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0925-C03-01



2 Sonia Fernández-Méndez et al.

1 Introduction

Particle methods such as reproducing kernel particle methods (RKPM)

[19,17], element-free Galerkin (EFG) [4,6,5,7,22,25], partition of unity

finite element method (PUFEM) [23,1], h-p cloud method [10,11], or

smooth particle hydrodynamics (SPH) [24,26,8,9], among others (see

[3,18] for a general presentation), have proven their applicability in

computational mechanics. They do not require to generate a mesh

and thus, they are specially suited for certain problems, for instance

adaptive refinement computations or discontinuous field problems

(such as crack propagation problems [7]). Moreover, the interpola-

tion functions in mesh-less methods are particularly attractive in the

presence of high gradients, concentrated forces, and large deforma-

tions. Two different discretization methods are employed with these

mesh-less techniques: the classical collocation method and a Galerkin

type formulation. Choosing one or the other is, among other things,

a trade off between convergence properties and computational speed.

Collocation methods can run one order of magnitude faster than fi-

nite elements but present poor rates of convergence and may present

spatial instabilities. Galerkin formulations, on the other hand, obtain

at least similar rates of convergence of finite elements but suffer from

an important computational cost [2,9,16]. From a practical point of
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view, finite elements implement Dirichlet boundary conditions in a

simple way and are widely used and trusted by practitioners. How-

ever, the relative cost of the mesh generation process is, for some

problems, very large. In particular, the cost of remeshing in adaptive

refinement problems is clearly not negligible.

In order to take advantage of both methods, many authors have

proposed combined interpolations combining finite elements and par-

ticles (see [6,13,12,21]). In [21], Liu et al. suggest to enrich the finite

element approximation with particles. The goal is to define an effec-

tive adaptive process. This adaptive process is structured as follows:

(1) compute an approximation with a coarse finite element mesh, (2)

perform a posteriori error estimation, and (3) improve the solution

adding particles without any remeshing process. In the same con-

text, the authors have proposed, see [13], a new unified and general

formulation for a hierarchical combined interpolation. The combined

finite element and particle interpolation is presented in two cases:

coupling and enrichment. The convergence analysis for the second

case is presented here, that is, the h-p enrichment of finite elements

with particles.

In this paper, an a priori error estimate for such a combined

method is presented. A proof of this sharp error estimate is devel-
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oped under certain reasonable assumptions on the size of the finite

elements. If these assumptions are not fulfilled, a less sharp error

estimate is also found. This a priori error estimate is required to

study convergence of the combined method and also to design proper

adaptive strategies.

2 How to enrich FEM with particles

Let u(x) be a function to be interpolated. First, u(x) is approximated

using a finite element mesh with nodes {xi}i∈Ih . Thus, the interpola-

tion space is generated by the basis {Nh
i (x)}i∈Ih of shape functions.

The order of the FE interpolation is denoted by p. In a second stage

the finite element interpolation is enriched using a set of particles

{xj}j∈Iρ with their associated shape functions Nρ
j . The original FE

basis is preserved and a combined interpolation is defined:

u(x) ' uh(x) + uρ(x), (2.1)

where

uh(x) =
∑

i∈Ih

u(xi)Nh
i (x) (2.2)

is the usual finite element contribution and where

uρ(x) =
∑

j∈Iρ

u(xj)N
ρ
j (x) (2.3)



Convergence of finite elements enriched with mesh-less methods 5

is the contribution of the particles. The enrichment due to the added

particles may increase the order of consistency of the interpolation.

The goal of this section is to define the shape functions Nρ
j associated

to each particle in order to obtain the desired consistency.

In the context of the EFG method [4,6,5,7,22,25], the interpola-

tion functions are usually defined as

Nρ
j (x) = PT (

x− xj

ρ
) α(x) φ(

x− xj

ρ
), (2.4)

where φ is a window function with compact support (φ(z) = 0 for

|z| > 1, i.e. Nρ
j (x) = 0 for |x− xj | > ρ), and ρ is the dilation param-

eter. The vector α is chosen such that a complete m-order polyno-

mial basis P(x) = {p0(x), p1(x), . . . , pl(x)}T is interpolated exactly

(usually pi(x) = xi in 1D and l = m). This, in the standard EFG

approach, is equivalent [3] to a moving least squares approximation

[15]. When the combined interpolation (2.1) is used, the m-order con-

sistency condition reads

P(0) =
∑

i∈Ih

P(
x− xi

ρ
)Nh

i (x) +
∑

j∈Iρ

P(
x− xj

ρ
)Nρ

j (x). (2.5)

