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Abstract

We examine a class of symmetric collocation schemes for the solu-
tion of nonlinear boundary value problems for unstructured nonlinear
systems of differential-algebraic equations with arbitrary index. We
show that these schemes converge with the same orders as one would
expect for ordinary differential equations. In particular, we show super-
convergence for a special choice of the collocation points. We demon-
strate the efficiency of the new approach with some numerical exam-
ples.

1 Introduction

In this paper we discuss the numerical solution of nonlinear boundary value
problems (BVPs) for systems of differential-algebraic equations of arbitrary
index. There are many possibilities to design numerical methods for the
solution of BVPs. We concentrate here on symmetric collocation methods.
For shooting methods, see [14] and references therein. Collocation methods
are well studied for ordinary differential equations, see [1], and also for
special classes of systems of differential-algebraic equations (DAEs), see [2,
3]. A well-known software for differential-algebraic BVPs is COLDAE [3], but
it is restricted to semi-explicit problems of index at most two.
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In this paper we study general nonlinear differential-algebraic BVPs

(a) F (t, x, ẋ) = 0,
(b) r(x(t), x(t)) = 0,

(1.1)

where F : [t, t] × Dx × Dẋ → R
n, r : Dx × Dx → R

d with Dx, Dẋ ⊆ R
n

open and d the number of differential components of x (we give a precise
definition below).

Currently no collocation methods for such general differential-algebraic
BVPs are available, but in the linear case (i. e., linear F and linear r), a
new class of symmetric collocation methods was recently presented in [15]
that exhibit the same convergence behavior as collocation methods for or-
dinary differential equations, including superconvergence. The main idea
in [15] is based on the fact that by index reduction techniques one can dis-
tinguish between differential and algebraic equations. It combines two sets
of collocation schemes, a Gauß-like scheme for the differential part and a
Lobatto-type scheme for the algebraic part.

Here we generalize the results of [15] to the general nonlinear case. The
paper is organized as follows. In Section 2, we recall some preliminaries on
the theory of DAEs including the index definition that we are using. We
then formulate the collocation equations and show solvability for sufficiently
fine meshes in Section 3. Section 4 discusses how to realize the collocation
method and exhibits the results of a number of numerical experiments. We
then give some conclusions in Section 5. In the appendix we analyze a gener-
alized simplified Newton method that presents the basis for our convergence
analysis.

2 Preliminaries

For differential-algebraic equations, it is well-known that the solution may
depend on derivatives of (1.1a). In particular, differentiation of (1.1a) may
lead to hidden algebraic constraints on the possible states of the solution.
It is then clear that for a theoretical and numerical treatment of (1.1) we
must know the number of differentiations that must be performed to obtain
all algebraic constraints that are present in the system. Assuming in the
following that F and r are sufficiently smooth, we first introduce the so-
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called derivative array functions (see [4, 5])

Fℓ(t, x, ẋ, . . . , x(ℓ+1)) =











F (t, x, ẋ)
d
dt

F (t, x, ẋ)
...

( d
dt

)ℓF (t, x, ẋ)











, (2.1)

obtained from (1.1a) by successive differentiation with respect to t. Note
that Fℓ is treated here as a function from some subset of R

(ℓ+2)n+1 into
R

(ℓ+1)n, where the independent variables are denoted by (t, x, ẋ, . . . , x(ℓ+1)).
In addition, we need partial derivatives of Fℓ and other functions. We will
denote these by subscripts as in

Fℓ;x = ∂
∂x

Fℓ, Fℓ;ẋ,...,x(ℓ+1) =
[

∂
∂ẋ

Fℓ · · · ∂
∂x(ℓ+1) Fℓ

]

.

The following hypothesis will play a central role in the design and inves-
tigation of the collocation method that we present, see [9].

Hypothesis 2.1 There exist integers µ, a and d such that for all values
(t, x, ẋ, . . . , x(µ+1)) ∈ Lµ, with

Lµ = {(t, x, ẋ, . . . , x(µ+1)) ∈ R
(µ+2)n+1 | Fµ(t, x, ẋ, . . . , x(µ+1)) = 0} 6= ∅

(2.2)
associated with F the following properties hold:

1. We have

rankFµ;ẋ,...,x(µ+1)(t, x, ẋ, . . . , x(µ+1)) = (µ + 1)n − a,

such that there exists a smooth matrix function Ẑ2 on Lµ with or-
thonormal columns and size ((µ + 1)n, a) satisfying

ẐT
2 Fµ;ẋ,...,x(µ+1) = 0 on Lµ.

2. We have
rank ẐT

2 Fµ;x(t, x, ẋ, . . . , x(µ+1)) = a,

such that there exists a smooth matrix function T̂2 on Lµ with or-
thonormal columns and size (n, d), where d = n − a, satisfying

ẐT
2 Fµ;xT̂2 = 0 on Lµ.
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3. We have
rankFẋT̂2(t, x, ẋ, . . . , x(µ+1)) = d,

such that there exists a smooth matrix function Ẑ1 on Lµ with or-
thonormal columns and size (n, d) satisfying

rank ẐT
1 FẋT̂2 = d on Lµ.

The minimal number µ (if it exists) such that Hypothesis 2.1 is fulfilled
is called the strangeness index of F . The numbers a and d denote the size
of the algebraic and differential part of (1.1a).

Remark 2.2 The above definition of the strangeness index follows a dif-
ferent philosophy than the notion of the differentiation index. The differ-
entiation index as defined in [5] aims for an ODE such that the solutions
of the given DAE also solve the ODE. But in general this ODE has more
solutions than the original DAE due to the loss of the information on the
algebraic constraints. Hypothesis 2.1 is the weakest form of assumptions on
a given DAE to guarantee that we can derive (theoretically) another DAE
that satisfies Hypothesis 2.1 with µ = 0 and has the same solutions as the
original problem. In particular, one can see that the derived DAE has a
differentiation index of at most one. Compared with the definition of the
differentiation index in [5], one can show that Hypothesis 2.1 is invariant
under a larger class of equivalence transformations. Moreover, it can be gen-
eralized to over- and underdetermined DAEs, cp. [10]. For a more detailed
discussion of Hypothesis 2.1 and the strangeness index see [9].

As usual in the investigation of computational methods for boundary
value problems, we assume that there exists a sufficiently smooth solution
of the given problem. In the context of (1.1) we therefore assume that there
exists a sufficiently smooth x∗ ∈ C1([t, t], Rn) with

(a) F (t, x∗(t), ẋ∗(t)) = 0 for all t ∈ [t, t],
(b) Fµ(t, x∗(t), P (t)) = 0 for all t ∈ [t, t],
(c) r(x∗(t), x∗(t)) = 0,

(2.3)

where P : [t, t] → R(µ+1)n is some smooth function that coincides with ẋ∗

in the first n components. Sufficient conditions for the existence of such a
function P (t) can be found in [10, Theorem 3].

Since (t, x∗(t), P (t)) ∈ Lµ for all t ∈ [t, t], Hypothesis 2.1 implies the
existence of matrix functions

Z1 : [t, t] → R
n,d, Z2 : [t, t] → R

(µ+1)n,a, T2 : [t, t] → R
n,d (2.4)
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as restrictions of Ẑ1, Ẑ2 and T̂2 to the path (t, x∗(t), P (t)). These satisfy

(a) Z2(t)
T Fµ;ẋ,...,x(µ+1)(t, x∗(t), P (t)) = 0 for all t ∈ [t, t],

(b) Z2(t)
T Fµ;x(t, x∗(t), P (t))T2(t) = 0 for all t ∈ [t, t],

(c) rankZ1(t)
T Fẋ(t, x∗(t), ẋ∗(t))T2(t) = d for all t ∈ [t, t].

