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ON THE WEIGHTS OF DUAL CODES ARISING FROM THE

GK CURVE
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Abstract. In this paper we investigate some dual algebraic-geometric codes
associated with the Giulietti-Korchmáros maximal curve. We compute the
minimum distance and the minimum weight codewords of such codes and we
investigate the generalized hamming weights of such codes.
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1. Introduction

Let X be an algebraic curve defined over the finite field Fq of order q. We recall
that a curve X is called Fq- maximal if its number of rational points over Fq attains
the Hasse-Weil upper bound

|X (Fq)| = q + 1 + 2g(X )q1/2,

where g(X ) is the genus of X .
Since codes with good parameters can be constructed from these curves, many

authors studied their properties, see [7, 9, 14, 15, 16, 19, 20]. Most of the known
examples have been shown to be subcovers of the Hermitian curve H, which is
defined over Fq2 by the equation Y q+1 = Xq +X. This led to the question whether
every maximal curve is a subcover of the Hermitian curve or not. This question has
a negative answer: in [13], Giulietti and Korchmáros introduced an infinity family
of curves C′, the so called GK curve, which is maximal over Fq6 .

Codes from the GK curve have been widely investigate, see for example [6, 7,
10, 12]

In most cases, the weight distribution of a given code is hard to be computed.
Even the problem of computing codewords of minimum weight can be a difficult task
apart from specific cases. In [6], following the approach of [11], the authors compute
the number of minimum weight codewords of certain dual AG codes arising from the
GK curve. For this purpose, they provide a useful algebraic-geometric description
for codewords with a given weight which belong to a fixed affine-variety code. These
techniques are widely used in literature, see [1, 3, 4, 2].

In this paper we investigate, using algebraic geometry techniques, codes arising
from the GK maximal curve and we give tools to compute the number of minimum
weight codewords of such codes. We also investigate some different construction of
codes deriving from the ones in [6] and we study the generalized hamming weights
of some codes arising from the GK curve, which are another important pattern for
a linear code.
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2. Preliminaries

We recall the following results (see [3, Theorem 1]).

Lemma 2.1. Fix integers r ≥ 2, m > 0 and e > 0. Let Z ⊂ Pr be a zero-
dimensional scheme such that deg(Z) ≤ 3m+ r − 3. If r ≥ 3 assume that Z spans
Pr. We have h1(IZ(m)) ≥ e if and only if there is W ⊆ Z occurring in this list:

(a) deg(W ) = m+ 1 + e and W is contained in a line;
(b) deg(W ) = 2m+ 1 + e and W is contained in a reduced plane conic;
(c) r ≥ 3, e ≥ 2, and there are an integer f ∈ {1, . . . , e − 1} and lines L1, L2,

such that L1∩L2 = ∅, deg(L1∩Z) = m+1+f and deg(L2∩Z) = m+1+e−f .

Lemma 2.2. Let F be any field and let Pn denote the projective space of dimension
n on F. Let C ⊆ Pr be a smooth plane curve which is a complete intersection. Fix
an integer d > 0, a zero-dimensional scheme E ⊆ C and a finite subset B ⊆ C

such that B ∩ Ered = ∅1. Denote by C the code obtained evaluating the vector
space H0(C,OC(d)(−E)) at the points of B. Set c = deg(C), n = |B| and assume
|B| > dc− deg(E). The following facts hold.

(1) The code C⊥ has length n and dimension k = h0(C,OC(d)) − deg(E) +
h1(Pn, IE(d)).

(2) The minimum distance of C⊥ is the minimal cardinality, say z, of a subset
of S ⊆ B such that

h1(Pn, IS∪E(d)) > h1(Pn, IE(d)).

(3) A codeword of C⊥ has weight z if and only if it is supported by a subset
S ⊆ B such that
(a) |S| = z,
(b) h1(Pn, IE∪S(d)) > h1(Pn, IE(d)),
(c) h1(Pn, IE∪S(d)) > h1(Pn, IE∪S′(d)) for any S′  S.