It is easy to verify that, when the dilation parameter ρ is constant,

the previous consistency condition is equivalent to

P(x) =
∑

i∈Ih

P(xi)Nh
i (x) +

∑

j∈Iρ

P(xj)N
ρ
j (x). (2.6)
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which shows more clearly the desired reproducibility condition. After

(2.4) is replaced in (2.5), the following linear system of equations for

α is obtained

M(x) α(x) = P(0)−
∑

i∈Ih

P(
x− xi

ρ
)Nh

i (x), (2.7)

where M(x) is the Gram matrix

M(x) =
∑

j∈Iρ

P(
x− xj

ρ
)PT (

x− xj

ρ
)φ(

x− xj

ρ
). (2.8)

Remark 2.1 The Gram matrix M is identical to the matrix employed

in the standard EFG method. Thus, as in EFG, the number of par-

ticles, their position and their related dilation parameters cannot be

taken arbitrarily, see [13]. See also [20], for an excellent definition of

the admissible particles distribution.

Remark 2.2 The dilation parameter ρ characterizes the support of

the shape functions Nρ
i (x). In fact, ρ plays a role similar to the ele-

ment size h in the finite element method. An enrichment similar to

h-refinement in finite elements can be produced in mesh-less meth-

ods decreasing the value of ρ (this usually implies an increase in the

number of particles). In the context of EFG, convergence properties

depend on m and ρ. The corresponding expressions do not depend ex-

plicitly on the distance between particles because usually, see [8,20],

this distance is proportional to ρ, i.e. the ratio between the particle

distance over the dilation parameter is kept constant.
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More precisely, in the remainder of the paper the following hypothesis

is assumed to hold.

Hypothesis 2.1 In the refinement process, that is as ρ goes to 0, the

particle distribution is homothetically densified. This is done ensuring

that the particles belonging to a neighborhood of x of radius ρ keep

the same pattern during the refinement. Moreover, this pattern is

such that the matrix M is regular.

In order to clarify this hypothesis the following notation is introduced.

Let Iρ
x be, for every x ∈ Ω, the set of indices of the particles in the

support of the window function centered in x, i.e.

Iρ
x := {j ∈ Iρ such that |xj − x| ≤ ρ}.

The pattern of normalized neighbor particles is defined to be

Λρ
x := {zj :=

x− xj

ρ
for j ∈ Iρ

x}.

Thus, Hypothesis 2.1 is equivalent to assume that, passing from ρ = ρ̂

to ρ = ρ̃, for every x̃ ∈ Ω it exists x̂ ∈ Ω such that Λρ̃
x̃ = Λρ̂

x̂.

Consequently, M(x̂)|ρ=ρ̂ = M(x̃)|ρ=ρ̃ and the properties of M are

independent of ρ.

Remark 2.3 In Hypothesis 2.1 it is assumed that the distribution of

particles in the neighborhood of any point x is such that M(x) is reg-

ular. This condition is ensured having enough particles in the neigh-
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borhood of every point x and located avoiding degenerated patterns,

that is,

(i) cardIρ
x ≥ l + 1.

(ii) @F ∈ span{p0, p1, . . . , pl} \ {0} such that F (xi) = 0 ∀ i ∈ Iρ
x or,

equivalently, for F in span{p0, p1, . . . , pl}

[F (zi) = 0 ∀ zi ∈ Λρ
x ⇒ F ≡ 0].

Condition (ii) is easily verified. For instance, for m = 1 (linear inter-

polation) the particles cannot lay in the same straight line or plane

for, respectively, 2D and 3D. In 1D, for any value of m, it suffices

that different particles do not have the same position.

Remark 2.4 The particle shape functions Nρ
j are hierarchical, see [13],

i.e.

∀ j ∈ Iρ, k ∈ Ih Nρ
j (xk) = 0.

