Skip to main content
Log in

Adaptive Finite Element Methods with convergence rates

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

Adaptive Finite Element Methods for numerically solving elliptic equations are used often in practice. Only recently [12], [17] have these methods been shown to converge. However, this convergence analysis says nothing about the rates of convergence of these methods and therefore does, in principle, not guarantee yet any numerical advantages of adaptive strategies versus non-adaptive strategies. The present paper modifies the adaptive method of Morin, Nochetto, and Siebert [17] for solving the Laplace equation with piecewise linear elements on domains in ℝ2 by adding a coarsening step and proves that this new method has certain optimal convergence rates in the energy norm (which is equivalent to the H 1 norm). Namely, it is shown that whenever s>0 and the solution u is such that for each n≥1, it can be approximated to accuracy O(n −s) in the energy norm by a continuous, piecewise linear function on a triangulation with n cells (using complete knowledge of u), then the adaptive algorithm constructs an approximation of the same type with the same asymptotic accuracy while using only information gained during the computational process. Moreover, the number of arithmetic computations in the proposed method is also of order O(n) for each n≥1. The construction and analysis of this adaptive method relies on the theory of nonlinear approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction, Springer, 1976

  2. Binev, P., DeVore, R.: Fast computation in tree approximation. Numer. Math., this issue

  3. Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive methods. Serdica Math. J. 28, 391–416 (2002)

    MathSciNet  Google Scholar 

  4. Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one dimensional boundary value problems. Numer. Math. 44, 75–102 (1984)

    MathSciNet  Google Scholar 

  5. Babuška, I., Miller, A.: A feedback finite element method with a posteriori error estimations: Part I. The finite element method and some basic properties of the a posteriori error estimator. Comput. Methods Appl. Mech. Engrg. 61, 1–40 (1987)

    Google Scholar 

  6. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations - convergence rates. Math. Comp 70, 27–75 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods II – beyond the elliptic case. Foundations of Comp. Math. 2, 203–245 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. DeVore, R., Sharpley, R.: Besov spaces on domains in ℝd. TAMS 335, 843–864 (1993)

    MATH  Google Scholar 

  9. Dahlke, S.: Besov regularity for elliptic boundary value problems on polygonal domains. Appl. Math. Lett. 12, 31–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahlke, S., DeVore, R.: Besov regularity for elliptic boundary value problems. Comm. Partial Differential Equations. 22, 1–16 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63, 315–344 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    MathSciNet  Google Scholar 

  13. Griebel, M., Oswald, P.: Remarks on the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70, 163–180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karaivanov, B., Petrushev, P.: Nonlinear piecewise polynomial approximation beyond Besov spaces. Appl. Comput. Harmon. Anal. 15, 177–223 (2003)

    Google Scholar 

  15. Lov’ asz, L., Plummer, M.D.: Matching Theory. Akad’ emiai Kiad’ o, Budapest, 1986

  16. Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Transaction on Math. Software 15, 326–347 (1989)

    Google Scholar 

  17. Morin, P., Nochetto, R., Siebert, K.: Data Oscillation and Convergence of Adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Oswald, P.: Multilevel Finite Element Approximations. Teubner Skripten zur Numerik, Teubner-Verlag, Stuttgart, 1994

  19. Papadimitrious, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs, New Jersey, Prentice Hall, 1982.

  20. Petersen, J.: Die Theorie der regulären Graphen. Acta Math 15, 193–220 (1891)

    Google Scholar 

  21. Triebel, H.: Interpolation Theory, Function Spaces, and Differential Operators, Amsterdam, North–Holland, 1978

  22. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Chichester, Wiley–Teubner, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron DeVore.

Additional information

Mathematics Subject Clasification (2000): 65N30, 65Y20, 65N12, 65N50, 68W40, 68W25.

This work has been supported by the Office of Naval Research Contract Nr. N00014-03-10051, the Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation Grants DMS 0221642, DMS 9872890 the Deutsche Forschungsgemeinschaft grant SFB 401, the European Community’s Human Potential Programme under Contract HPRN-CT-2002-00286, ‘‘Breaking Complexity’’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binev, P., Dahmen, W. & DeVore, R. Adaptive Finite Element Methods with convergence rates. Numer. Math. 97, 219–268 (2004). https://doi.org/10.1007/s00211-003-0492-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0492-7

Keywords

Navigation