A zero-dimensional scheme Z ⊂ Pr is said to be curvilinear if at each P ∈ Zred

the Zariski tangent space of Z has dimension ≤ 1. A zero-dimensional scheme
is contained in a smooth curve (easy). A zero-dimensional scheme is curvilinear
if and only if it has finitely many subschemes (for the “ only if ” part use that
it is contained in a smooth curve, for the “ if ” part use that a non-curvilinear
subscheme has infinitely many subschemes with degree 2). In this note we point
out the following partial extension of [1], Theorem 1, to the case of non-reduced,
but curvilinear subschemes.

We recall the following results ([4, Theorem 1]).

Theorem 2.3. Fix an integer m ≥ 3. Let Z ⊂ Pr, r ≥ 3, be a curvilinear zero-
dimensional scheme spanning Pr. If r = 3, then assume deg(Z) < 3m. If r ≥ 4,
then assume deg(Z) ≤ 4m + r − 5 and deg(Z ∩ M) < 3m for all 3-dimensional
linear subspaces M ⊂ Pr. We have h1(IZ(m)) > 0 if and only if either there is a
line D with deg(D∩Z) ≥ m+2 or there is a conic D′ with deg(D′ ∩Z) ≥ 2m+2.

With minimal modifications of the proof of [1] we get the following result

Lemma 2.4. Let Y ⊂ P3 be a smooth and connected projective curve defined over
an algebraically closed field. Fix a zero-dimensional scheme A ⊂ Y and a finite
set B ⊂ Y such that A ∩ B = ∅. Set Z := A ∪ B. Assume deg(A) Assume

1Here Ered denotes the reduction of the scheme E.
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deg(A) < 3m, deg(Z) ≤ 4m+ 2 and deg(Z ∩H) ≤ 4m− 5 for each plane H ⊆ Pr

We have h1(IZ(m)) > 0 if and only if there is W ⊆ Z as in one of the following
cases:

(a) deg(W ) = m+ 2 and W is contained in a line;
(b) deg(W ) = 2m+ 2 and W is contained in a plane conic;
(c) deg(W ) = 3m and W is the complete intersection of a degree 3 plane curve

and a degree m surface;
(d) deg(W ) ≥ 3m+ 1 and W is contained in a degree 3 plane curve;
(e) deg(W ) = 3m+ 2 and W is contained in a reduced and connected degree 3

curve spanning P3.

3. GK curve

Denote by PG(3, q6) the three dimensional projective space over the field Fq6

with q6 element. The Giulietti-Korchmáros curve GK is a non-singular curve in
PG(3, q6) defined by the affine equations

(1)

{

Zq2−q+1 = Y q2 − Y

Y q+1 = Xq +X
.

Arbitrary complete intersections in Pr are defined and studied in [17, Ex. II.8.4
and III.5.5]. We always consider the case of smooth space curves, complete in-
tersection of a surface S of degree a and a surface of degree b ≥ a (for GK we
have a = q + 1 and b = q2. We have h1(P3, IC(t)) = 0 for all t ∈ Z and
hence (for a smooth curve) and any zero-dimensional scheme Z ⊂ C) we have
h1(C,OC(t)(−Z)) = h1(OC(t)) + h1(P3, IZ(t)). We have the exact sequences

(2) 0 −→ OP3(t− a) −→ OP3(t) −→ OS(t) −→ 0

(3) 0 −→ OS(t− b) −→ OS(t) −→ OC(t) −→ 0

We have h0(OP3(t)) =
(

t+3
3

)

for all t ≥ 0. From (2) and (3) we get h0(OC(t)) =
(

t+3
3

)

for all t < a and h0(OC(t)) =
(

t+3
3

)

−
(

t−a+3
3

)

if a ≤ t < b (see below the

proof of the case t ≥ b). From (2) and the fact that hi(OP3(x)) = 0 for i = 1, 2 and
all x ∈ Z we get h1(OS(x)) = 0 for all x ∈ Z and h0(OC(t)) = h0(OS(t)) if t < b

and h0(OC(t)) = h0(OS(t))−h0(OS(t− b)) for all t ≥ b. Thus for all t ≥ b we have

h0(OC(t)) =
(

t+3
3

)

−
(

t−a+3
3

)

+
(

t−b
3

)

− ε, where ε = 0 if t < b + a and ε =
(

t−b−a
3

)

if t ≥ b+ a.