(2.5)

In addition, there exist smooth functions

Z ′2 : [t, t] → R
(µ+1)n,(µ+1)n−a, T1 : [t, t] → R

(µ+1)n,a,

T ′2 : [t, t] → R
n,a, T ′1 : [t, t] → R

(µ+1)n,(µ+1)n−a,
(2.6)

such that the matrix valued functions [Z ′2, Z2], [T ′1, T1] and [T ′2, T2] are square
and pointwise orthogonal and, furthermore,

Z ′2(t)
T Fµ;ẋ,...,x(µ+1)(t, x∗(t), P (t))T1(t) = 0 for all t ∈ [t, t]. (2.7)

Using these functions we now consider the nonlinear system of equations
H(t, x, y) = 0 given by

(a) Z ′2(t)
T Fµ(t, x, y) = 0,

(b) T1(t)
T (y − P (t)) = 0.

(2.8)

We then have that H(t, x∗(t), P (t)) = 0 and

rankHy(t, x
∗(t), P (t)) = rank

[

Z ′2(t)
T Fµ;ẋ,...,x(µ+1)(t, x∗(t), P (t))

T1(t)
T

]

.

In particular, it follows from (2.7) that Hy(t, x
∗(t), P (t)) is nonsingular.

Thus, (2.8) locally defines a function K according to

y = K(t, x).

Introducing the functions

(a) F̂1(t, x, ẋ) = Z1(t)
T F (t, x, ẋ),

(b) F̂2(t, x) = Z2(t)
T Fµ(t, x,K(t, x)),

(2.9)

we have that the given solution x∗ of (1.1) also solves the DAE

(a) F̂1(t, x, ẋ) = 0,

(b) F̂2(t, x) = 0.
(2.10)
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Conversely, using the definition of K, it follows that every x ∈ R
n in

a neighborhood of x∗(t) with F̂2(t, x) = 0 not only satisfies the relation
Z2(t)

T Fµ(t, x,K(t, x)) = 0 but also Z ′2(t)
T Fµ(t, x,K(t, x)) = 0. Hence,

Fµ(t, x,K(t, x)) = 0 and x satisfies all algebraic constraints at point t im-
posed by the DAE (1.1a). Equation (2.10b) therefore represents (by the
implicit function theorem) all these algebraic constraints.

Remark 2.3 If one can obtain (2.10) analytically then one should do it
this way. Analogously, if one can evaluate F̂2 of (2.10) by a simpler system
(see, e. g., [11]) than via Fµ = 0 such as, e. g., for Hessenberg systems, one
should do it this way. As formulated in the title, the approach taken here
is discussed for systems without assuming any structure. If the problem is
known to have a special structure, of course it should be utilized if possible.
In the course of (automatic) modeling, however, one may rather be interested
in a general purpose numerical procedure to investigate the generated model
and to integrate it.

If we linearize (2.10) along the given solution x∗, then we obtain a linear
DAE

[

E1(t)
0

]

ẋ =

[

A1(t)
A2(t)

]

x, (2.11)

where
(a) E1(t) = Z1(t)

T Fẋ(t, x∗(t), ẋ∗(t)),

(b) A1(t) = −Z1(t)
T Fx(t, x∗(t), ẋ∗(t)),

(c) A2(t) = −Z2(t)
T Fµ;x(t, x∗(t), P (t)).

(2.12)

Here (2.12c) follows from (2.5a). By (2.5c) and the definition of T ′2, we have
that (omitting arguments)

rank

[

E1

A2

]

= rank

[

∗ ZT
1 FẋT2

−ZT
2 Fµ;xT ′2 0

]

= n. (2.13)

It follows that the DAE (2.11) has differentiation index at most one. In
particular, it satisfies the assumptions of [15].

In this section we have given a brief introduction to the basic theory
of nonlinear systems of differential-algebraic equations as it was developed
in [9, 10]. In the next section we generalize the collocation scheme of [15]
to the case of nonlinear DAEs. Note that the transformations introduced
above are only used in the investigation of the numerical method that we
are going to present. But none of these transformations need to be carried
out in the actual numerical computations.
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3 Collocation discretization

In the previous section we have derived in (2.10) a new representation of the
differential-algebraic system (1.1a). This representation has the advantage
that differential and algebraic parts are well separated. This allows, as in
the linear case of [15], to treat the differential and the algebraic part in a
different way.

For the development and analysis of collocation methods, it is convenient
to write the given boundary value problem as an operator equation. For the
choice of the correct spaces, we must not only observe that (2.10a) and
(2.10b) have different smoothness properties but also that the collocation
solution is supposed to be piecewise polynomial but globally only to be
continuous.

Consider a mesh

π : t = t0 < t1 < · · · < tN−1 < tN = t, N ∈ N,
hi = ti+1 − ti, h = max

i=0,...,N−1
hi, h ≤ M min

i=0,...,N−1
hi,

(3.1)

where M > 0 is some fixed constant when we consider h → 0. We define
the spaces

(a) X = C1
π([t, t], Rn) ∩ C0([t, t], Rn),

(b) Y = C0
π([t, t], Rd) × C1

π([t, t], Ra) ∩ C0([t, t], Ra) × R
d,

(3.2)

where the subscript π denotes that we have the stated smoothness only
piecewise with respect to the mesh with one-sided limits. This leads to an
ambiguity of the corresponding function values at the mesh points, which,
however, is not crucial in the following analysis.

If we equip the spaces in (3.2) with the norms

(a) ‖x‖X = max
t∈[t,t]

‖x(t)‖∞ + max
i=0,...,N−1

{ max
t∈[ti,ti+1]

‖ẋ(t)‖∞},

(b) ‖(f1, f2, v)‖Y = max
i=0,...,N−1

{ max
t∈[ti,ti+1]

‖f1(t)‖∞} +

+ max
t∈[t,t]

‖f2(t)‖∞ + max
i=0,...,N−1

{ max
t∈[ti,ti+1]

‖ḟ2(t)‖∞} + ‖v‖∞,

(3.3)
where ẋ(t) with t ∈ [ti, ti+1] and similar quantities denote one-sided limits
for t = ti, ti+1 taken within [ti, ti+1], then the spaces X and Y become Banach
spaces.

The BVP (1.1) takes the form of the operator equation

L(x) = 0, (3.4)
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with
(a) L : X → Y,

(b) x 7→





F̂1(t, x(t), ẋ(t))

F̂2(t, x(t))
r(x(t), x(t))



 .
(3.5)

Since x∗ solves (1.1) according to (2.3), we have L(x∗) = 0.
For the construction of a Newton-like method we will later need the

Fréchet derivative DL[u] of L at u ∈ X, which is given by

(a) DL[u] : X → Y,

(b) x 7→





F̂1;x(t, u(t), u̇(t))x(t) + F̂1;ẋ(t, u(t), u̇(t))ẋ(t)

F̂2;x(t, u(t))x(t)
rxa(u(t), u(t))x(t) + rxb

(u(t), u(t))x(t)



 .
(3.6)

For linear DAEs, it has been suggested in [15] to use two different types
of collocation schemes for the differential and algebraic parts of the DAE.
In a similar fashion we introduce a Gauß-type scheme for the differential
equations and a Lobatto-type scheme for the algebraic equations. These
schemes are given by nodes

(a) 0 < ̺1 < · · · < ̺k < 1,
(b) 0 = σ0 < · · · < σk = 1, k ∈ N,

(3.7)

respectively, and define the collocation points

(a) tij = ti + hi̺j, j = 1, . . . , k,
(b) sij = ti + hiσj, j = 0, . . . , k.

