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Optimal p-ary cyclic codes with two zeros

Yan Liu1,2, Xiwang Cao3

Abstract

As a subclass of linear codes, cyclic codes have efficient encoding and decoding al-

gorithms, so they are widely used in many areas such as consumer electronics, data

storage systems and communication systems. In this paper, we give a general con-

struction of optimal p-ary cyclic codes which leads to three explicit constructions. In

addition, another class of p-ary optimal cyclic codes are presented.
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1 Introduction

Let p be a prime. Denote by Fp the finite field with p elements. An [n, l, d] linear code

C over Fp is a linear subspace of Fn
p with dimension l and minimum Hamming distance

d. Moreover, C is called cyclic if any (c0, c1, . . . , cn−1) ∈ C implies (cn−1, c0, . . . , cn−2) ∈

C. It is well known that each codeword (c0, c1, . . . , cn−1) ∈ F
n
p can be regarded as a

polynomial c0+c1x+· · ·+cn−1x
n−1 ∈ Fp[x]/(x

n−1). Then a linear code C in F
n
p is cyclic

if and only if C is an ideal of the polynomial residue class ring Fp[x]/(x
n−1). Since each

ideal of the ring Fp[x]/(x
n − 1) is principal, every cyclic code corresponds to a principal

ideal (g(x)) of the multiples of a polynomial g(x) which is the monic polynomial of

lowest degree in the ideal. g(x) is called the generator polynomial, h(x) = (xn−1)/g(x)

is called the parity-check polynomial of the code C. If g(x) can be reduced to a product

of r different irreducible polynomials in Fp[x], then C is described to have r zeros.

Cyclic codes have wide practical applications in many areas as they have efficient

encoding and decoding algorithms. Moreover, they also have wide applications in cryp-

tography and sequence design. So in the past few decades, much progress has been
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made on cyclic codes. It is worth mentioning that in recent years, many scholars are

interested in studying optimal cyclic codes over finite fields according to Sphere packing

bound [11]. For example, C. Carlet et al. [3] constructed optimal ternary cyclic codes

with minimum distance 4 by using perfect nonlinear monomials. In 2013, C. Ding and

T. Helleseth [4] obtained some optimal ternary cyclic codes by employing almost perfect

nonlinear monomials and some other monomials over Fpm . They also presented nine

open problems. After that, two of the open problems were solved by N. Li et al. [13,14].

In [13], the authors also presented several classes of optimal cyclic codes with param-

etes [3m − 1, 3m − 1 − 2m, 4] and [3m − 1, 3m − 2 − 2m, 5]. In 2014, Z. Zhou and C.

Ding [25] gave a class of optimal ternary cyclic codes. C. Fan et al. [8] obtained a new

class of optimal ternary cyclic codes with minimum distance four. Furthermore, they

also discussed the weight of duals of them. What’s more, L. Wang and G. Wu [19]

listed four classes of optimal ternary cyclic codes. Afterwards, H. Yan et al. [22] also

obtained a new class of optimal ternary cyclic codes and discussed the weight of their

duals. Different from these work, G. Xu et al. [21] constructed optimal p-ary cyclic

codes by making use of monomilas. More generally, C. Ding and S. Ling [5] proposed a

q-polynomial method for the construction of cyclic codes. Recently, W. Fang et al. [9]

used q-polynomials to construct a class of [2(qm − 1)/(q − 1), 2(qm − 1)/(q− 1), 4] con-

stacyclic codes which are optimal. In addition, Y. Zhou et al. [24] constructed several

classes of optimal negacyclic codes [(5m − 1)/2, (5m − 1)/2, 4] over F5. For information

on the related topics, the reader is referred to [1, 2, 6, 7, 10, 12, 16–18, 20, 23] and the

references therein.

The rest of this paper is organized as follows. Some preliminaries will be introduced

in Section 2. Optimal p-ary cyclic codes are discussed in Section 3. Section 4 concludes

this paper.

2 Preliminaries

In this section, we will fix some basic notation for this paper and introduce p-cyclotomic

cosets that will be used in subsequent sections. Throughout this paper, we will use the

following notation unless otherwise stated.

• p is an odd prime.