3 Convergence analysis

In the previous section a method for mixing FE and particles is intro-

duced. This method allows to enrich the FE discretization everywhere

adding particles and increasing the order of consistency. Recall that p

is the degree of the finite element interpolation, and m is the order of

consistency obtained with the added particles. Thus, the increment
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of consistency q is such that

q := m− p. (3.1)

In this section an a priori error estimate for the proposed method is

presented. First, two results of EFG (Lemma 3.1 and Lemma 3.2),

also valid for the interpolation proposed here, are recalled. A proof of

Lemma 3.1 can be found in [20]. Although a result similar to Lemma

3.2 may also be found in [20], here a proof of Lemma 3.2 is presented.

Second, some properties of the FE basis are presented. Finally, the

convergence of the combined interpolation is proved (Theorem 3.2).

Lemma 3.1 (Generalized consistency condition) Let some func-

tions Ni ∈ C` verify the m-order consistency condition

∑

i

(xi − x)rNi(x) =





0 0 < r ≤ m

1 r = 0,

then for every r, 0 ≤ r ≤ m, the functions Ni verify

∑

i

(xi − x)r dkNi

dxk
(x) =





0 r 6= k

r! r = k,

for all k such that 0 ≤ k ≤ `.

Lemma 3.2 Let Ω be an open bounded domain and φ ∈ C`(Ω), ` ≤

m. Then, for all x ∈ Ω, every element of matrix M−1(x), the inverse

of M(x), see (2.8), is bounded by a constant independent of x and
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ρ. Moreover, the k-th derivative (k ≤ `) of every element of M is

O(ρ−k).

Proof The first part of the Lemma, i.e. M−1(x) is bounded, is evident

from Hypothesis 2.1. The k-th derivative of M(x) is rearranged using

the normalized variable z:

dk

dxk
M(x) =

∑

j∈Iρ

dk

dxk

[
P(

x− xj

ρ
)PT (

x− xj

ρ
)φ(

x− xj

ρ
)
]

= ρ−k
∑

j∈Iρ
x

dk

dzk

[
P(z)PT (z)φ(z)

]∣∣
z=(x−xj)/ρ

Under the assumption of Hypothesis 2.1 the term

∑

j∈Iρ
x

dk

dzk

[
P(z)PT (z)φ(z)

]∣∣∣∣
z=(x−xj)/ρ

is independent of ρ and therefore the Lemma is proved. ut

Remark 3.1 In what follows, ‖·‖∞ stands for both the maximum norm

of a vector and the subordinate matrix norm (“max row sum”). Note

that the standard norm denoted by ‖·‖L∞ , associated with the linear

space L∞, is also used later.

Corollary 3.1 Under the assumptions of Lemma 3.2, constants CM

and CM
k (k = 0, . . . , `) independent of x and ρ, exist and are such

that

∥∥M−1(x)
∥∥
∞ ≤ CM, and

∥∥∥∥
dk M
dxk

∥∥∥∥
∞
≤ CM

k ρ−k, k = 0, . . . , `.
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Proof Trivial given the definition of the matrix norm subordinate to

the maximum vector norm. ut

Definition 3.1 Let R
(k)
` (x), 0 ≤ k ≤ p, be the k-th derivative of the

remainder (pointwise error) in the finite element interpolation of the

monomial x`:

R
(k)
` (x) :=

dk

dxk


x` −

∑

i∈Ih

x`
iN

h
i (x)


 =

dk(x`)
dxk

−
∑

i∈Ih

x`
i

dkNh
i

dxk
(x).

In order to simplify the notation, the explicit dependence of R
(k)
`

on x is omitted. If finite elements of order p are used, in each element

R
(k)
` can be rewritten [14] as:

R
(k)
` =





0 0 ≤ ` ≤ p

`! Lk(x) ξ`−(p+1)

(`−(p+1))! (p+1−k)! p < ` ≤ m,

(3.2)

where ξ = ξ(x) is an unknown point inside the finite element where

x is located, where

Lk(x) =
p−k∏

j=0

(x− ηj), (3.3)

and the p+1−k distinct and unknown points, ηj , lie inside the finite

element.