(3.8)

Let Pk+1,π denote the space of piecewise polynomials of maximal degree k
(order k + 1) and introduce the finite dimensional spaces

(a) Xπ = Pk+1,π ∩ C0([t, t], Rn),

(b) Yπ = R
kNd × R

(kN+1)a × R
d.

(3.9)

Observe that dim Xπ = (k + 1)Nn − (N − 1)n = (kN + 1)n = dimYπ.
Then we apply the collocation discretization given by

Lπ(xπ) = 0 (3.10)

with
(a) Lπ : X → Yπ,

(b) x 7→





F̂1(tij , x(tij), ẋ(tij))

F̂2(sij, x(sij))
r(x(t), x(t))





(3.11)
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and we seek a solution xπ ∈ Xπ. For ease of notation in (3.11b) we have
omitted that the indices i and j must run over the values i = 0, . . . ,N − 1,
j = 1, . . . , k in the first component and i = 0, . . . ,N − 1, j = 1, . . . , k
together with i = 0, j = 0 in the second component. Note that in the
second component the indices i = 1, . . . ,N − 1, j = 0 must be omitted since
the space Xπ includes continuity of the solution. We will use this kind of
abbreviation in the remainder of the paper. We will also need the Fréchet
derivative DLπ[u] of the discretized operator Lπ at u ∈ X, which is given
by

(a) DLπ[u] : X → Yπ,

(b) x 7→





F̂1;x(tij, u(tij), u̇(tij))x(tij) + F̂1;ẋ(tij , u(tij), u̇(tij))ẋ(tij)

F̂2;x(sij , u(sij))x(sij)
rxa(u(t), u(t))x(t) + rxb

(u(t), u(t))x(t)



 .

(3.12)
Note that we have defined Lπ on the larger space X and not only on Xπ ⊆ X.
Because of this inclusion, we use the norm of X also for Xπ. For Yπ, we take
the ℓ∞-norm. Finally, we need the restriction operator

(a) Rπ : Y → Yπ,

(b)





f1

f2

v



 7→





f1(tij)
f2(sij)

v



 .
(3.13)

Observe that Lπ = RπL and DLπ[u] = RπDL[u].
The aim of the following discussion is to show that if x∗ satisfies some

regularity condition that guarantees that x∗ is locally unique, then equation
(3.10) is solvable in Xπ at least for sufficiently small h. We will also show
that we obtain the same orders of convergence with h → 0 as in the linear
case [15].

To do so, we follow the lines of [1, pp. 222-226] where a corresponding
result is shown in the case of ordinary differential equations. In particular,
we consider the iterative process

xm+1
π = xm

π − DLπ[x∗]−1Lπ(xm
π ) (3.14)

and prove that under suitable assumptions it generates a sequence {xm
π }

in Xπ that converges to a solution of (3.10). Note that the iteration (3.14)
is only a tool for the theoretical analysis. It cannot be used as a numerical
method, since the value of the Fréchet derivative at the exact solution x∗ is
not available.

9



A typical convergence result for an iteration of the form (3.14) is given
by Theorem A.1 of the appendix. In the present context, however, we are
interested in properties of (3.14) for h → 0. Thus, we must consider families
of iterations (3.14) with the maximum mesh sizes tending to zero. For these
we must show that certain constants are independent of h. Unfortunately,
in the standard formulation of Theorem A.1 and its proof this does not hold
for the constants β and γ. The main task of the following considerations is
to replace the standard definition of β and γ by more appropriate quantities
and to show that then the crucial estimates in the proof of Theorem A.1 still
hold. Since the modified quantities will play the same roles as the original
constants β and γ, we will keep the same notation.

We start our analysis by investigating DLπ[x∗]. For this we introduce
the linearization (cp. (2.12))

E1(t) = F̂1;ẋ(t, x∗(t), ẋ∗(t)), C = rxa(x∗(t), x∗(t)),

A1(t) = −F̂1;x(t, x∗(t), ẋ∗(t)), D = rxb
(x∗(t), x∗(t)),

A2(t) = −F̂2;x(t, x∗(t)),

(3.15)

and hence we have that

(a) DL[x∗] : X → Y,

(b) x 7→





E1(t)ẋ(t) − A1(t)x(t)
−A2(t)x(t)

Cx(t) + Dx(t)





(3.16)

and DLπ[x∗] = RπDL[x∗]. Since we have assumed sufficient smoothness
of F , r and x∗, all assumptions of [15] are satisfied for linear boundary value
problems that involve DL[x∗]. To make use of the results developed there,
we need the following regularity property of x∗.

Definition 3.1 A solution x∗ ∈ X of (1.1) is called regular if the boundary
value problem

DL[x∗]x = 0 (3.17)

only possesses the trivial solution.

Throughout the remainder of the paper, we assume x∗ to be regular in the
sense of Definition 3.1. For linear systems in [15, Prop. 2.2] a character-
ization of regularity in terms of the data E1, A1, A2, C and D has been
given.

The first step of our analysis of the iteration (3.14) is to construct a
suitable initial function x0

π ∈ Xπ to start the iteration. Note that due to [15]
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the operator DLπ[x∗] is invertible for sufficiently small h when we restrict
it to Xπ. Thus, there is a well-defined inverse

DLπ[x∗]−1 : Yπ → Xπ ⊆ X (3.18)

that satisfies
DLπ[x∗]−1DLπ[x∗] = idXπ . (3.19)

Lemma 3.2 For sufficiently small h, the linear collocation problem

DLπ[x∗]xπ = DLπ[x∗]x∗ (3.20)

for xπ has a unique solution x0
π ∈ Xπ with

‖x0
π − x∗‖X ≤ Chk, (3.21)

where C is independent of h.

Proof. The operator equation (3.20) is the collocation discretization of the
linear boundary value problem

DL[x∗]x = DL[x∗]x∗

which possesses the solution x∗. Applying the results of [15] shows that
(3.20) has a unique solution x0

π ∈ Xπ with

max
t∈[t,t]

‖x∗(t) − x0
π(t)‖∞ ≤ Chk

for sufficiently small h with C independent of h.
Due to the definition of ‖ · ‖X we also need an estimate for the derivative

ẋ∗(t) − ẋ0
π(t) on [ti, ti+1] in order to prove (3.21). Observing that

E1(tij)(ẋ
∗(tij) − ẋ0

π(tij)) = A1(tij)(x
∗(tij) − x0

π(tij)), j = 1, . . . , k,
0 = A2(sij)(x

∗(sij) − x0
π(sij)), j = 0, . . . , k,

and applying Lagrange interpolation of x∗− x0
π at the points sij = ti + hiσj

gives

x∗(t) − x0
π(t) =

k
∑

l=0

(

x∗(sil) − x0
π(sil)

)

Ll(
t−ti
hi

) + O(hk+1),

where

Ll(τ) =

k
∏

m=0
m6=l

τ − σm

σl − σm
.
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Since ( d
dt

)k+1x0
π = 0 on [ti, ti+1] it follows that the constant involved in

O(hk+1) does not depend on h. Thus, with L′l(τ) = d
dτ

Ll(τ), we have

A2(tij)(ẋ
∗(tij) − ẋ0

π(tij)) =

= A2(tij)
∑k

l=0

(

x∗(sil) − x0
π(sil)

)

L′l(
tij−ti

hi
) 1

hi
+ O(hk) =

=
∑k

l=0

(

A2(sil) + O(h)
)(

x∗(sil) − x0
π(sil)

)

L′l(ρj)
1
hi

+ O(hk) =

=
∑k

l=0

(

0 + O(h) · O(hk)
)

· O(1) · O(h−1) + O(hk) =

= O(hk),

where all constants do not depend on h. Combining the estimates for x
and ẋ, we have

[

E1(tij)
A2(tij)

]

(ẋ∗(tij) − ẋ0
π(tij)) = O(hk).

