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Abstract

We present two complementary ways in which Saraceno’s symmetric version of

the quantum baker’s map can be written as a shift map on a string of quantum bits.

One of these representations leads naturally to a family of quantizations of the baker’s

map.

The main subject of the theory of quantum chaos is the investigation of quantum sig-

natures of chaos [1], such as characteristic eigenvalue statistics [1] or hypersensitivity to
perturbation [2]. In contrast to the situation in classical chaos theory, many results in the
theory of quantum chaos are based on numerical simulations, not on rigorous proofs. A
major part of recent work on quantum chaos has been the analysis of quantum maps [3],
quantized versions of classically chaotic maps.

Classically chaotic maps are, under very general conditions, equivalent to Bernoulli
shifts on bi-infinite strings of symbols taken from some finite alphabet. This fact is the
basis of the powerful method of symbolic dynamics [4], which underlies many of the rigorous
results in classical chaos theory. In the present short paper, we study shift maps on strings
of quantum bits and thus take the first step towards generalizing the method of symbolic
dynamics to the quantum case.

The quantum baker’s map [5] is a particularly simple map on the quantized unit square
[6]. It has recently been shown [7, 8] to have an experimental realization on present-day
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quantum computers [9, 10]. Here we investigate finite shift-map representations of the
quantum baker’s map. Shifts on infinite quantum spin chains in the context of quantum
chaos have been discussed in [11]. A related symbolic description of the quantum baker’s
map is given in [12].

The classical baker’s transformation [13], which maps the unit square 0 ≤ q, p ≤ 1 onto
itself, has a simple description in terms of its symbolic dynamics [4]. Each point in phase
space is represented by a symbolic string

s = · · · s−2s−1s0.s1s2 · · · , (1)

where sk = 0 or 1. The string s is identified with a point (q, p) in the unit square by setting

q =
∞
∑

k=1

sk2
−k (2)

and

p =
∞
∑

k=0

s−k2
−k−1 . (3)

The action of the baker’s map on a symbolic string s is given by the shift map U defined by
Us = s′, where s′k = sk+1. This means that, at each time step, the entire string is shifted
one place to the left while the dot remains fixed. Geometrically, if q labels the horizontal
direction and p labels the vertical, the baker’s map on the unit square is equivalent to
stretching the q direction and squeezing the p direction, each by a factor of two, and then
stacking the right half on top of the left.

We now quantize the unit square as in [6, 14]. To represent the unit square in D-
dimensional Hilbert space, we start with unitary “displacement” operators Û and V̂ , which
produce displacements in the “momentum” and “position” directions, respectively, and
which obey the commutation relation [6]

Û V̂ = V̂ Û ǫ , (4)

where ǫD = 1. We choose ǫ = e2πi/D. For consistency of units, we let the quantum scale on
“phase space” be 2πh̄ = 1/D. We further assume that D = 2N , which is the dimension of
the Hilbert space of N qubits (i.e., N two-state systems), and that V̂ D = ÛD = −1̂. The
latter choice enforces antiperiodic boundary conditions; it is motivated by the fact [14] that
for an even dimension D, antiperiodic boundary conditions guarantee that the classical and
quantized maps have similar symmetry properties. For an alternative quantization using
periodic boundary conditions, see [15]. It follows [6, 14] that the operators Û and V̂ can
be written as

Û = e(i/h̄)q̂/D = e2πiq̂ and V̂ = e−(i/h̄)p̂/D = e−2πip̂ , (5)

where the “position” operator q̂ has eigenvalues qj = (j + 1
2
)/D, j = 0, . . . , D − 1, and

likewise the “momentum” operator p̂ has eigenvalues pk = (k + 1
2
)/D, k = 0, . . . , D − 1.