Proposition 3.1. Let L be a tangent to GK at a point P . Then I(L,GK, P ) =
q2 − q + 1 or I(L,GK, P ) = q + 1.

Proof. We know that the tangent to an affine point of this curve P = (x0, y0, z0)
has equation

{

(Y − y0) + z
q2−q
0 (Z − z0) = 0

−(X − x0) + y
q
0(Y − y0) = 0

The parametric equation of this line is, for z0 6= 0














X = x0 + y
q
0t− y

q+1
0

Y = t

Z =
−t+y0+zq2−q+1

0

zq2−q

0

=
t+yq2

0

zq2−q

0
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while for z0 = 0 it is










X = x0

Y = y0

Z = t

and the solution corresponding to P is t = y0 and t = z0 respectively.
Suppose z0 6= 0.
Substituting the equation of the affine equation of the GK curve gives us

(4)











(

−t+yq2

0

zq2−q

0

)q2−q+1

− tq
2

+ t = 0

−tq+1 + (x0 + y
q
0t− y

q+1
0 )q + x0 + y

q
0t− y

q+1
0 = 0

The first equation becomes

0 = (−t+ y
q2

0 )q
2−q+1 − (tq

2

− t)z
(q2−q)(q2−q+1)
0

= (yq
2

0 − t)q
2−q+1 − (tq

2

− t)(yq
2

0 − y0)
q2−q

which has t = y0 as a root, its derivative is

−(yq
2

0 − t)q
2−q + (yq

2

0 − y0)
q2−q = (−(yq

2

0 − t)q−1 + (yq
2

0 − y0)
q−1)q

and since t = y0 is a root of −(yq
2

0 − t)q−1 + (yq
2

0 − y0)
q−1 we have that t = y0 is a

root of (4) with multiplicity at least q + 1.
By direct computations the second equation becomes

0 =− tq+1 + x
q
0 + y

q2

0 tq − y
q2+q
0 + x0 + y

q
0t− y

q+1
0 = −tq+1 + y

q2

0 tq − y
q2+q
0 + y

q
0t

=tq(−t+ y
q2

0 )− y
q
0(−t+ y

q2

0 ) = (−t+ y
q2

0 )(t− y0)
q

and from this we get that t = y0 is a root with multiplicity q+ 1 if y0 ∈ Fq2 or q is
y0 6∈ Fq2 .

Now we deal with the remaining case z0 = 0. Substituting the equation of the
affine equation of the GK curve gives us

{

tq
2−q+1 = y

q2

0 − y0

y
q+1
0 = x

q
0 + x0

where the second is not an equation in t but just a compatibility condition. So, if
this holds we get that

tq
2−q+1 = 0

In this case the tangent in P is a q2 − q + 1-secant.
The last case we have to study is the case P∞ = (1 : 0 : 0 : 0), the homogenized

equations of the curve are

(5)

{

Zq2−q+1T q−1 = Y q2 − Y T q2−1

Y q+1 = XqT +XT q
.

the equation of the tangent line will be then
{

X = 1

Y = 0

and the multiplicity intersection at this point with the tangent is q2 − q + 1. �
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4. Codes from the GK curve

We recall results for the intersections of algebraic curves and GK and for the
minimum distance of the one point AG code C(D,Gm)⊥, whereGm = m(q3+1)P∞,
P∞ = (1 : 0 : 0 : 0), and D =

∑

P∈GK(F
q6

)\{P∞} P , see [6] for details.

Proposition 4.1. Let r ⊂ PG(3, q6) be a line. Then

|r ∩ GK| ≤ q2 − q + 1.

Also, any (q2−q+1)-secant is parallel to the z-axis and all the (q2−q+1) common
points are not Fq2-rational.