Property (2.13) says that the leading matrix is invertible and has a bounded
inverse. Hence,

‖ẋ∗(tij) − ẋ0
π(tij)‖∞ ≤ Chk,

possibly increasing the constant C. Lagrange interpolation of ẋ∗− ẋ0
π at the

points tij gives

ẋ∗(t) − ẋ0
π(t) =

k
∑

l=1

(

ẋ∗(til) − ẋ0
π(til)

)

L̃l(
t−ti
hi

) + O(hk),

with

L̃l(τ) =

k
∏

m=1
m6=l

τ − ̺m

̺l − ̺m
.

Again, since ( d
dt

)kẋ0
π = 0 on [ti, ti+1], it follows that the constant involved

in O(hk) does not depend on h. Thus, we finally have

max
t∈[ti,ti+1]

‖ẋ∗(t) − ẋ0
π(t)‖∞ ≤ Chk,

possibly increasing again the constant C.

The next lemma gives estimates for higher derivatives of x∗(t) − x0
π(t).

12



Lemma 3.3 Suppose x∗ to be sufficiently smooth and that

max
t∈[ti,ti+1]

‖ẋ∗(t) − ẋπ(t)‖∞ ≤ Chk (3.22)

for xπ ∈ Xπ with C independent of h as h → 0. Then,

max
t∈[ti,ti+1]

‖( d
dt

)l(x∗(t) − xπ(t))‖∞ ≤ Chk−l+1, l = 1, . . . , k (3.23)

with possibly increased constant C. In particular, xπ has bounded derivatives
of arbitrary order on [ti, ti+1] as h → 0.

Proof. This result only depends on the properties of the space Xπ which is
in the DAE case the same as for ordinary differential equations. Hence the
result follows as in [1, Th. 5.75].

The second step deals with an appropriate modification of the constant β
of Theorem A.1. In the present context, this contains a stability property of
the collocation discretization.

Lemma 3.4 The linear collocation discretization given by DLπ[x∗] is stable
in the sense that

‖DLπ[x∗]−1Rπ‖X←Y ≤ β (3.24)

with β independent of h.

Proof. Let g = (f1, f2, v) ∈ Y and consider the boundary value problem

DL[x∗]x = g

and its collocation discretization

DLπ[x∗]xπ = Rπg.

Although the inhomogeneity g does not have the smoothness properties
required in the proof of the corresponding stability result of [15], the same
proof as given there shows that the discrete problem is uniquely solvable in
Xπ and that

max
t∈[t,t]

‖xπ(t)‖∞ ≤ β‖g‖Y

for the solution xπ with β independent of h. To get the estimate for the
derivative ẋπ(t) on [ti, ti+1], we observe that

E1(tij)ẋπ(tij) = A1(tij)xπ(tij) + f1(tij), j = 1, . . . , k,
0 = A2(sij)xπ(sij) + f2(sij), j = 0, . . . , k.

13



Since xπ ∈ Pk+1,π, we can write xπ as

xπ(t) =

k
∑

l=0

xπ(sil)Ll(
t−ti
hi

),

cp. the proof of Lemma 3.2. Hence,

A2(tij)ẋπ(tij) =
∑k

l=0 A2(tij)xπ(sil)L
′
l(

tij−ti
hi

) 1
hi

=

=
∑k

l=0

(

A2(sil) + O(h)
)

xπ(sil)L
′
l(ρj)

1
hi

=

=
∑k

l=0 O(h) · xπ(sil)L
′
j(ρj)

1
hi

−
∑k

l=0 f2(sil)L
′
l(ρj)

1
hi

=

=
∑k

l=0 O(h) · xπ(sil)L
′
l(ρj)

1
hi

−
∑k

l=0

(

f2(sil) − f2(ti)
)

L′l(ρj)
1
hi

,

where the latter identity follows, since for all t

k
∑

l=0

L′l(
t−ti
hi

) = 0.

Because of f2 ∈ C1([t, t], Ra), there are points θij ∈ [ti, ti+1] which satisfy
f2(sil)−f2(ti) = hiσlḟ2(θij). Possibly increasing the constant β, we therefore
have that

‖A2(tij)ẋπ(tij)‖∞ ≤ β1‖g‖Y + β2 max
t∈[ti,ti+1]

‖ḟ2(t)‖∞ ≤ β‖g‖Y.

Together with
‖E1(tij)ẋπ(tij)‖∞ ≤ β‖g‖Y,

it then follows as in Lemma 3.2 that

‖ẋπ(tij)‖∞ ≤ β‖g‖Y.

Using again Lagrange interpolation of ẋπ at the points tij, with L̃j as in the
proof of Lemma 3.2, we have

ẋπ(t) =
k

∑

l=1

ẋπ(til)L̃l(
t−ti
hi

).

Thus, we have
max

t∈[ti,ti+1]
‖ẋπ(t)‖∞ ≤ β‖g‖Y

14



and finally
‖xπ‖X ≤ β‖g‖Y

with possibly increased constant β. Observing that the choice of β does only
depend on the problem data involved in DL[x∗], but not on the selected
inhomogeneity g ∈ Y nor on h, the claim follows.

In the third step, we give a suitable replacement for the Lipschitz con-
stant γ of Theorem A.1. In the present context, this means that we must
consider the dependence of the operator DL[u] on u. Recall that we as-
sume all data including the functions F̂1 and F̂2 as defined in (2.9) to be
sufficiently smooth in a neighborhood of the solution x∗.

Lemma 3.5 Let L from (3.5) be defined on a convex and compact neigh-
borhood D ⊆ X of x∗. Then there exists a constant γ independent of h such
that

‖L(x)−L(y)−DL[z](x− y)‖Y ≤ 1
2γ‖x− y‖X

(

‖x− z‖X + ‖y− z‖X

)

(3.25)

for all x, y, z ∈ D.

Proof. See Appendix B.

Remark 3.6 With the same technique as in the proof of Lemma 3.5, we
can show that DL[u] and therefore also DLπ[u] = RπDL[u] are Lipschitz
continuous with respect to u, i. e.,

‖DL[x] − DL[y]‖Y←X ≤ γ‖x − y‖X for all x, y ∈ D (3.26)

with γ independent of h. We therefore omit a proof.