• n = 2(pm − 1)/(p− 1), where m is a positive integer.

• π is a primitive element of Fpm .

• σ ∈ Fpm is a primitive n-th root of unity.

• mi(x) is the minimal polynomial of σi over Fp.

• Zn = {0, 1, 2, . . . , n−1} associated with the integer addition modulo n and integer

multiplication modulo n operations.

• Π = {σ, σ2, · · · , σn−1}.
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For any integer j, 0 ≤ j ≤ n−1, the p-cyclotomic coset modulo n containing j is defined

by

Cj = {j, pj, p2j, · · · , plj−1j} ⊂ Zn

where lj is the minimal positive integer such that plj j ≡ j (mod n), and is called the

length of Cj which is denoted by |Cj |. The smallest integer in Cj is called the coset

leader of Cj . Let Γ be the set of all coset leaders. By definition, we have
⋃

j∈Γ Cj = Zn.

In the following, we give a lemma about the length of cyclotomic cosets.

Lemma 2.1 ( [15]) For any integer j, 0 ≤ j ≤ n− 1 with gcd(j, n) = d, the length of

Cj is equal to m if 1 ≤ d ≤ 2(p+ 1).

Let Cp(u, v) be the cyclic code of length n over Fp with generator polynomialmu(x)mv(x)

where u, v are in Zn and they are not in the same cyclotomic coset. The following two

lemmas are important to prove the main results of this paper.

Lemma 2.2 ( [15]) The minimum distance of Cp(u, v) is no less than 3 if gcd(v −

u, n) = 1.

Lemma 2.3 ( [15]) Let v /∈ C1 and |Cv| = m. Then Cp(1, v) is optimal with parame-

ters [n, n− 2m, 4] if the following conditions are satisfied:

1) gcd(v − 1, n) = 1;

2) v ≡ 1 (mod p−1
2 ); and

3) the equations (x+ α)v ± (xv + α) = 0 have no solutions in Π for any α in F
∗

p.

Remark. The conditions 1) and 2) implies that v is even and p ≡ 3 (mod 4) since

n = 2(pm − 1)/(p− 1) is even.

In fact, the lemma above can be reduced to the following lemma.

Lemma 2.4 Let v /∈ C1 and |Cv| = m. Then Cp(1, v) is optimal with parameters

[n, n− 2m, 4] if the following conditions are satisfied:

1) gcd(v − 1, n) = 1;

2) v ≡ 1 (mod p−1
2 ); and

3) the equations (x+α)v ± (xv +α) = 0 have no solutions in Π\{σ
n
2 }, i.e., Π\{−1}

for any α in F
∗

p.

Proof. By Lemma 2.3, we only need to prove that −1 is not a solution of (x + α)v ±

(xv + α) = 0 for any α in F
∗

p. Otherwise, there is an element α0 ∈ F
∗

p\{1} such that

(−1 + α0)
v ± ((−1)v + α0) = 0. (1)

By the conditions 1) and 2), suppose v = p−1
2 k+1, then k is an odd integer. Note that

α0 − 1 ∈ F
∗

p, then (1) becomes (−1 + α0)∓ (1 + α0) = 0 which is impossible.
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3 New optimal p-ary codes with parameters [n, n −

2m, 4]

In this section, we will give two new classes of p-ary cyclic codes Cp(1, v) with parameters

[n, n− 2m, 4] which are optimal according to Sphere packing bound [11].

3.1 The first class of optimal p-ary codes

First, we consider the codes Cp(1, v) with v = pk +1, where k is an integer such that

0 ≤ k ≤ m− 1.

Theorem 3.1 Let m > 2 be an odd integer. Let v = pk + 1 where k is an integer

such that 0 ≤ k ≤ m − 1. Then Cp(1, v) is optimal with parameters [n, n − 2m, 4] if

gcd(m, k) = gcd(m, p− 1) = 1 and p−1
2 | k.

Proof. It is easy to check that gcd(v − 1, n) = 1 and v /∈ C1. Note that p−1
2 | k,

v ≡ k + 1 ≡ 1 (mod p−1
2 ). In addition, gcd(v, n

2 ) = gcd(pk + 1, pm
−1

p−1 ) = 1 since

gcd(pk + 1, pm − 1) = 2 when m is odd. Hence, gcd(v, n) = 2. Then |Cv| = m by

Lemma 2.1.

