Skip to main content
Log in

Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

The numerical solution of elliptic boundary value problems with finite element methods requires the approximation of given Dirichlet data u D by functions u D,h in the trace space of a finite element space on Γ D . In this paper, quantitative a priori and a posteriori estimates are presented for two choices of u D,h , namely the nodal interpolation and the orthogonal projection in L2 D ) onto the trace space. Two corresponding extension operators allow for an estimate of the boundary data approximation in global H1 and L2 a priori and a posteriori error estimates. The results imply that the orthogonal projection leads to better estimates in the sense that the influence of the approximation error on the estimates is of higher order than for the nodal interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. John Wiley & Sons, 2000

  2. Babuška, I., Strouboulis, T.: The finite element method and its reliability. Oxford University Press, 2001

  3. Bartels, S., A posteriori error analysis of time-dependent Ginzurg-Landau type equations. Preprint, 2004, Electronic version available at http://www.math.umd.edu/sba/publications/sba_gl.pdf

  4. Bartels, S., Carstensen, C.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: higher order FEM. Math. Comp. 71, 971–994 (2002)

    Google Scholar 

  5. Bartels, S., Carstensen, C.: Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math. (accepted) (2004). Preprint available at http://www.numerik.uni-kiel.de/reports/2000/01-2.html

  6. Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the L2-projection in H1(Ω). Math. Comp. 71, 147–156 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carstensen, C.: Quasi interpolation and a posteriori error analysis in finite element method. M2AN 33, 1187–1202 (1999)

    Google Scholar 

  8. Carstensen, C.: Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée Criterion for H1 stability of the L2 projection onto finite element spaces. Math. Comp. 71, 157–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carstensen, C.: An adaptive mesh refining algorithm allowing for an H1 stable L2 projection onto Courant finite element spaces. Constr. Appr. 4, 549–564 (2004)

    MathSciNet  Google Scholar 

  10. Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids Part I: low order conforming, nonconforming, and mixed FEM. Math. Comp. 71, 945–969 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carstensen, C., Bartels, S., Jansche, S.: A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92, 233–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carstensen, C., Verfürth, R.: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36, 1571–1587 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam, 1978

  14. Crouzeix, M., Thomée, V.: The stability in Lp and W1,p of the L2-projection onto finite element function spaces. Math. Comp. 48, 521–532 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Dörfler, W., Rumpf, M.: An Adaptive Strategy for Elliptic Problems Including A Posteriori Controlled Boundary Approximation. Math. Comp. 67, 1361–1382 (1998)

    Article  MathSciNet  Google Scholar 

  16. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica 1995, pp. 105–158

  17. Scott, R.: Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal. 12, 404–427 (1975)

    MATH  Google Scholar 

  18. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Carstensen.

Additional information

Mathematics Subject Classification (1991): 65N30, 65R20, 73C50

This work was initiated while C. Carstensen was visiting the Max Planck Institute for Mathematics in the Sciences, Leipzig. S. Bartels acknowledges support by the German Research Foundation (DFG) within the Graduiertenkolleg “Effiziente Algorithmen und Mehrskalenmethoden” and the priority program “Analysis, Modeling, and Simulation of Multiscale Problems”. G. Dolzmann gratefully acknowledges partial support by the Max Planck Society and by the NSF through grant DMS0104118.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartels, S., Carstensen, C. & Dolzmann, G. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. 99, 1–24 (2004). https://doi.org/10.1007/s00211-004-0548-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0548-3

Keywords

Navigation