Lemma 3.3 For k = 0, . . . , p, the p-order finite element basis verifies

∑

i∈Ih

(x− xi)r dkNh
i

dxk
(x) = 0, for r = 1, . . . , p and r > k, (3.4)
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and
∣∣∣∣∣∣
∑

i∈Ih

(x− xi)r dkNh
i

dxk
(x)

∣∣∣∣∣∣
≤ µr,k hr−k, for r ≥ p + 1 > k, (3.5)

where

µr,k :=
r!

(r − (p + 1))! (p + 1− k)!
.

Proof The left-hand side. of (3.4) is rearranged using the Newton’s

binomial expression:

∑
i∈Ih

(x− xi)r dkNh
i

dxk
(x) =

∑
i∈Ih




r∑
`=0

(−1)`




r

`


x`

i xr−`




dkNh
i

dxk
(x)

=
r∑

`=0

(−1)`




r

`


xr−`

[
∑

i∈Ih

x`
i

dkNh
i

dxk
(x)

]

=
r∑

`=0

(−1)`




r

`


xr−`

[
dk

dxk

(
x`

)
−R

(k)
`

]
.

(3.6)

Moreover,

dk

dxk

(
x`

)
=





0 if ` < k

`!
(`−k)!x

`−k if ` ≥ k,

(3.7)

and therefore xr−` dk

dxk

(
x`

)
is either 0 for ` < k, or xr−k `!

(`−k)! for

` ≥ k. Thus, using (3.2), (3.6) is expressed as

∑

i∈Ih

(x−xi)r dkNh
i

dxk
(x) = xr−k

r∑

`=k




r

`




(−1)``!
(`− k)!

−
r∑

`=p+1

(−1)`




r

`


xr−`R

(k)
` .

(3.8)
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Note that the first sum of the right-hand side. term of (3.8) cancels

because, for r > k,

r∑

`=k

(−1)`




r

`




`!
(`− k)!

= (−1)k r!
(r − k)!




r−k∑

j=0

(−1)j




r − k

j





 = 0,

(3.9)

and consequently

∑

i∈Ih

(x− xi)r dkNh
i

dxk
(x) =

r∑

`=p+1

(−1)`+1




r

`


xr−`R

(k)
` . (3.10)

If r ≤ p, obviously ` cannot range between p + 1 and r, thus,

∑

i∈Ih

(x− xi)r dkNh
i

dxk
(x) = 0, r ≤ p.

which does coincide with (3.4). For r > p, using (3.2), (3.10) becomes

∑

i∈Ih

(x− xi)r dkNh
i

dxk
(x) =

Lk(x) r!
(p + 1− k)!

r∑

`=p+1

(−1)`+1 xr−` ξ`−(p+1)

(`− (p + 1))! (r − `)!
.

(3.11)

A new mute index j := `−(p+1) and a new parameter s := r−(p+1)

are defined and thus, (3.11) can be rewritten as

∑
i∈Ih

(x− xi)r dkNh
i

dxk
(x) = (−1)p Lk(x) r!

(p + 1− k)! s!

s∑

j=0




s

j


 xs−j(−ξ)j

= (−1)p Lk(x) r!
(p + 1− k)! s!

(x− ξ)s.

(3.12)
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Since
∣∣Lk(x)

∣∣ ≤ hp+1−k, when |x− ξ| ≤ h, (3.12) can be bounded,

namely,
∣∣∣∣∣∣
∑

i∈Ih

(x− xi)r dkNh
i

dxk
(x)

∣∣∣∣∣∣
≤ r!

(p + 1− k)! s!
hr−k, (3.13)

which is precisely the inequality (3.5). ut

Remark 3.2 The term that cancels according to (3.9), that is the first

sum of the right-hand side. term of (3.8), is a rearranged expression

of
r∑

`=0

(−1)`




r

`


xr−` dk

dxk

(
x`

)

for r > k, see (3.6). However, for k > r, this term is obviously also

zero because dk(x`)/dxk = 0 for ` = 0, . . . , r. This term is not zero

for k = r. In this case, the cited term takes the value of (−1)rr!.

Nevertheless, Lemma 3.3 is restricted to r > k because it is the only

case needed in the rest of the paper.

In order to prove the convergence results (error bound theorems)

several lemmas and a theorem are needed. Their goal is to bound

the shape function, Nρ
j , and its derivatives. Hence, a bound on the

right-hand side. of (2.7) and then a bound for α are needed.

