Skip to main content
Log in

Rounding error analysis of the classical Gram-Schmidt orthogonalization process

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper provides two results on the numerical behavior of the classical Gram-Schmidt algorithm. The first result states that, provided the normal equations associated with the initial vectors are numerically nonsingular, the loss of orthogonality of the vectors computed by the classical Gram-Schmidt algorithm depends quadratically on the condition number of the initial vectors. The second result states that, provided the initial set of vectors has numerical full rank, two iterations of the classical Gram-Schmidt algorithm are enough for ensuring the orthogonality of the computed vectors to be close to the unit roundoff level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelmalek, N.: Round off error analysis for Gram-Schmidt method and solution of linear least squares problems. BIT 11, 345–368 (1971)

    Google Scholar 

  2. Björck, Å.: Solving linear least squares problems by Gram-Schmidt orthogonalization. BIT 7, 1–21 (1967)

    Google Scholar 

  3. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA, 1996

  4. Björck, Å., Paige, C.: Loss and Recapture of Orthogonality in the Modified Gram-Schmidt Algorithm. SIAM J. Matrix Anal. Appl 13(1), 176–190 (1992)

    Google Scholar 

  5. Daniel, J.W., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and Stable Algorithms for Updating the Gram-Schmidt QR Factorization. Math. Comp 30, 772–795 (1976)

    Google Scholar 

  6. Dax, A.: A modified Gram-Schmidt algorithm with iterative orthogonalization and pivoting. Linear Alg. and its Appl 310, 25–42 (2000)

    Google Scholar 

  7. Frayssé, V., Giraud, L., Kharraz-Aroussi, H.: On the influence of the orthogonalization scheme on the parallel performance of GMRES. EUROPAR’98 Parallel Processing, Springer 1470, 751–762 (1998)

    Google Scholar 

  8. Frank, J., Vuik, C.: Parallel implementation of a multiblock method with approximate subdomain solution. Appl. Num. Math 30, 403–423 (1999)

    Google Scholar 

  9. Giraud, L., Langou, J.: When modified Gram-Schmidt generates a well-conditioned set of vectors. IMA Journal of Numerical Analysis, 22(4), 521–528

    Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd ed. John Hopkins University Press, Baltimore, MD, 1996

  11. Greenbaum, A., Rozložník, M., Strakoš, Z.: Numerical behaviour of the modified Gram-Schmidt GMRES implementation. BIT 37(3), 706–719 (1997)

    Google Scholar 

  12. Higham, N.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, 2nd ed., 2002

  13. Hoffmann, W.: Iterative Algorithms for Gram-Schmidt Orthogonalization. Computing 41, 335–348 (1989)

    Google Scholar 

  14. Jalby, W., Philippe, B.: Stability analysis and improvement of the block Gram-Schmidt algorithm. SIAM J. Sci. Stat. Comput 12, 1058–1073 (1991)

    Google Scholar 

  15. Kiełbasiński, A.: Numerical analysis of the Gram-Schmidt orthogonalization algorithm (Analiza numeryczna algorytmu ortogonalizacji Grama-Schmidta). (In Polish). Roczniki Polskiego Towarzystwa Matematycznego, Seria III: Matematyka Stosowana II, 15–35 (1974)

  16. Kiełbasiński, A., Schwetlick, H.: Numerische lineare Algebra. Eine computerorientierte Einführung. (In German). Mathematik für Naturwissenschaft und Technik 18. Deutscher Verlag der Wissenschaften, Berlin, 1988

  17. Kiełbasiński, A., Schwetlick, H.: Numeryczna algebra liniowa. (In Polish). Second edition. Wydawnictwo Naukowo-Techniczne, Warszawa, 1994

  18. Lehoucq, R.B., Salinger, A.G.: Large-Scale Eigenvalue Calculations for Stability Analysis of Steady Flows on Massively Parallel Computers. Int. J. Numerical Methods in Fluids 36, 309–327 (2001)

    Google Scholar 

  19. Parlett, B.N.: The Symmetric Eigenvalue Problem. Englewood Cliffs, N.J., Prentice-Hall, 1980

  20. Rice, J.R.: Experiments on Gram-Schmidt Orthogonalization. Math. Comp. 20, 325–328 (1966)

    Google Scholar 

  21. Rutishauser, H.: Description of Algol 60. Handbook for Automatic Computation, Vol. 1a. Springer Verlag, Berlin, 1967

  22. Schmidt, E.: Über die Auflösung linearer Gleichungen mit unendlich vielen Unbekannten. (In German.) Rend. Circ. Mat. Palermo. Ser. 1, 25, 53–77 (1908)

    Google Scholar 

  23. Stewart, G.W.: Matrix Algorithms. Volume I: Basic Decompositions. SIAM, Philadelphia, PA, 1998

  24. Wilkinson, J.H.: Modern error analysis. SIAM rev., 13(4), 548–569 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Giraud.

Additional information

The work of the second author was supported in part by the US Department of Energy, Office of Basic Energy Science under LAB03-17 initiative, DOE contract No. DE-FG02-03ER25584, and in part by the TeraScale Optimal PDE Simulations (TOPS) SciDAC, DoE Contract No. DE-FC02-01ER25480

The work of the third author was supported by the project 1ET400300415 within the National Program of Research ‘‘Information Society’’ and by the GA AS CR under grant No. IAA1030405.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraud, L., Langou, J., Rozložník, M. et al. Rounding error analysis of the classical Gram-Schmidt orthogonalization process. Numer. Math. 101, 87–100 (2005). https://doi.org/10.1007/s00211-005-0615-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0615-4

Mathematics Subject Classification (2000)

Navigation