An immediate consequence of Lemmata 3.4 and 3.5 is that, although
they define modifications of the constants β and γ of Theorem A.1, the
crucial estimates in the proof of Theorem A.1 still hold. In particular, we
have

‖xm+1
π − xm

π ‖X =

= ‖DLπ[x∗]−1[Lπ(xm
π ) − Lπ(xm−1

π ) − DLπ[x∗](xm
π − xm−1

π )]‖X =

= ‖DLπ[x∗]−1Rπ[L(xm
π ) − L(xm−1

π ) − DL[x∗](xm
π − xm−1

π )]‖X ≤

≤ 1
2βγ‖xm

π − xm−1
π ‖X

(

‖xm
π − x∗‖X + ‖xm−1

π − x∗‖X

)
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as long as x0
π, . . . , xm

π , x∗ ∈ D, and similarly (for an x∗∗π ∈ Xπ ∩ D with
Lπ(x∗∗π ) = 0)

‖xm+1
π − x∗∗π ‖X ≤ 1

2βγ‖xm
π − x∗∗π ‖X

(

‖xm
π − x∗‖X + ‖x∗∗π − x∗‖X

)

,

cp. also Remark A.3.
Thus, to get the claims of Theorem A.1 it only remains to discuss the

assumptions of Theorem A.1 concerning the quantities α = ‖x1
π − x0

π‖X and
t̂ = −‖x0

π − x∗‖X. Because of (3.21), we can choose h so small that

‖x0
π − x∗‖X ≤

1

2βγ
, (3.27)

cp. Corollary A.2. Moreover, because of

‖x1
π − x0

π‖X = ‖DLπ[x∗]−1Lπ(x0
π)‖X =

= ‖DLπ[x∗]−1RπL(x∗ + (x0
π − x∗))‖X ≤

≤ β‖L(x∗) + DL[x∗](x0
π − x∗) + O(‖x0

π − x∗‖2
X
)‖X ≤

≤ β‖DL[x∗]‖Y←X ‖x0
π − x∗‖X + O(‖x0

π − x∗‖2
X
),

we have
‖x1

π − x0
π‖X ≤ C̃hk (3.28)

with C̃ independent of h, and we can choose h so small that

α = ‖x1
π − x0

π‖X ≤
1

9βγ
(3.29)

and that S(x0
π, 4α) ⊆ D. It follows then inductively as in the proof of

Theorem A.1 that (3.14) generates a sequence {xm
π } with

xm
π ∈ S(x0

π, 4α) ∩ Xπ. (3.30)

Since Xπ ⊆ X is closed, the sequence converges to an x∗π ∈ S(x0
π, 4α) ∩ Xπ

with Lπ(x∗π) = 0. Local uniqueness follows since (3.27) and (3.29) imply
that ρ− < ρ+. Finally observing that now

‖x∗ − x∗π‖X ≤ ‖x∗ − x0
π‖X + ‖x0

π − x∗π‖X ≤ Chk + 4C̃hk

utilizing Corollary A.2, we have arrived at the following result.

16



Theorem 3.7 Let x∗ ∈ X be a regular solution of L(x) = 0. Then, for suffi-
ciently small h, there exists a locally unique solution x∗π ∈ Xπ of Lπ(xπ) = 0.
In particular, the estimate

‖x∗ − x∗π‖X ≤ Chk (3.31)

holds, with C independent of h.

In the remainder of this section, we show superconvergence of the collo-
cation method when we use special schemes in (3.7). From

L(x∗π) = L(x∗ + (x∗π − x∗)) = L(x∗) + DL[x∗](x∗π − x∗) + O(‖x∗π − x∗‖2
X)

and

0 = Lπ(x∗π) = RπL(x∗π) = DLπ[x∗](x∗π − x∗) + RπO(‖x∗π − x∗‖2
X
),

it follows with (3.31) and DLπ[x∗]x0
π = DLπ[x∗]x∗ that

DLπ[x∗]x∗π = DLπ[x∗]x∗ + RπO(h2k) = DLπ[x∗]x0
π + RπO(h2k),

where again the involved constants in the remainders are independent of h.
Application of (3.19) and (3.24) yields

x∗π = x0
π + O(h2k). (3.32)

In particular, we have

x∗π(t) − x∗(t) = (x∗π(t) − x0
π(t)) + (x0

π(t) − x∗(t)) =
= x0

π(t) − x∗(t) + O(h2k)
(3.33)

for all t ∈ [t, t].

Theorem 3.8 Let the assumptions of Theorem 3.7 hold and let ̺1, . . . , ̺k

and σ0, . . . , σk of (3.7) be Gauß and Lobatto nodes, respectively. Then

(a) max
i=0,...,N

‖x∗(ti) − x∗π(ti)‖∞ = O(h2k),

(b) max
j=0,...,k

‖x∗(sij) − x∗π(sij)‖∞ = O(hk+2) for k ≥ 2,

(c) max
t∈[t,t]

‖x∗(t) − x∗π(t)‖∞ = O(hk+1),

(3.34)

with constants independent of h.
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Proof. Applying Theorem 3.3 and Corollary 3.1 of [15] to (3.20), we get the
estimates (3.34) for x∗(t) − x0

π(t). Because of (3.33), they carry over to the
corresponding estimates for x∗(t) − x∗π(t).

Remark 3.9 Observing stability of DLπ[x∗]−1Rπ and Lipschitz continu-
ity of DLπ[u] = RπDL[u] with respect to u according to Remark 3.6, the
Lipschitz constant being independent of h, we can conclude existence and
stability of DLπ[u]−1Rπ for u in a sufficiently small neighborhood of x∗ and
thus of DLπ[x∗π]−1Rπ for sufficiently small h.

4 Numerical realization and experiments

In the previous section, we have shown that the collocation system (3.10)
has a (regular) solution x∗π near the exact solution x∗, provided that h is
sufficiently small and some (standard) regularity condition holds. But there
are a number of problems to deal with (3.10) directly in order to actually
compute x∗π. First, the function Z1 used in the definition of F̂1 is not known,
and second, the function F̂2 is implicitly defined and also includes with Z2

and K further functions that are not known. Since x∗ is unknown, the
iterative method (3.14) cannot be applied. Moreover, iterative processes of
this kind usually have poor convergence properties.

The function Z1 must only guarantee that the overall system has differ-
entiation index at most one. Thus, we can use (sufficiently good) approx-
imations Z1,ij to its values at the points tij without changing the solution
and its regularity. Concerning F̂2, we must go back to the original defining
equations via Fµ. This leads us to the underdetermined system

(a) ZT
1,ijF (tij , xπ(tij), ẋπ(tij)) = 0,

(b) Fµ(sij, xπ(sij), ẋij , . . . , x
(µ+1)
ij ) = 0,

(c) r(xπ(t), xπ(t)) = 0

(4.1)

for the unknowns

(xπ, ẋij , . . . , x
(µ+1)
ij ) ∈ Pk+1,π ∩ C0([t, t], Rn) × R

(Nk+1)(µ+1)n (4.2)

with i = 0, . . . , N − 1, j = 1, . . . , k and i = 0, j = 0. For convenience, in the
following we use the abbreviations

xij = xπ(sij), yij = (ẋij , . . . , x
(µ+1)
ij ). (4.3)
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Suitable matrices Z1,ij can be obtained from (sufficiently good) initial
guesses (x0

ij , y
0
ij) by perturbing Fµ;ẋ,...,x(µ+1)(sij , x

0
ij , y

0
ij) to a matrix with

rank deficiency a in order to get an approximate evaluation of Ẑ1 along the
lines of Hypothesis 2.1. Recall that rankFµ;ẋ,...,x(µ+1)(s, x, y) = (µ + 1)n − a

if (s, x, y) ∈ Lµ. A second possibility is to project (sij , x
0
ij , y

0
ij) onto Lµ and

to use the corresponding Jacobian there. For sufficiently small h, it is also
clear that we may choose Z1,ij independent of j.

The equations (4.1b) guarantee that the discrete solution obeys all alge-
braic constraints at least at the collocation points sij. In particular, recall
the discussion at the end of Section 2 on the equivalence of (4.1b) with
F̂2(sij , xπ(sij)) = 0, cp. also [9].