Proposition 4.2. The total number of (q2−q+1)-secants of the GK is (q+1)(q5−
q3).

Remember that each point lies in exactly one of such secants.

Proposition 4.3. Let X be a curve of degree α ≤ q in PG(3, q6). Then the size
|X ∩ GK(Fq6)| is at most

{

α(q2 − q + 1), if X is reducible,
α(q + 1), if X is absolutely irreducible.

Proposition 4.4. Let d∗ ≤ d be the designed Goppa minimum distance of C(D,Gm)⊥,
m ≥ 2. Then

(1) d = m+ 2 when m ≤ q2 − q − 1;
(2) d = 2m+ 2 when m = q2 − q;
(3) d = 3m when m = q2 − q + 1;
(4) d ≥ 3m+ 1 when q2 − q + 1 < m ≤ q2 − 1;
(5) d ≥ d∗ when m > q2 − 1.

4.1. The family CS. Condider now a set S ⊂ GK(Fq6) and the corresponding
divisor

DS = D −
∑

P∈S

P

and call

S1 = {P ∈ S : P ∈ GK(Fq2)}, S2 = S \ S1.

The following result comes from a straight application of 4.2.

Proposition 4.5. Let q + 1 ≤ m ≤ 2(q + 1) and DS defined as before. Consider
the code CS = C(DS , (q

3 + 1)mP∞)⊥, if

|S2| < (q2 − q + 1−m)(q + 1)(q5 − q)

then CS is a [n− |S|, ℓ(DS)− ℓ(DS −Gm),m+2]q-code. Moreover, if S = S1 then

the number of minimum weight codewords of CS is given by

Am+2(CS) = (ℓ + 1)(ℓ5 − ℓ3)(ℓ6 − 1)

(

ℓ2 − ℓ+ 1

m+ 2

)

.

Proof. Following the proof of Proposition (4.4) and noticing that if |S2| < (q2− q+
1−m)(q + 1)(q5 − q) there is at least a (m+ 2)-secant line the result holds. �
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Remark 4.6. Actually this bound can be improved depending on the composition
of S2, i.e. if the points in S2 are chosen in a way such that at least m+2 of them lie
in the intersection between one line and GK, then all the other ones can be taken
leaving the minimum distance unchanged (while decreasing the dimension of the
code, so improving the code itself).

4.2. Three-point codes.

Theorem 4.7. Fix any three distinct points P1, P2, P3 ∈ (GK)(Fq6) \ {P∞} and
assume P1, P2 and P3 to span P2 and be such that their connecting line is not
parallel to the z axis. Set B := (GK)(Fq6 ) \ {P1, P2, P3}. Fix an integer d ≥
5 such that 1 ≤ d ≤ q − 1 and integers a1, a2, a3 ∈ {1, . . . , d} such that a1 +
a2 + a3 ≤ 3d − 5 and ai = d for at most one index i ∈ {1, 2, 3}. Set E :=
a1P1 + a2P2 + a3P3. Let C := C(B, d,−E) be the code obtained evaluating the
vector space H0((GK),O(GK)(d)(−E)) on the set B. Then C is a code of length

n = |B| = q8 − q6 + q5 − 2 and dimension k =
(

d+3
3

)

− a1 − a2 − a3. For any
i ∈ {1, 2, 3} let Li denote the line spanned by Pj and Ph with {i, j, h} = {1, 2, 3}.
Then C⊥ has minimum distance d and its minimum-weight codewords are exactly
the ones whose support is formed by d points of B ∩ Li for some i ∈ {1, 2, 3}.

Proof. The length of C is obviously n = q8−q6+q5−2. From what we said previously
we have h0((GK),O(GK)(d)) =

(

d+3
3

)

. If, say, a1 ≥ a2 ≥ a3, the assumptions
a1 ≤ d and a1 + a2 + a3 ≤ 3d− 1 give ai ≤ d+ 2 − i for all i. Hence our previous
computations tell us that h1(P2, IE(d)) = 0 and so h0((GK),O(GK)(d)(−E)) =
(

d+3
3

)

− a1 − a2 − a3 = k.