The D = 2N dimensional Hilbert space modeling the unit square can be realized as the
product space of N qubits in such a way that

|qj〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN〉 , (6)
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where j =
∑N

l=1 xl2
N−l, xl ∈ {0, 1}, and where each qubit has basis states |0〉 and |1〉. It

follows that, written as binary numbers, j = x1x2 . . . xN and qj = 0.x1x2 . . . xN1. We define
the notation

|.x1x2 . . . xN〉 = eiπ/2|qj〉 , (7)

which is closely analogous to Eq. (1), where the bits to the right of the dot specify the
position variable; the reason for the phase shift e−iπ/2 becomes apparent below.

Momentum and position eigenstates are related through the quantum Fourier transform
operator F̂ [14], defined by F̂ |qk〉 ≡ |pk〉, where

|pk〉 =
1√
D

D−1
∑

j=0

|qj〉e(i/h̄)pkqj =
1√
2N

∑

x1,...,xN

|x1〉 ⊗ . . .⊗ |xN〉 e2πiax/2
N

. (8)

In this expression a = k+ 1
2
= a1 . . . aN .1 = 2Npk, and x = j + 1

2
= x1 . . . xN .1 = 2Nqj . We

now define the notation
|aN . . . a1.〉 = |pk〉 , (9)

which is again analogous to Eq. (1), where the bits to the left of the dot, read backwards,
specify the momentum variable.

It will be useful to define a partial Fourier transform, Ĝn, which acts on the N −n least
significant bits of a state,

Ĝn |x1〉 ⊗ . . .⊗ |xn〉 ⊗ |a1〉 ⊗ . . .⊗ |aN−n〉

= |x1〉 ⊗ · · · ⊗ |xn〉 ⊗
1√
2N−n

∑

xn+1,...,xN

|xn+1〉 ⊗ · · · ⊗ |xN〉 e2πiax/2
N−n

(10)

where now a and x are defined by the binary expansions a = a1 . . . aN−n.1 and x =
xn+1 . . . xN .1. Again in close analogy to Eq. (1), we define the notation

|aN−n . . . a1.x1 . . . xn〉 = Ĝn |x1〉 ⊗ . . .⊗ |xn〉 ⊗ |a1〉 ⊗ . . .⊗ |aN−n〉 (11)

Notice that had we instead used x = x1 . . . xN .1 in Eq. (10), the only difference would have
been to multiply |aN−n . . . a1.x1 . . . xn〉 by a phase eiπxn . The operator Ĝn is unitary, and
the states |aN−n . . . a1.x1 . . . xn〉 form an orthonormal basis. As our notation requires, for
n = 0 the states |aN−n . . . a1.x1 . . . xn〉 reduce to the momentum eigenstates (i.e., Ĝ0 = F̂ ),
and for n = N they reduce to eiπ/2|x1〉 . . . |xN〉 = |.x1 . . . xN 〉 (i.e., ĜN = i1̂). The phase
shift for n = N is the reason for the π/2 phase shift in Eq. (7); it is a consequence of the
antiperiodic boundary conditions.

The state |aN−n . . . a1.x1 . . . xn〉 is localized in both position and momentum: it is strictly
localized within a position region of width 1/2n, centered at position q = 0.x1 . . . xn1, and
it is crudely localized within a momentum region of width 1/2N−n, centered at momentum
p = 0.a1 . . . aN−n1. Using the notation of Eq. (1) for phase-space points, we can say that
the states |aN−n . . . a1.x1 . . . xn〉 are localized near the points 1aN−n . . . a1.x1 . . . xn1, with
position and momentum widths determined by this lattice of points.