The iteration process of choice for the numerical solution of (4.1) is a
Gauß-Newton-like method of the form

zm+1 = zm −A+
mF(zm), zm = (xm

ij , y
m
ij ), (4.4)

when we write (4.1) as F(z) = 0. Here A+
m denotes the Moore-Penrose

pseudoinverse of Am. In contrast to the ordinary Gauß-Newton method, we
replace the Jacobian Fz(zm) by a perturbed matrix Am in order to get a
more efficient procedure. In particular, we determine Am from Fz(zm) in
such a way that we replace the block entries Fµ;ẋ,...,x(µ+1)(sij, x

m
ij , y

m
ij ) by ma-

trices of rank deficiency a (e. g., by ignoring the a smallest singular values).
This decouples the determination of ∆ym

ij = ym+1
ij − ym

ij for each i, j from
the other corrections and leaves a linear system, representing the collocation
discretization of a linear BVP, for the corrections concerning xm

π only. Thus,
we can use the techniques of [15] with solving first a number of local systems
and then a global system of a structure that is known from multiple shoot-
ing methods for ordinary differential equations [1]. Having then computed
the corrections for xm

π , it remains the solution of the decoupled underdeter-
mined linear systems for the ∆ym

ij . Taking the Moore-Penrose pseudoinverse
to select a solution realizes the Moore-Penrose pseudoinverse of the overall
system due to the decoupling. Since the applied perturbations tend to zero
when zm converges to a solution, we expect a superlinear convergence rate,
see [6]. Compare also with [14] where similar techniques are used in the
context of multiple shooting.

The Gauß-Newton-like procedure (4.4) has been implemented in MATLAB

[17] as a research code. We compute an initial solution profile z0 = (x0
ij , y

0
ij)

by solving the initial value problem corresponding to a given initial value
(x00, y00) at t = t with GENDA [12]. Iteration (4.4) is terminated as soon as
‖zm+1 − zm‖2 ≤ tol ‖zm‖2 using an appropriate tolerance tol = 10−8. All
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computations have been performed on a SUN SPARC Ultra60 workstation
with 360 MHz.

In the following, we present several examples which all have certain but
different structures in order to demonstrate the general applicability of the
new approach. Currently, except for the multiple shooting approach of [14],
there are no other general methods to compare with. Compare also Re-
mark 2.3. Clearly, exploiting the specific properties of a problem class can
be expected to lead to significant efficiency improvements.

We have not included comparisons with other existing codes for solving
differential-algebraic BVPs, since all of them require the problems to have
a certain structure whereas we here focus on a general procedure. For a
comparison with the code COLDAE of [3] in the linear case, see [15, 19]. The
observations made there also apply here.

Example 4.1 In order to illustrate the convergence orders of Theorem 3.8,
we consider the following semi-explicit problem, see [3], with known solution:

ẋ1 = (ε + x2 − p2(t))x4 + ṗ1(t),

ẋ2 = ṗ2(t),

ẋ3 = x4,

0 = (x1 − p1(t))(x4 − exp(t)).

Choosing the boundary condition

x1(0) = p1(0) + ε, x3(0) = 1, x2(1) = p2(1),

the exact solution of the BVP is given by

x∗(t) =
(

ε exp(t) + p1(t), p2(t), exp(t), exp(t)
)

.

In this case, the differentiation index is one and Hypothesis 2.1 is satisfied
with µ = 0, d = 3, a = 1. As parameters, we chose p1(t) = sin(4πt),
p2(t) = sin(t), ε = 1

2 , and the integration for computing an initial solution
profile was started with x00 = (−1, 0, 0, 2), ẋ00 = 0. In Table 1, the errors

erri(N) = max
0≤i≤N

‖x(ti) − xi‖2, errij(N) = max
0≤i≤N

max
1≤j≤k

‖x(sij) − xij‖2

are given, together with corresponding orders log2(erri(N/2))−log2(erri(N))
and log2(errij(N/2)) − log2(errij(N)). We clearly see that the convergence
results (3.34a) and (3.34b) hold for this example. The computing times have
been between 0.5 seconds (in the case k = 4,N = 5) and 7.4 seconds (in the
case k = 1, N = 200).
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Table 1: Errors and orders according to uniform meshes for Example 4.1

k N erri order errij order

1 50 0.265D-02 0.265D-02

100 0.662D-03 2.0 0.662D-03 2.0
200 0.166D-03 2.0 0.166D-03 2.0

2 20 0.348D-04 0.977D-04

40 0.226D-05 3.9 0.613D-05 4.0
80 0.141D-06 4.0 0.387D-06 4.0

3 10 0.196D-05 0.578D-04

20 0.294D-07 6.1 0.177D-05 5.0
40 0.478D-09 5.9 0.566D-07 5.0

4 5 0.108D-05 0.148D-03

10 0.352D-08 8.3 0.232D-05 6.0
20 0.132D-10 8.1 0.381D-07 5.9

5 5 0.482D-08 0.961D-05

10 0.391D-11 10.3 0.769D-07 7.1

Example 4.2 In [7], the model of a periodically driven electronic amplifier
is given. The equations with n = 5 for the unknowns (U1, . . . , U5) read

(UE(t) − U1)/R0 + C1(U̇2 − U̇1) = 0,

(UB − U2)/R2 − U2/R1 + C1(U̇1 − U̇2) − 0.01f(U2 − U3) = 0,

f(U2 − U3) − U3/R3 − C2U̇3 = 0,

(UB − U4)/R4 + C3(U̇5 − U̇4) − 0.99f(U2 − U3) = 0,

−U5/R5 + C3(U̇4 − U̇5) = 0,

with
UE(t) = 0.4 sin(200πt), UB = 6,
f(U) = 10−6(exp(U/0.026) − 1),
R0 = 1000, R1 = · · · = R5 = 9000,
C1 = 10−6, C2 = 2 · 10−6, C3 = 3 · 10−6.

This problem of differentiation index one is known to satisfy Hypothesis 2.1
with µ = 0, d = 3, and a = 2. If we ask for the periodic response of the
amplifier, we are led to the boundary conditions

Ul(0) = Ul(0.01), l = 2, 3, 5,

thus t = 0 and t = 0.01. We used the initial value

(x00, ẋ00) = (0, V1, V1, UB , 0, 0, 0, V2, 0, 0) ∈ Lµ,

21



where V1 = UB
R1

R1+R2
and V2 = − V1

R3C2
.

For different k (the number of collocation points within a subinterval)
and different meshes π, the presented collocation method successfully com-
puted a periodic solution. The convergence behavior for k = 5 and a mesh
with five uniform subintervals is given in Table 2. This computation took
10.6 seconds, about 8.0 seconds for solving the initial value problem and
about 2.3 seconds for the Gauß-Newton-like iteration.