Since |B| > d·deg((GK)), there is not a non-zero element ofH0((GK),O(GK)(d))
vanishes at all the points of B. Hence C has dimension k. By Lemma 2.2 it is suf-
ficient to prove the following two facts.

(a) h1(P3, IE∪A(d)) = 0 for all A ⊆ B such that |A| ≤ d− 1.
(b) For any S ⊆ B such that |S| = d we have h1(P3, IE∪S(d)) > 0 if and only

if S ⊆ Li for some i ∈ {1, 2, 3}.

Each line Li contains at most q − 1 points of B while deg(E ∩ Li) = 2. Hence for
any S ⊆ Li ∩B with |S| = d we have h1(P2, IE∪S(d)) > 0 from Lemma 2.2.

Let Ei := aiPi, clearly E = E1 + E2 + E3 (seen as a divisor).
Fix a set S ⊆ B such that |S| ≤ d and assume h1(P3, IE∪S(d)) > 0. We have

S ∩{P1, P2, P3} = ∅ and deg(E ∪S) = a1+a2+a3+ |S|. Since a1+a2+a3+ |S| ≤
4d− 5, we may apply Proposition 2.4 to the scheme E ∪ S.

Let T ⊆ Pn be the curve arising from the statement of the lemma. Set x :=
deg(T ) ∈ {1, 2, 3} and ei := deg(T ∩ Ei) for i ∈ {1, 2, 3}. We have 0 ≤ ei ≤ ai.

If ei ≥ x + 1 then we have that the tangent at Pi is L(GK),Pi
⊆ T . Assume

ei ≤ x for all i ∈ {1, 2, 3}. For x = 2 we get deg(T ∩ (E ∪ S)) ≤ 2d+ 1. For x = 3
we get deg(T ∩ (E ∪ S)) ≤ 3d− 1. Finally, for x = 1 we may have ei > 0 only for
at most two indices, say i = 1, 2. Since |S| ≤ d, we get |S| + e1 + e2 ≥ d + 2 and
|S|+ e1 + e2 = d+ 2 if and only if T = L3, S ⊆ L3 ∩B and |S| = d.

Now assume that T contains one of the lines L(GK),Pi
, say L(GK),P1

. Let T ′ be
the curve whose equation is obtained dividing an equation of T by an equation of
L(GK),P1

. We have deg(T ′) = x − 1, T ′ + L(GK),P1
= T (as divisors of P2) and

T = L(GK),P1
∪ T ′ (as sets). Since L(GK),P1

∩ B = ∅, we have T ∩ S = T ′ ∩ S and
deg(T ∩ (E ∪ S)) = deg(T ′ ∩ (E2 ∪ E3 ∪ S)).



ON THE WEIGHTS OF DUAL CODES ARISING FROM THE GK CURVE 7

(i) If x = 1, we get T ∩ S = ∅ and deg(T ∩ E) = a1 ≤ d, a contradiction.
(ii) Assume x = 2. The curve T ′ must be a line such that deg(T ′ ∩ (E2 ∪

E3 ∪ S)) ≥ 2d+ 2− a1. If either T ′ = L(GK),P2
, or T ′ = L(GK),P3

, we get
T ′ ∩S = ∅ and deg(T ′ ∩ (E2 ∪E3 ∪S)) ≤ max{e2, e3} ≤ d, a contradiction.
If neither T ′ = L(GK),P2

, nor T ′ = L(GK),P3
, then deg(T ′ ∩ E2) ≤ 1,

deg(T ∩E3) ≤ 1 and deg(T ′ ∩ (E2 ∪E3)) = 2 if and only if T ′ = L1. Since
|S| ≤ d we deduce deg(T ∩ (E ∪ S)) ≤ a1 + 2+ |S|. Moreover, the equality
holds if and only if T ′ = L1 and S ⊆ L1. Since deg(T ∩ (E ∪ S)) ≥ 2d+ 2
by assumption, |S| = d and S ⊆ L1, as claimed.