The quantum baker’s map as defined in [14] is now given by [7]

B̂ = Ĝ0 ◦ Ĝ−1
1 . (12)
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By noting that
Ĝ0|x1〉 ⊗ |a1〉 ⊗ . . .⊗ |aN−1〉 = |aN−1 . . . a1x1.〉 (13)

and
Ĝ1|x1〉 ⊗ |a1〉 ⊗ . . .⊗ |aN−1〉 = |aN−1 . . . a1.x1〉 , (14)

one sees that the action of the baker’s map is equivalent to shifting the dot in the symbolic
representation, i.e.,

B̂|aN−1 . . . a1.x1〉 = |aN−1 . . . a1x1.〉 , (15)

similar to the classical symbolic dynamics (1). Motivated by this form for the quantum
baker’s map and by the symbolic representation of Eq. (1), we can define a whole class of
quantum baker’s maps, {B̂n | n = 1, . . . , N}, through

B̂n|aN−n . . . a1.x1 . . . xn〉 = |aN−n . . . a1x1.x2 . . . xn〉 . (16)

In phase-space language, the map B̂n takes a state localized at 1aN−n . . . a1.x1 . . . xn1 to a
state localized at 1aN−n . . . a1x1.x2 . . . xn1, while it stretches the state by a factor of two in
the q direction and squeezes it by a factor of two in the p direction.

The classical shift map acting on the symbolic string (1) can be regarded equivalently
as either a right-shift of the dot or a left-shift of the infinite string of bits. We now show
that, complementary to the dot-shifting representation (16), there is a representation of
the quantum baker’s map B̂n as a shift of the qubits. Following [16], we write the partial
Fourier transform (10) as a product state

|aN−n . . . a1.x1 . . . xn〉
= |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉

⊗ 1√
2

(

|0〉+ e2πi(0.aN−n1)|1〉
)

⊗ 1√
2

(

|0〉+ e2πi(0.aN−n−1aN−n1)|1〉
)

⊗ · · · ⊗ 1√
2

(

|0〉+ e2πi(0.a1...aN−n1)|1〉
)

eiπ(0.a1...aN−n1) .

(17)

Similarly, we can write

|aN−n . . . a1x1.x2 . . . xn〉
= |x2〉 ⊗ · · · ⊗ |xn〉

⊗ 1√
2

(

|0〉+ e2πi(0.aN−n1)|1〉
)

⊗ 1√
2

(

|0〉+ e2πi(0.aN−n−1aN−n1)|1〉
)

⊗ · · · ⊗ 1√
2

(

|0〉+ e2πi(0.a1...aN−n1)|1〉
)

⊗ eiπ(0.x1a1...aN−n1)
1√
2

(

|0〉+ e2πi(0.x1a1...aN−n1)|1〉
)

. (18)

Since the quantum baker’s map B̂n maps the state (17) to the state (18), it can be seen
that it shifts the states of all the qubits to the left, except the state of the leftmost, most
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significant qubit. The state |x1〉 of the leftmost qubit can be thought as being shifted to
the rightmost qubit, where it suffers controlled phase changes that are determined by the
state parameters a1 . . . aN for the original “momentum qubits.” The quantum baker’s map
can thus be written as a shift map on a finite string of qubits, followed by controlled phase
changes on the least significant qubit.

An important special case arises for n = N , for then there are no momentum qubits on
which to condition the phase changes of the least significant qubit. Working either from
Eq. (10) or from Eqs. (17) and (18), one can show that

B̂N |x1〉 ⊗ · · · ⊗ |xN〉 = |x2〉 ⊗ · · · ⊗ |xN 〉 ⊗
eiπx1

√
2

(

e−iπ/4e−iπx1/2|0〉+ eiπ/4eiπx1/2|1〉
)

. (19)

The state |x1〉 of the leftmost qubit is shifted to the rightmost qubit, where it undergoes a
single-qubit transformation, not controlled by the state parameters of the other qubits. As
a result, this incarnation of the quantum baker’s map, unlike the others, does not entangle
initial product states.

In conclusion, we have given a symbolic representation of the states of N qubits that
leads naturally to a class of quantum baker’s maps, defined as shift maps with respect to
the symbolic representation. For each of the maps in this class, there is a product basis such
that the action of the map on an arbitrary basis state is equivalent to a shift of the string
of qubits to the left, followed by controlled phase changes on the rightmost qubit. This
result is a potential starting point for a generalization of the method of classical symbolic
dynamics to chaotic quantum maps.
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