}.\)

If \(a\ne 0\), then

$$\begin{aligned} T(a,b,h)= & {} p^{m-1}+{\frac{1}{p}}\sum \limits _{y \in {\mathbb {F}}_p^*}\zeta _p^{hy}\sigma _y(\sum \limits _{x\in {\mathbb {F}}_q}\zeta _p^{Tr(ax^{p^l+1}+bx)})\\= & {} p^{m-1}+{\frac{1}{p}}\sum \limits _{y \in {\mathbb {F}}_p^*}\zeta _p^{hy}\sigma _y(S(a,b))\\= & {} p^{m-1}+{\frac{1}{p}}\sum \limits _{y \in {\mathbb {F}}_p^*}\zeta _p^{hy}S(ay,by). \end{aligned}$$

When m is odd, by Lemmas 35, we have

$$\begin{aligned} T(a,b,h)=\left\{ \begin{array}{ll} p^{m-1} &{} \mathrm {if}\,\ h=Tr(ax_{a,b}^{p^l+1}),\\ p^{m-1}+p^{\frac{m-1}{2}}(-1)^\frac{(p-1)(m+1)}{4}\eta (a)\eta '(h-Tr(ax_{a,b}^{p^l+1})) &{} \mathrm {if}\,\ h\ne Tr(ax_{a,b}^{p^l+1}).\\ \end{array} \right. \end{aligned}$$

Obviously, for \( a\in {\mathbb {F}}_q^*,\) we get that \( T(a,b,h)=p^{m-1}\) appears \(p^m(p^m-1)\) times, both \(T(a,b,h)=p^{m-1}+p^{\frac{m-1}{2}}\) and \( T(a,b,h)=p^{m-1}-p^{\frac{m-1}{2}}\) appear \(\frac{p^m(p-1)(p^m-1)}{2}\) times, respectively.

When m is even and \(a^{\frac{q-1}{p+1}}\ne (-1)^{\frac{m}{2}},\) by Lemma 5, we have

$$\begin{aligned} T(a,b,h)=\left\{ \begin{array}{ll} p^{m-1}+(-1)^{\frac{m}{2}}p^{\frac{m}{2}-1}(p-1) &{} \mathrm {if}\,\ h=Tr\left(ax_{a,b}^{p^l+1}\right),\\ p^{m-1}-(-1)^{\frac{m}{2}}p^{\frac{m}{2}-1} &{} \mathrm {if}\,\ h\ne Tr\left(ax_{a,b}^{p^l+1}\right)\,. \end{array} \right. \end{aligned}$$

Clearly, there exist \(p^m-1-{\frac{p^m-1}{p+1}}={\frac{p(p^m-1)}{p+1}}\) elements \(a\in {\mathbb {F}}_q^*\) such that \(a^{\frac{q-1}{p+1}}\ne (-1)^{\frac{m}{2}}.\) Then

$$\begin{aligned} T(a,b,h)=p^{m-1}+(-1)^{\frac{m}{2}}p^{\frac{m}{2}-1}(p-1) \end{aligned}$$

appears \({\frac{p^{m+1}(p^m-1)}{p+1}}\) times, and

$$\begin{aligned} T(a,b,h)=p^{m-1}-(-1)^{\frac{m}{2}}p^{\frac{m}{2}-1} \end{aligned}$$

appears \({\frac{p^{m+1}(p-1)(p^m-1)}{p+1}}\) times.

When m is even and \(a^{\frac{q-1}{p+1}}=(-1)^{\frac{m}{2}},\) from Lemma 5, we get

$$\begin{aligned} T(a,b,h)=\left\{ \begin{array}{ll} p^{m-1}-(-1)^{\frac{m}{2}}p^{\frac{m}{2}}(p-1) &{} \mathrm {if}\,\ f(x)=-b^{p^l}\, \ \mathrm {is\, solvable}\, \mathrm {and}\,\ h=Tr(ax_{a,b}^{p^l+1}),\, \\ p^{m-1}+(-1)^{\frac{m}{2}}p^{\frac{m}{2}} &{} \mathrm {if}\,\ f(x)=-b^{p^l}\, \ \mathrm {is \,solvable},\,\ b\ne 0\,\mathrm {and}\\ {} &{}\ h\ne Tr\left(ax_{a,b}^{p^l+1}\right)\ ,\ \mathrm {or}\,\ b=0\,\mathrm {and}\,\ h\ne 0,\\ p^{m-1} &{} \mathrm {if}\,\ f(x)=-b^{p^l}\, \ \mathrm {is \, no\, solvable}. \end{array} \right. \end{aligned}$$

By Lemma 6, there are \(\frac{q-1}{p+1}\) elements \(a\in {\mathbb {F}}_q^*\) such that \(a^{\frac{q-1}{p+1}}=(-1)^{\frac{m}{2}},\) and \(p^{m-2}\) elements \(b\in {\mathbb {F}}_q\) such that \(f(x)=-b^{p^l}\) is solvable. Therefore,

$$\begin{aligned} T(a,b,h)=p^{m-1}+(-1)^{\frac{m}{2}+1}p^{\frac{m}{2}}(p-1) \end{aligned}$$

appears \({\frac{p^{m-2}(p^m-1)}{p+1}}\) times,

$$\begin{aligned} T(a,b,h)=p^{m-1}+(-1)^{\frac{m}{2}}p^{\frac{m}{2}} \end{aligned}$$

appears \({\frac{p^{m-2}(p^m-1)(p-1)}{p+1}}\) times, and \(T(a,b,h)=p^{m-1}\) appears \((p^m-1)p^{m-1}(p-1)\) times.

By all the discussions above, the proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Wang, R., Tang, C. et al. Infinite families of 2-designs from linear codes. AAECC 33, 193–211 (2022). https://doi.org/10.1007/s00200-020-00438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00438-8

Keywords

Mathematics Subject Classification

Navigation