In the following, we will prove the equations (x+α)v±(xv+α) = 0 have no solutions

in Π \ {−1} for any α in F
∗

p when gcd(m, p− 1) = 1. Suppose that there is a solution

x0 in Π \ {−1}. Then

(x0 + α)v = ±(xv
0 + α). (2)

Taking (pk − 1)-th power on both sides of (2), we have

(x0 + α)p
2k

−1 = (xpk+1
0 + α)p

k
−1

which can be reduced to

x0(x
p2k

−1
0 − 1)(xpk

0 − 1) = 0.

Hence, xp2k
−1

0 = 1 or xpk

0 = 1 which is impossible, since gcd(pk, n) = 1, gcd(p2k−1, n) =

2 gcd(p − 1,m) = 2 when gcd(m, k) = 1 and gcd(m, p − 1) = 1. By Lemma 2.4, the

result follows.

Example 3.2 Let p = 5, m = 3, k = 2 . Then v = 10 and the code C1,10 is an optimal

cyclic code with parameters [62, 50, 4] and generator polynomial

x6 + 3x5 + 2x3 + 2x2 + 4.

3.2 The second class of optimal p-ary codes

In the following, we consider the codes Cp(1, v) with

(pt − 1)v ≡ ps − ph (mod pm − 1) (3)

where t, s, h,m are integers such that 0 ≤ t, s, h ≤ m− 1.

Lemma 3.3 Let t, s, h,m be integers such that 0 ≤ t, s, h ≤ m−1. Then the congruence

equation (3) has solutions for v such that Cv = m if gcd(m, t) = gcd(m, s− h) = 1.
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Proof. Let τ = gcd(pm − 1, pt − 1) and r = gcd(pm − 1, ps − ph). Then τ = r = p− 1

since gcd(m, t) = gcd(m, s − h) = 1. So τ | (ps − ph) which implies (3) has solutions.

Since r = gcd(pm − 1, (pt − 1)v) = p − 1, it follows that gcd(v, n) = 1 or 2. Then by

Lemma 2.1, Cv = m.

By Lemma 2.4 and 3.3, we have the following result.

Theorem 3.4 Let t, s, h be integers such that 0 ≤ t, s, h ≤ m − 1 and gcd(m, t) =

gcd(m, s− h) = 1 where m > 2 is an integer with gcd(m, p− 1) | 2. Let v be a solution

of (3). Then Cp(1, v) is optimal with parameters [n, n − 2m, 4] if gcd(ph − v, n) =

gcd(v − 1, n) = 1 and v ≡ 1 (mod p−1
2 ).

Proof. First, we prove v /∈ C1. Suppose that v ∈ C1, then pλ ≡ v (mod n) for some

integer λ. Hence n | (pλ − v). Then v is odd since p is odd and n is even which

contradicts the condition gcd(v − 1, n) = 1.

Next, we prove the equations (x+α)v ± (xv +α) = 0 have no solutions in Π \ {σ
n
2 }

for any α in F
∗

p. Suppose that there is a solution x0 ∈ Π \ {−1}. Then

(x0 + α)v = ±(xv
0 + α). (4)

Taking pt − 1-th power on both sides of (4), we have

(x0 + α)v(p
t
−1) = (xv

0 + α)p
t
−1.

By (3), the equation above can be reduced to

xps

0 + xv
0 = xvpt

0 + xph

0

by easy calculation. Note that ptv ≡ v+ps−ph (mod pm−1), then the equation above

becomes

xv
0(x

ps
−ph

0 − 1)(xph
−v

0 − 1) = 0.

Hence, xps
−ph

0 = 1 or xph
−v

0 = 1 which is impossible, since gcd(ph − v, n) = 1, gcd(ps −

ph, n) = 2 when gcd(m, s− h) = 1 and gcd(m, p− 1) | 2.

By Theorem 3.4, we can have three concrete constructions as follows.