Lemma 3.4 Let qr(x) := xr. Then, for k = 0, . . . , p,

dk

dxk


qr(0)−

∑

i∈Ih

qr(
x− xi

ρ
)Nh

i (x)


 = 0, r = 0, . . . , p, (3.14)
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and

∣∣∣∣∣∣
dk

dxk


qr(0)−

∑

i∈Ih

qr(
x− xi

ρ
)Nh

i (x)




∣∣∣∣∣∣
≤ λk,r

hr−k

ρr
, r ≥ p + 1,

(3.15)

where λk,r are the following constants independent of x, ρ and h:

λk,r :=
r!

(r − k)!

k∑

`=max{k−r+p+1,0}




k

`







r − k

p + 1− `


 . (3.16)

Proof In order to simplify the notation

tr(x) := qr(0)−
∑

i∈Ih

qr(
x− xi

ρ
)Nh

i (x) (3.17)

is defined. Three cases are considered: r = 0, 1 ≤ r ≤ p and p < r.

In the first case, for r = 0, q0(x) = 1 and t0(x) = 1 − ∑
i∈Ih

Nh
i (x) =

1− 1 = 0. In the second case, for r = 1, . . . , p, Lemma 3.3 gives, for

k = 0,

tr(x) = − 1
ρr


∑

i∈Ih

(x− xi)rNh
i (x)


 = 0.

Hence, dk(tr(x))/dxk = 0 for every k and, consequently, (3.14) is

proved. For the last case, r > p,

dktr
dxk

(x) = − 1
ρr

∑

i∈Ih

dk

dxk

[
(x− xi)rNh

i (x)
]

= − 1
ρr

∑

i∈Ih





k∑

`=0




k

`




dk−`

dxk−`
[(x− xi)r]

d`Nh
i

dx`
(x)





.
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Using (3.7) and changing the order of the sums, the previous formula

is expressed as

dktr
dxk

(x) = − 1
ρr

k∑

`=0




k

`




r!
(r − k + `)!


∑

i∈Ih

(x− xi)r−k+` d`Nh
i

dx`
(x)


 .

Note that r− k + ` > ` because r > p ≥ k. Then, Lemma 3.3 applies

and the sum with index i is zero if ` + r− k ≤ p. Therefore, the sum

in ` begins with ` = max{k − r + (p + 1), 0}. Using now Lemma 3.3

for the remaining terms, the bound (3.15) is proved:

∣∣∣∣
dktr
dxk

(x)
∣∣∣∣ ≤

1
ρr




k∑

`=max{k−r+p+1,0}




k

`




r!
(r − k + `)!

µr−k+`,`


hr−k.ut

Lemma 3.5 Let k be such that 0 ≤ k ≤ p. Suppose h ≤ Qk ρ, where

the following definition Qk stands for given p and m:

Qk :=





1 for m = p + 1,

min
r=p+2,...,m

(
λk,p+1

λk,r

) 1
r−(p+1)

for m > p + 1.

(3.18)

and λk,r are the constants defined in (3.16). Then, the derivatives of

the right-hand side. of equation (2.7) verify the following inequality:
∥∥∥∥∥∥

dk

dxk


P(0)−

∑

i∈Ih

P(
x− xi

ρ
)Nh

i (x)




∥∥∥∥∥∥
∞

≤ λk,p+1
hp+1−k

ρp+1
. (3.19)

Proof Since h ≤ Qk ρ, by definition (3.18), then for r = p + 2, . . . , m

λk,r

[
h

ρ

]r−(p+1)

≤ λk,p+1.
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Using now Lemma 3.4 for every component, tr(x), of the right-hand

side. in (2.7) one gets

dktr
dxk

= 0 for r = 0, . . . , p,

dktr
dxk

= λk,p+1
hp+1−k

ρp+1
for r = p + 1,

and
∣∣∣∣
dktr
dxk

(x)
∣∣∣∣ ≤ λk,r

[
h

ρ

]r−(p+1) hp+1−k

ρp+1
≤ λk,p+1

hp+1−k

ρp+1
for r = p+2, . . . , m.ut

Lemma 3.6 Let k be such that 0 ≤ k ≤ p. Suppose h/ρ ≤ min
0≤s≤k

Qs,

where Qs is the constant defined in (3.18). Then, it exists a constant

C?
k , independent of ρ, h and x, such that the solution, α, of the linear

system of equations (2.7) verifies
∥∥∥∥
dkα

dxk

∥∥∥∥
∞
≤ C?