Table 2: Convergence behavior for Example 4.2

m ‖zm+1 − zm‖2 m ‖zm+1 − zm‖2

0 0.212D+04 5 0.832D+01

1 0.280D+04 6 0.388D+00

2 0.153D+04 7 0.760D-03

3 0.325D+03 8 0.282D-08

4 0.531D+02

Example 4.3 A pendulum in two space dimensions is modeled by

ṗ1 = v1, v̇1 = 2p1λ,
ṗ2 = v2, v̇2 = 2p2λ − g,
p2
1 + p2

2 = 1

with the gravity constant g = 9.81. The unknowns are (p1, p2, v1, v2, λ).
In [16] this problem together with the boundary conditions

v2(0) = 0, p1(0.55) = 0 (4.5)

was used to test an implementation of a multiple shooting method for DAEs
with differentiation index of at most two. Since the above problem has
differentiation index three, it was necessary in [16] to replace the constraint
by its differentiated form

2p1ṗ1 + 2p2ṗ2 = 2p1v1 + 2p2v2 = 0

and to add a further boundary condition due to the introduced additional
dynamics. Here we can solve this problem in its original index three formu-
lation, where Hypothesis 2.1 is fulfilled with µ = 2, d = 2, a = 3. Instead of
(4.5), we also used the boundary conditions

v2(0) = v2(2.5) = 0, (4.6)
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thus seeking a periodic orbit. Observe that we must fix the phase of the
solution since the problem is autonomous.

Starting in both cases with the initial value

x00 = (1, 0.3, 0, 0,−1),
ẍ00 = (0,−g, 0, 0, 0),

ẋ00 = (0, 0, 0,−g, 0),

x
(3)
00 = (0, 0, 0, 0, 0),

using k = 5 collocation points per subinterval and a uniform mesh π with five
subintervals, we obtained in about 3 seconds solutions according to Table 3.

Table 3: Results for Example 4.3

Boundary condition (4.5)
m ‖zm+1 − zm‖2

0 0.287D+03

1 0.149D+03

2 0.816D+01

3 0.348D-01

4 0.161D-05

Boundary condition (4.6)
m ‖zm+1 − zm‖2

0 0.256D+04

1 0.136D+04

2 0.178D+03

3 0.407D+01

4 0.320D-02

5 0.104D-05

Example 4.4 In [18], the model of a (two-dimensional) truck is given. It
has the form of a standard multibody system

ṗ = v,
Mv̇ = f(p, v, u, u̇) − gp(p)T λ,
g(p) = 0,

where p are the (generalized) positions, v the corresponding velocities and λ
the forces introduced by the constraint g(p) = 0. In the truck model, p
and v have eleven components and λ is scalar. The differentiation index is
again three and Hypothesis 2.1 is fulfilled with strangeness µ = 2, d = 20,
and a = 3. The (scalar) function u models the road profile and is chosen
here to be

u(t) = τ sin(20πt).

Asking as in the linear case [19] for the periodic response of the system for
τ = 0.05, we require the boundary conditions

pl(0) = pl(0.1), l = 1, . . . , 9, 11,
vl(0) = vl(0.1), l = 1, . . . , 9, 11.
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Figure 1: Road profile u -·- and response driver seat — for Example 4.4

This problem suffers from an extremely bad scaling and high nonlinearity.
Therefore, we applied a (fixed) scaling to get reasonable condition numbers
and used classical homotopy according to

τ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}

to get the desired solution. The homotopy was started with the equilibrium
state for τ = 0. The course of the iteration procedure for k = 5 and a uniform
mesh with five subintervals can be found in Table 4. The computation took
61 seconds, with about 10.4 seconds for every homotopy step (i. e., one
Gauß-Newton-like iteration). Figure 1 shows the computed response of the
driver’s seat (i. e., p20) in comparison to the road profile u.

Table 4: Values ‖zm+1 − zm‖2 for the homotopy of Example 4.4

m τ = 0.01 τ = 0.02 τ = 0.03 τ = 0.04 τ = 0.05

0 0.102D+05 0.111D+05 0.114D+05 0.117D+05 0.119D+05

1 0.276D+04 0.801D+03 0.829D+03 0.920D+03 0.114D+04

2 0.303D+03 0.524D+01 0.924D+01 0.121D+02 0.122D+02

3 0.172D+01 0.190D-02 0.218D-02 0.194D-02 0.139D-02

4 0.754D-04 0.268D-08 0.751D-08 0.147D-07 0.193D-07
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Example 4.5 The so-called Lotka-Volterra system is the simplest model
for a predator/prey interaction and consists (in normalized form) of the two
differential equations

ẋ1 = x1(1 − x2), ẋ2 = −cx2(1 − x1)

with some constant c > 0. It is well-known that the quantity

H = c(x1 − log x1) + (x2 − log x2)

stays constant along every componentwise positive solution and that there-
fore every such solution is periodic, but the period T is not known. In order
to compute a periodic orbit for a given value of H, we can use the above
equation for H as algebraic constraint for the Lotka-Volterra system. But
then the system would be overdetermined. We therefore combine the two
differential equations such that the resulting relation defines a flow on the
manifold defined by the algebraic constraint. Observing that we must fix
the phase of the periodic orbit in order to fix a locally unique solution, we
obtain the boundary value problem

(1 − x1)ẋ2 − c(1 − x2)ẋ1 + cx2(1 − x1)
2 + cx1(1 − x2)

2 = 0,
c(x1 − log x1) + (x2 − log x2) − H = 0,
x1(0) = x1(T ), x1(0) = 1.

Note that now the derivatives ẋ1 and ẋ2 have solution dependent factors.
Transforming the problem finally to unit interval and using x3 = H and
x4 = T as further unknowns, the boundary value problem to solve reads

(1 − x1)ẋ2 − c(1 − x2)ẋ1 + cx2(1 − x1)
2x4 + cx1(1 − x2)

2x4 = 0,
c(x1 − log x1) + (x2 − log x2) − x3 = 0, ẋ3 = 0, ẋ4 = 0,
x1(0) = x1(1), x1(0) = 1, x3(0) = H.

It has differentiation index one problem and satisfies Hypothesis 2.1 with
µ = 0, d = 3, and a = 1. Starting at

(x00, ẋ00) = (1.0, 0.6, 2.1, 6.0, 3.2, 0, 0, 0)

for the choice c = 1, H = 2.2 and using k = 5 together with a mesh of
five uniform subintervals we obtained the solution with period T = 6.4943.
The computation took about 3.0 seconds (from which 1.1 seconds were for
the Gauß-Newton-like iteration), the convergence behavior is reported in
Table 5.
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Table 5: Convergence behavior for Example 4.5

m ‖zm+1 − zm‖2

0 0.207D+03

1 0.320D+02

2 0.498D+01

3 0.405D-01

4 0.177D-05

To summarize the numerical examples, we have demonstrated that the
presented collocation methods are able to solve differential-algebraic BVP
with different values of the index and different structures. Apart from [14],
there are no other numerical methods that can deal with such general prob-
lems. Moreover, looking at the convergence results in Tables 1–5 we recog-
nize the very good convergence properties of method (4.4), which cannot be
distinguished from quadratic convergence.