Corollary 3.5 Let m > 2 be an odd integer such that gcd(m, p− 1) = 1. Let t = 1, s =

0, h = 1 and v = n
2 − 1 be a solution of (3). Then Cp(1, v) is optimal with parameters

[n, n− 2m, 4] if p−1
2 | (m− 2).

Proof. It is clear that gcd(m, t) = gcd(m, s−h) = 1. gcd(ph−v, n) = gcd(p+1− n
2 , n) =

gcd(p + 1, n2 ) = 1 since m is odd. Note that gcd(v − 1, n) = gcd(n2 − 2, n) = 1.

Furthermore, v − 1 ≡ m − 2 (mod p−1
2 ). Then v ≡ 1 (mod p−1

2 ) since p−1
2 | (m − 2).

By Theorem 3.4, the result follows.

Remark. If p = 3 in Corollary 3.5, then the result reduced to C3(1,
3m−3

2 ) is optimal

if m ≥ 3 is odd which generalizes a result in [4].
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Example 3.6 Let p = 7, m = 5. Then v = 2800 and the code C1,2800 is an optimal

cyclic code with parameters [5602, 5592, 4] and generator polynomial

x10 + 6x9 + 2x8 + 2x7 + 6x6 + 3x5 + x4 + 2x3 + 5x2 + 6x+ 6.

Corollary 3.7 Let m > 2 be an odd integer such that gcd(m, p− 1) = 1. Let t = 1, s ≥

2, h = 0 and v = ps
−1

p−1 be a solution of (3). Then Cp(1, v) is optimal with parameters

[n, n− 2m, 4] if s is even, gcd(m, s) = gcd(m, s− 1) = 1 and p−1
2 | (s− 1).

Proof. It is clear that gcd(m, t) = gcd(m, s − h) = 1 since gcd(m, s) = 1. gcd(ph −

v, n) = gcd(v−1, n) = gcd(p
s
−p

p−1 , n) = gcd(p
s−1

−1
p−1 , n) = 1 due to s is even and gcd(m, s−

1) = 1. Furthermore, v − 1 ≡ s − 1 (mod p−1
2 ). Note that p−1

2 | (s − 1), then v ≡ 1

(mod p−1
2 ). By Theorem 3.4, the result follows.

Example 3.8 Let p = 7, m = 5, s = 4. Then v = 400 and the code C1,400 is optimal

with parameters [5602, 5592, 4] and generator polynomial

x10 + 6x9 + 2x8 + 2x7 + 6x6 + 3x5 + x4 + 2x3 + 5x2 + 6x+ 6.

Corollary 3.9 Let m > 2 be an odd integer such that gcd(m, p− 1) = 1. Let t = 1, s ≥

2, h = 0 and v = n
2 +

ps
−1

p−1 be a solution of (3). Then Cp(1, v) is optimal with parameters

[n, n− 2m, 4] if s is odd, gcd(m, s) = gcd(m, s− 1) = 1 and p−1
2 | (m+ s− 1).

Proof. It is clear that gcd(m, t) = gcd(m, s − h) = 1 since gcd(m, s) = 1. Since m

and s are both odd, gcd(ph − v, n) = gcd(v − 1, n) = gcd(n2 + ps
−1

p−1 − 1, n) = gcd(n2 +
ps

−1
p−1 − 1, n

2 ) = gcd(p
s
−1

p−1 − 1, n2 ). Note that gcd(m, s− 1) = 1, then gcd(p
s
−1

p−1 − 1, n
2 ) =

gcd(p
s−1

−1
p−1 − 1, p

m
−1

p−1 ) = 1. Furthermore, v − 1 ≡ m + s − 1 (mod p−1
2 ). Then v ≡ 1

(mod p−1
2 ) due to p−1

2 | m+ s− 1. By Theorem 3.4, the result follows.

Example 3.10 Let p = 3, m = 7, s = 3. Then e = 86 and the code C1,86 is optimal

with parameters [728, 714, 4] and generator polynomial

x14 + x13 + 2x10 + x9 + 2x8 + x6 + x5 + x4 + 2x3 + 2.

4 Conclusions

In this paper, we give a general construction of optimal p-ary cyclic codes which leads to

three explicit constructions. In addition, another class of optimal cyclic codes Cp(1, v)

with v = pk + 1 are presented.
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