Skip to main content
Log in

Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We consider the Maxwell equations in a domain with Lipschitz boundary and the boundary integral operator A occuring in the Calderón projector. We prove an inf-sup condition for A using a Hodge decomposition. We apply this to two types of boundary value problems: the exterior scattering problem by a perfectly conducting body, and the dielectric problem with two different materials in the interior and exterior domain. In both cases we obtain an equivalent boundary equation which has a unique solution. We then consider Galerkin discretizations with Raviart-Thomas spaces. We show that these spaces have discrete Hodge decompositions which are in some sense close to the continuous Hodge decomposition. This property allows us to prove quasioptimal convergence of the resulting boundary element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ammari, H., Nédélec, J. C.: Coupling of finite and boundary element methods for the time-harmonique Maxwell equations. II: A symmetric formulation. The Maz'ya anniversary collection. Vol. 2, J. Rossmann ed. vol 110 of Oper. Theory, Adv. Appl. Birkhäuser, 1999

  2. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Meth. Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bendali, A.: Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part~1: The continuous problem. Part~2: The discrete problem. Math. Comp. 43(167), 29–46 and 47–68 (1984)

    MATH  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. volume~15. Springer- Verlag, Berlin, 1991

  5. Buffa, A.: Hodge decompositions on the boundary of a polyhedron: the multi-connected case. Math. Meth. Model. Appl. Sci. 11(9), 1491–1504 (2001)

    Article  Google Scholar 

  6. Buffa, A.: Traces theorems for functional spaces related to Maxwell equations: an overview. In Proceedings of GAMM-Workshop, Kiel, 2001.

  7. Buffa, A., Christiansen, S.A.: The electric field integral equation on Lipschitz screens: definition and numerical approximation. Technical Report 1216, Institute of Numerical Analysis C.N.R., Pavia, Italy, July 2001 (to appear in Numer. Math.).

  8. Buffa, A., Ciarlet, P.: Jr. On traces for functional spaces related to Maxwell's equations. Part I: An integration by parts formula in Lipschitz polyhedra. Math. Meth. Appl. Sci. 21(1), 9–30 (2001)

    Google Scholar 

  9. Buffa, A., Ciarlet, P.: Jr. On traces for functional spaces related to Maxwell's equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Meth. Appl. Sci. 21(1), 31–48 (2001)

    Google Scholar 

  10. Buffa, A., Costabel, M., Schwab, C.: Boundary element methods for Maxwell equations in non-smooth domains. Numer. Math. Digital Object Identifier (DOI) 10.1007/s002110100372, (2001). http://dx.doi.org/10.1007/s002110100372.

  11. Buffa, A., Costabel, M., Sheen, D.: On traces for H(curl,Ω) for Lipschitz domains. Technical Report 1185, I.A.N.- C.N.R., 2000, to appear in J. Math. Anal. Appl.

  12. Cessenat, M.: Mathematical methods in Electromagnetism. Linear Theory and Applications. volume~41 of Series of advances in mathematics for applied sciences. Word Scientific publishing, 1996

  13. Christiansen, S.H.: Discrete Fredholm properties and convergence estimates for the EFIE. Technical Report 454, CMAP Ecole Polytechnique, Palaiseau, 2000 (to appear in Math. Comp. 2003)

  14. Ciarlet Jr., P., Zou, J.: Fully discrete finite element approaches for time-dependent Maxwell's equations. Numer. Math. 82(2), (1999)

  15. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    MATH  Google Scholar 

  16. Costabel, M.: A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Meth. Applied Sci. 12, 365–368 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Costabel, M.: A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl. 157(2), 527–541 (1991)

    MATH  Google Scholar 

  18. Costabel, M., Stephan, E.P.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Costabel, M., Stephan, E.P.: Strongly elliptic boundary integral equations for electromagnetic transmission problems. Proc. Roy. Soc. Edinburgh Sect. A 109(3–4), 271–296 (1988)

    Google Scholar 

  20. Costabel, M., Wendland, W.L.: Strong ellipticity of boundary integral operators. J. Reine u. Angew. Math. 372, 34–63 (1986)

    Google Scholar 

  21. Dubois, F.: Discrete vector potential representation of a divergence free vector field in three dimensional domains: Numerical analysis of a model problem. SIAM J. Numer. Anal. 27, 1103–1142 (1990)

    Google Scholar 

  22. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin, 1986

  23. Hiptmair, R.: Symmetric coupling for eddy current problems. SIAM J. Numer. Anal. 40, 41–65 (2002)

    MATH  Google Scholar 

  24. Hiptmair, R., Schwab, C.: Natural BEM for the electric field integral equation of polyhedra. SIAM J. Numer. Anal. 40, 66–86 (2002)

    MATH  Google Scholar 

  25. Müller, C.: Foundations of the mathematical theory of electromagnetic waves. Springer Verlag, 1969

  26. Nédélec, J.C.: Acoustic and Electromagnetic Equations: Integral representation for Harmonic problems. Springer-Verlag, 2001

  27. Nédélec, J.C., Planchard, J.: Une méthode variationelle d'éléments finis pour la résolution numérique d'un problème exterieur dans R 3. RAIRO, Mod. Math. Anal. Numer. 7, 105–129 (1973)

    Google Scholar 

  28. von Petersdorff, T.: Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Meth. Appl. Sci. 11, 185–213 (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mathematics Subject Classification (2000): 65N30

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buffa, A., Hiptmair, R., Petersdorff, T. et al. Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains. Numer. Math. 95, 459–485 (2003). https://doi.org/10.1007/s00211-002-0407-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-002-0407-z

Keywords

Navigation