(iii) Now assume x = 3. We get deg(T ′ ∩ (E2 ∪ E3 ∪ S)) ≥ 3d − a1 and T ′

is a conic. If neither L(GK),P2
, nor L(GK),P3

, is a component of T then
e2 ≤ 2 and e3 ≤ 2 and so |T ′ ∩ S| ≥ 3d − 4 − a1 ≥ 2d − 4 > d. If,
say, T ′ contains L(GK),P2

and T ′′ is the line with T ′ = T ′′ + L(GK),P2
,

then we get |(S ∪ E3) ∩ T ′′| ≥ 3d − a1 − a2. Since a1 + a2 ≤ 2d − 1
we deduce deg(T ′′ ∩ (E3 ∪ S)) ≥ d + 1. Since deg(T ′′ ∩ E3) ≤ 1, we get
a1+a2 = 2d−1, say a1 = d , a2 = d−1 and that S is formed by d points on
a line T ′′ through P3. If either T

′′ = L1 or T ′′ = L3, then we are done. In
any case it is sufficient to prove that E1 ∪E2∪{P3}∪S is not the complete
intersection of T = L(GK),P1

∪L(GK),P2
∪ T ′′ and a degree d curve, say Cd.

Since a2 = d − 1, E2 is not the complete intersection of L(GK),P2
and Cd,

while L(GK),P2
∩ ({P3} ∪ S) = ∅, a contradiction.

�

Corollary 4.8. Using the notation of the previous theorem, the number of mini-
mum weight codewords of the code above is given by

Ad(C) = (q6 − 1)

3
∑

i=1

(

|Li ∩ GK|

d

)

≤ (q6 − 1)3

(

p+ 1

d

)

.

where the binomial coefficient is meant to be zero if d > |Li ∩ GK| for some i.

Example 4.9. Let q = 7 and consider the affine equation of GK over the field Fq6
{

Z43 = Y 49 − Y

Y 8 = X7 +X
.

Consider P1 = (0 : 0 : 0 : 1), P2 = (1 : 3 : 0 : 1) and P3 = (1 : 4 : 0 : 1). The
three points are in general position and their connecting line are not parallel to
the Z axis, so the conditions of the previous theorem are satisfied. Moreover, by
direct computations, the three lines L1, L2 and L3 are 8-secants of GK. Consider
now d = 6 and a1 = 6, a2 = a3 = 3 and call C = C(B, 6, 6P1 + 3P2 + 3P3). From
Theorem 4.7 we have that the minimum distance of C is d = 6 and the minimum
weight codewords are exactly

A6(C) = (76 − 1)3

(

8

6

)

= (76 − 1)84

5. Generalized Hamming Weights of codes arising from the GK curve

Let K = Fq a finite field with q elements. Let C ⊂ Kn be a linear [n, k] code
over K. We recall that the support of C is defined as follows

supp(C) = {i | ci 6= 0 for some c ∈ C}.
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So ♯supp(C) is the number of nonzero columns in a generator matrix for C. More-
over, for any 1 ≤ v ≤ k, the v-th generalized Hamming weight of C

dv(C) = min{♯supp(D) | D is a linear subcode of C with dim(D) = v}.

In other words, for any integer 1 ≤ v ≤ k, dv(C) is the v-th minimum support
weights, i.e. the minimal integer t such that there are an [n, v] subcode D of C
and a subset S ⊂ {1, . . . , n} such that ♯(S) = t and each codeword of D has zero
coordinates outside S. The sequence d1(C), . . . , dk(C) of generalized Hamming
weights (also called weight hierarchy of C) is strictly increasing (see Theorem 7.10.1
of [18]). Note that d1(C) is the minimum distance of the code C.

Lemma 5.1. Let S ⊂ B be the support of a codeword of C⊥. Assume that there
exists a surface T ⊂ P3 such that h1(P3, IResT (E∪S)(d−k)) = 0, where k = deg(T ).
Then S ⊂ T .