5 Conclusions

In this paper, we have developed symmetric collocation methods for the
solution of nonlinear differential-algebraic boundary value problems. No re-
strictions on index or structure are necessary. As in the linear case [15],
Gauß-type schemes for the differential part and Lobatto-type schemes (with
one more node) for the algebraic part are used. We have shown that the con-
vergence results known for ordinary differential equations also hold in the
case of differential-algebraic BVPs, including superconvergence. A Gauß-
Newton-type method for the numerical solution of the underdetermined col-
location systems has been implemented and used to demonstrate the appli-
cability for several challenging examples.
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structured nonlinear differential-algebraic equations of arbitrary index.
Technical Report 751-02, Institut für Mathematik, TU Berlin, D-10623
Berlin, FRG, 2002.
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A A generalized simplified Newton method

In this appendix, we consider the solution of a nonlinear system of equations

F (x) = 0 (A.1)

with F : D → R
n, D ⊆ R

n open and convex, by the iteration method

xm+1 = xm − F ′(x̂)−1F (xm) (A.2)

for given x̂, x0 ∈ D. For such iterations the following convergence result
holds, cp. [8, Ch. XVIII].
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Theorem A.1 Let F ∈ C1(D, Rn) and x̂, x0 ∈ D such that F ′(x̂) is invert-
ible. Furthermore, let constants α, β, γ be given such that

(a) ‖F ′(x̂)−1F (x0)‖ ≤ α,
(b) ‖F ′(x̂)−1‖ ≤ β,
(c) ‖F ′(x) − F ′(y)‖ ≤ γ‖x − y‖ for all x, y ∈ D, γ 6= 0,
(d) ‖x0 − x̂‖ < 1

βγ
,

(e) 2αβγ ≤ (1 + βγt̂)2 with t̂ = −‖x0 − x̂‖
(f) S(x0, ρ−) ⊆ D,

ρ± = 1
βγ

(

1 + βγt̂ ±
√

(1 + βγt̂)2 − 2αβγ

)

(A.3)

for some vector norm and the associated matrix norm. Then, (A.2) defines
a sequence {xm} of points in S(x0, ρ−) which converges to a point x∗ in
S(x0, ρ−) satisfying F (x∗) = 0. There is no other solution of (A.1) in

S(x0, ρ−) ∪ (S(x0, ρ+) ∩ D).

In particular, for ρ− < ρ+ the solution x∗ is locally unique.

Proof. A proof is given in [13].

Corollary A.2 If in addition to the assumptions of Theorem A.1

‖x0 − x̂‖ ≤ 1
2βγ

holds, then
‖x∗ − x0‖ ≤ 4α.

Proof. Theorem A.1 yields

‖x∗ − x0‖ ≤ ρ− =

=
2α

1 − βγ‖x0 − x̂‖ +
√

(1 − βγ‖x0 − x̂‖)2 − 2αβγ
≤

=
2α

1 − βγ‖x0 − x̂‖
≤ 4α.

Remark A.3 Theorem A.1 holds almost verbatim in the case of an infinite
dimensional Banach space problem. To avoid the argument in the proof
using integration, we can simply replace (A.3c) by the assumption

‖F (x) − F (y) − F ′(z)(x − y)‖ ≤ 1
2γ‖x − y‖

(

‖x − z‖ + ‖y − z‖
)

for all x, y, z ∈ D.
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B Proof of Lemma 3.5

Let x, y, z ∈ D, set g = (f1, f2, v) = L(x)−L(y)−DL[z](x−y), and introduce
the convex combination u(t; s) = y(t) + s(x(t) − y(t)) with s ∈ [0, 1]. For
the first component f1 we have

‖f1(t)‖∞ =

= ‖F̂1(t, x(t), ẋ(t)) − F̂1(t, y(t), ẏ(t)) −

−F̂1;x(t, z(t), ż(t))(x(t) − y(t)) − F̂1;ẋ(t, z(t), ż(t))(ẋ(t) − ẏ(t))‖∞ =

= ‖F̂1(t, u(t; s), u̇(t; s))
∣

∣

∣

s=1

s=0

−F̂1;x(t, z(t), ż(t))(x(t) − y(t)) − F̂1;ẋ(t, z(t), ż(t))(ẋ(t) − ẏ(t))‖∞ =

= ‖

∫ 1

0

[(

F̂1;x(t, u(t; s), u̇(t; s)) − F̂1;x(t, z(t), ż(t))
)

(x(t) − y(t)) +

+
(

F̂1;ẋ(t, u(t; s), u̇(t; s)) − F̂1;ẋ(t, z(t), ż(t))
)

(ẋ(t) − ẏ(t))
]

ds‖∞ ≤

≤

∫ 1

0

[(

γ1‖u(t; s) − z(t)‖∞ + γ2‖u̇(t; s) − ż(t)‖∞
)

‖x(t) − y(t)‖∞ +

+
(

γ3‖u(t; s) − z(t)‖∞ + γ4‖u̇(t; s) − ż(t)‖∞
)

‖ẋ(t) − ẏ(t)‖∞
]

ds ≤

≤ γ‖x − y‖X

∫ 1

0
‖u( · ; s) − z‖Xds

with all constants being independent of t, x, y, z and h. Analogously, we get
for the second component f2

‖f2(t)‖∞ = ‖F̂2(t, x(t)) − F̂2(t, y(t)) − F̂2;x(t, z(t))(x(t) − y(t))‖∞ =

= ‖F̂2(t, u(t; s))
∣

∣

∣

s=1

s=0
− F̂2;x(t, z(t))(x(t) − y(t))‖∞ =

= ‖

∫ 1

0

(

F̂2;x(t, u(t; s)) − F̂2;x(t, z(t))
)

(x(t) − y(t))ds‖∞ ≤

≤ γ‖x − y‖X

∫ 1

0
‖u( · ; s) − z‖Xds,

possibly increasing γ. Furthermore,

‖ḟ2(t)‖∞ = ‖

∫ 1

0

[(

F̂2;tx(t, u(t; s)) + F̂2;xx(t, u(t; s))(u̇(t; s)) −

−F̂2;tx(t, z(t)) − F̂2;xx(t, z(t))(ż(t))
)

(x(t) − y(t)) +
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+
(

F̂2;x(t, u(t; s)) − F̂2;x(t, z(t))
)

(ẋ(t) − ẏ(t))
]

ds‖∞ ≤

≤

∫ 1

0

[(

γ1‖u(t; s) − z(t)‖∞ + γ2‖u(t; s) − z(t)‖∞ +

+γ3‖u̇(t; s) − ż(t)‖∞
)

‖x(t) − y(t)‖∞ +

+γ4‖u(t; s) − z(t)‖∞‖ẋ(t) − ẏ(t)‖∞
]

ds ≤

≤ γ‖x − y‖X

∫ 1

0
‖u( · ; s) − z‖Xds,

again possibly increasing γ. Finally, for v we get

‖v‖∞ =

= ‖r(x(t), x(t)) − r(y(t), y(t)) −

−rxa(z(t), z(t))(x(t) − y(t)) − rxb
(z(t), z(t))(x(t) − y(t))‖∞ =

= ‖r(u(t; s), u(t; s))
∣

∣

∣

s=1

s=0
−

−rxa(z(t), z(t))(x(t) − y(t)) − rxb
(z(t), z(t))(x(t) − y(t))‖∞ =

= ‖

∫ 1

0

[(

rxa(u(t; s), u(t; s)) − rxa(z(t), z(t))
)

(x(t) − y(t)) +

+
(

rxb
(u(t; s), u(t; s)) − rxb

(z(t), z(t))
)

(x(t) − y(t))
]

ds‖∞ ≤

≤

∫ 1

0

[(

γ1‖u(t; s) − z(t)‖∞ + γ2‖u(t; s) − z(t)‖∞
)

‖x(t) − y(t)‖∞ +

+
(

γ3‖u(t; s) − z(t)‖∞ + γ4‖u(t; s) − z(t)‖∞
)

‖x(t) − y(t)‖∞
]

ds ≤

≤ γ‖x − y‖X

∫ 1

0
‖u( · ; s) − z‖Xds,

and thus we have (again possibly increasing γ)

‖g‖Y ≤ γ‖x − y‖X

∫ 1

0
‖y + s(x − y) − z‖Xds =

= γ‖x − y‖X

∫ 1

0
‖s(x − z) + (1 − s)(y − z)‖Xds ≤

≤ 1
2γ‖x − y‖X

(

‖x − z‖X + ‖y − z‖X

)

.
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