k

hp+1−k

ρp+1
. (3.20)

Proof The right-hand side. of (2.7) is defined as T = T(x) := P(0)−
∑

i∈Ih

P(
x− xi

ρ
)Nh

i (x). Thus, equation (2.7) is rewritten as

Mα = T. (3.21)

Using Lemma 3.5 and Corollary 3.1, the previous equation implies:

‖α‖∞ ≤ ∥∥M−1
∥∥
∞ ‖T‖∞ ≤ CM λ0,p+1︸ ︷︷ ︸

C?
0

hp+1

ρp+1
.

Once (3.20) is proved for k = 0, we proceed by induction on k, that

is, assume
∥∥∥∥
dsα

dxs

∥∥∥∥
∞
≤ C?

s

hp+1−s

ρp+1
for s = 0, . . . , k − 1. (3.22)
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Differentiating (3.21) yields



k−1∑

s=0




k

s




dk−sM
dxk−s

dsα

dxs


 + M

dkα

dxk
=

dkT
dxk

.

Rearranging terms, the following expression for the k-th derivative of

α is found:

dkα

dxk
= M−1




dkT
dxk

−
k−1∑

s=0




k

s




dk−sM
dxk−s

dsα

dxs


 .

Since ρ/h ≤ Qk, using Lemma 3.5, Corollary 3.1 and the induction

hypothesis (3.22), the following inequality is obtained:

∥∥∥∥
dkα

dxk

∥∥∥∥
∞
≤ ∥∥M−1

∥∥
∞




∥∥∥∥
dkT
dxk

∥∥∥∥
∞

+
k−1∑

s=0




k

s




∥∥∥∥
dk−sM
dxk−s

∥∥∥∥
∞

∥∥∥∥
dsα

dxs

∥∥∥∥
∞




≤ CM


λk,p+1

hp+1−k

ρp+1
+

k−1∑

s=0




k

s


CM

k−s ρs−k C?
s

hp+1−s

ρp+1




≤ Ĉ
hp+1−k

ρp+1
+

k−1∑

s=0

Ĉs
hp+1−s

ρp+1+k−s
.

When k > 0, assuming h/ρ ≤ Qs for s = 0, . . . , k − 1, it follows that

hp+1−s

ρp+1+k−s
≤ (Qs)k−s hp+1−k

ρp+1
. (3.23)

Consequently,
∥∥∥∥
dkα

dxk

∥∥∥∥
∞
≤ C?

k

hp+1−k

ρp+1
.ut

Theorem 3.1 (Shape function’s bound) Let m be the order of

consistency of the combined approximation uh + uρ, such that m =
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p+q, where p is the order of the finite element approximation, uh, and

q > 0 is the order increment due to uρ. Let ` be such that 0 ≤ ` ≤ p.

Assume the following regularity conditions for the exact solution, u,

and the weighting function, φ: u ∈ Cm+1(Ω̄) and φ ∈ C`(Ω̄), where Ω

is bounded and ∂Ω is smooth. Finally, assume that h/ρ ≤ min
0≤k≤`

Qk

where Qk is the constant defined in (3.18). Then, for k = 0, . . . , `,

the following inequality holds:

∥∥∥∥∥
dkNρ

j

dxk

∥∥∥∥∥
L∞

≤ C??
k

hp+1−k

ρp+1
,

where C??
k is a constant independent of x, ρ and h.

Proof Using the Newton’s binomial expression in (2.4), the k-th deriva-

tive of the shape function Nρ
j is

dkNρ
j

dxk
(x) =

k∑

s=0




k

s




[
dsα

dxs
(x)

]T 1
ρk−s

dk−s[P(z)φ(z)]
dzk−s

∣∣∣∣
z=(x−xi)/ρ

,

(3.24)

Note that φ(z) = 0 if |z| > 1. Therefore, by Lemma 3.6,

∣∣∣∣∣
dkNρ

j

dxk
(x)

∣∣∣∣∣ ≤
k∑

s=0




k

s


C?

s

hp+1−s

ρp+1+k−s

{
max
|z|≤1

∥∥∥∥
dk−s[P(z)φ(z)]

dzk−s

∥∥∥∥
∞

}

Note that the term in braces is a constant independent of h and ρ.