Proof. Let W (reps. W ′) be the subcode of C⊥ formed by the codewords whose
support is contained in S (resp. S∩T ). Clearly W ′ ⊆ W . From Proposition 2.1 we
get h1(P3, IE∪S(d)) = h1(P3, IT∩(E∪S)(d)). From this we obtain W = W ′, which
means that the thesis is proved. �

Theorem 5.2. Fix a positive integer d ≤ deg(GK)− 1, a zero dimensional scheme
E ⊆ X defined over K and a set B ⊆ GK(K)\Ered such that deg(E) ≤ d+1 and set
C := C(B,OGK(d)(−E)). Assuming that each line is such that deg(L ∩ (E ∪ B)) ≤
d+ 1 and that there exists a conic such that

(i) deg(D ∩E) + |B ∩D| ≥ 2d+ 2;
(ii) for each conic C such that T 6= D we have deg(T ∩ (E ∪B)) ≤ 2d+ 1.

For any integer s such that 2d + 2 − deg(D ∩ E) ≤ s ≤ |B ∩ D| and for each
integer h with 1 ≤ h ≤ min{|B ∩ D| − 2d − 2 + deg(D ∩ E), d − 2 − deg(E)}
each h-dimensional linear subspace oc C⊥ computing dh(C

⊥) is supported by some
S ⊂ Σ(2d+ h− 1+ deg(D ∩E)) and each element of Σ(d+ h− 1+ deg(D ∩E)) is
in the support of a h-dimensional linear subspace.

Proof. Fix an integer e ≥ 1 and any S ⊆ B. Lemma 2.2 tell us that S contains the
support of an e-dimensional subspace of C⊥ if and only if h1(P3, IE∪S(d)) ≥ e. Fix
S ⊆ B such that it is the support of a codeword of C⊥ with weight≤ 3d+1−deg(E),
hence deg(E ∪ S) ≤ 3d − 1 and Lemma 2.1 tells us the value of h1(P2, IE∪S(d)).
Let t be the minimal integer such that h1(P3, IE∪S(d)) ≥ 0, clearly t ≤ d. If
deg(T supS) ≤ 2d + 1 then there is a line L with deg(L ∩ (E ∪ B)) ≥ deg(L ∩
(E ∪ S)) ≥ d + 2, but this cannot happen since we excluded this possibility. For
this reason we can assume that deg(E ∪ S) ≥ 2d + 2. Since d ≥ 4, we have that
there is a line L such that deg(L∩ (E ∪ S)) ≥ d scheme-theoretic base locus of the
set |ID(2))| of all quadric surfaces containing D. Take any quadric T ⊃ D. Since
deg(ResT (E∪B)) ≤ 3d−1−(2d+2) ≤ d−1, we have h1(P3, IResT (E∪B)(d−2)) = 0.
Thus Lemma 5.1 gives E ∪B ⊂ T . Since D is scheme-theoretically the base locus
of |ID(2))|, we get E ∪B ⊂ D. �
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Giulietti-Korchmáros curve, Designs, Codes and Cryptography 87, no. 6, 1433-1455, (2019).
(https://doi.org/10.1007/s10623-018-0541-y)

7. D. Bartoli, M. Montanucci, G. Zini. Multi point AG codes on the GK maximal curve. Des.
Codes Cryptogr. (2017). DOI:10.1007/s10623-017-0333-9.

8. D. Bartoli, M. Montanucci, G. Zini. AG codes and AG quantum codes from the GGS curve.
Des. Codes Cryptogr. (2017). DOI:10.1007/s10623-017-0450-5

9. M. Bonini, M. Sala. Intersections between the norm-trace curve and some low degree curves
(arXiv:1812.08590).

10. A.S. Castellanos, G.C. Tizziotti. Two-point AG Codes on the GK maximal curves. IEEE
Trans. Inf. Theory 62(2), 681–686 (2016).

11. A. Couvreur. The dual minimum distance of arbitrary-dimensional algebraic-geometric codes.
J. Algebra 350(1), 84–107 (2012).

12. S. Fanali, M. Giulietti. One-point AG codes on the GK Maximal Curves. IEEE Trans. Inf.
Theory 56(1), 202–210 (2010).
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