Moreover, with the assumption h/ρ ≤ min
0≤k≤`

Qk, see equation (3.23),
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it follows that

∣∣∣∣∣
dkNρ

j

dxk
(x)

∣∣∣∣∣ ≤




k∑

s=0




k

s


C?

s (Qs)k−s

{
max
|z|≤1

∥∥∥∥
dk−s[P(z)φ(z)]

dzk−s

∥∥∥∥
∞

}



︸ ︷︷ ︸
C??

k

hp+1−k

ρp+1
.ut

Theorem 3.2 (Error bound) Under the same assumptions of The-

orem 3.1,

|u− (uh + uρ)|Wk∞ ≤ hp+1−k [C1h
q + C2ρ

q] |u|Wm+1∞ k = 0, . . . , `.

(3.25)

where C1 and C2 are independent of the finite element size, h, and

the dilation parameter, ρ, of the mesh-less approximation.

Proof Let x be a point in Ω and let xi be either a node of the finite

element where x is located, i.e. |x− xi| < h, or a particle such that

Nρ
i (x) 6= 0, i.e. |x− xi| < ρ. Consider the m-order Taylor expansion

of u around x

u(xi) = u(x) + (xi − x)
du

dx
(x) +

(xi − x)2

2
d2u

dx2
(x) + · · ·

+
(xi − x)m

m!
dmu

dxm
(x) +

(xi − x)m+1

(m + 1)!
dm+1u

dxm+1
(ξ),

(3.26)

where ξ = θx+(1−θ)xi, for some θ such that 0 ≤ θ ≤ 1. The point ξ

lies in Ω if the finite elements are convex and ρ is small enough near

the smooth boundary. Let us define

Ni(x) :=





Nh
i (x) i ∈ Ih,

Nρ
i (x) i ∈ Iρ.
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The derivative of the approximation of u yields

dku

dxk
(x) ' dk(uh + uρ)

dxk
(x) =

∑

i∈Ih∪Iρ

u(xi)
dkNi

dxk
(x). (3.27)

The shape functions Nρ
j are derived in order to achieve m-order con-

sistency. Thus, the complete set of functions Ni (including the fi-

nite element basis) has m-order consistency. Then, replacing (3.26)

in (3.27), and applying Lemma 3.1, a new expression is obtained:

dk(uh + uρ)
dxk

(x) = u(x)
∑

i∈Ih∪Iρ

dkNi

dxk
(x)

︸ ︷︷ ︸
0

+
du

dx
(x)

∑

i∈Ih∪Iρ

(xi − x)
dkNi

dxk
(x)

︸ ︷︷ ︸
0

+ · · ·

+
1
k!

dku

dxk
(x)

∑

i∈Ih∪Iρ

(xi − x)k dkNi

dxk
(x)

︸ ︷︷ ︸
k!

+ · · ·

+
1
m!

dmu

dxm
(x)

∑

i∈Ih∪Iρ

(xi − x)m dkNi

dxk
(x)

︸ ︷︷ ︸
0

+
1

(m + 1)!
dm+1u

dxm+1
(ξ)

∑

i∈Ih∪Iρ

(xi − x)m+1 dkNi

dxk
(x).

The previous expression can be rewritten as:

dk[u− (uh + uρ)]
dxk

(x) =
−1

(m + 1)!
dm+1u

dxm+1
(ξ)

[ ∑

i∈Ih

(xi − x)m+1 dkNh
i

dxk
(x)

+
∑

j∈Iρ

(xj − x)m+1
dkNρ

j

dxk
(x)

]
.

(3.28)

For a given x the first sum in the right-hand side. of (3.28) may

be restricted to the p + 1 nodes of the finite element where x is
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located and which verify |x − xi| ≤ h. Similarly, the second sum

in the right-hand side. of (3.28) is circumscribed to the particles xj

such that x is included in the support of Nρ
j (x), i.e. particles such that

|x − xj | ≤ ρ. Let us denote by n the maximum number of particles

verifying |x − xj | ≤ ρ. Hence, from (3.28) the following bound is

obtained

∣∣∣∣
dk(uρ + uh)

dxk
(x)

∣∣∣∣ ≤
1

(m + 1)!

∣∣∣∣
dm+1u

dxm+1
(ξ)

∣∣∣∣
[
(p + 1)hm+1 max

i∈Ih

∣∣∣∣
dkNh

i

dxk

∣∣∣∣

+nρm+1 max
j∈Iρ

∣∣∣∣∣
dkNρ

j

dxk

∣∣∣∣∣

]
.

On one hand, the k-th derivative (k < p) of the finite element shape

functions is O(h−k). On the other, Theorem 3.1 bounds the shape

functions Nρ
j and their derivatives. Consequently,

∥∥∥∥
dku

dxk
− dk(uρ + uh)

dxk

∥∥∥∥
L∞

≤
[
C1h

m+1−k + C2
hp+1−k

ρp+1
ρm+1

] ∥∥∥∥
dkum+1

dxk

∥∥∥∥
L∞

≤ hp+1−k [C1h
q + C2ρ

q]
∥∥∥∥
dkum+1

dxk

∥∥∥∥
L∞

,

which is precisely (3.25). ut

Corollary 3.2 Let m be the order of consistency of the combined

approximation uh + uρ, such that m = p + q, where p is the order of

the finite element approximation, uh, and q > 0 is the order increment

due to uρ. Suppose that the following regularity conditions hold for the

exact solution, u, and the weighting function, φ: u ∈ Cm+1(Ω̄) and

φ ∈ C0(Ω̄), where Ω is bounded and ∂Ω is smooth. Finally, assume
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that the element size h is small enough with respect to the dilation

parameter ρ, i.e.

h

ρ
≤ min

r=p+1,...,m




r

p + 1




−1
r−(p+1)

.

Then,

∥∥∥u− (uh + uρ)
∥∥∥
L∞

≤ hp+1 [C1h
q + C2ρ

q] |u|Wm+1∞ (3.29)

where C1 and C2 are independent of the finite element size, h, and

the dilation parameter, ρ, of the mesh-less approximation.

Remark 3.3 The error bound given in (3.29) allows to predict the

convergence behavior of the combined finite element-particle inter-

polation. That is, when both h and ρ decrease simultaneously, the

order of convergence is p + q + 1 = m + 1. When h goes to zero while

ρ is kept constant, the order is either p + 1 if C1h
q < C2ρ

q or m + 1

when C1h
q À C2ρ

q. And finally, convergence is ensured at a rate of

q when ρ goes to zero provided that C1h
q ¿ C2ρ

q. But, if h is kept

constant as ρ goes to zero, it is necessary to increase the order of

consistency in order to achieve asymptotic convergence. Numerical

examples of these situations are shown in [13].

If the restriction on the mesh size, h/ρ ≤ min
0≤k≤`

Qk, is omitted,

Lemma 3.5 must be rewritten, the previous results are no longer

valid and must be replaced by less sharp error bounds.
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Lemma 3.7 With no restriction on the element size, the independent

term in equation (2.7) verifies

∥∥∥∥∥∥
dk

dxk


P(0)−

∑

i∈Ih

P(
x− xi

ρ
)Nh

i (x)




∥∥∥∥∥∥
∞

≤ λk,p+1
hp+1−k

ρm
, k = 0, . . . , p.

Proof Trivial from Lemma 3.4. ut

Reproducing the proof of the previous lemmas, the following less

accurate error bound is easily proved:

Theorem 3.3 (Error bound) Under the same assumptions of The-

orem 3.2 but with no restriction on the element size, the error bound

is

∣∣∣u− (uh + uρ)
∣∣∣
Wk∞

≤ hp+1−k
[
C1h

q + C2ρ
1
] |u|Wm+1∞ ,

where C1 and C2 are independent of the finite element size, h, and

the dilation parameter, ρ, of the mesh-less approximation.

Corollary 3.3 Under the same assumptions of Corollary 3.2 but with

no restriction on the element size, the following inequality holds:

∥∥∥u− (uh + uρ)
∥∥∥
L∞

≤ hp+1
[
C1h

q + C2ρ
1
] |u|Wm+1∞ ,

where C1 and C2 are independent of the finite element size, h, and

the dilation parameter, ρ, of the mesh-less approximation.
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