Skip to main content
Log in

Higher Order Mortar Finite Element Methods in 3D with Dual Lagrange Multiplier Bases

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Mortar methods with dual Lagrange multiplier bases provide a flexible, efficient and optimal way to couple different discretization schemes or nonmatching triangulations. Here, we generalize the concept of dual Lagrange multiplier bases by relaxing the condition that the trace space of the approximation space at the slave side with zero boundary condition on the interface and the Lagrange multiplier space have the same dimension. We provide a new theoretical framework within this relaxed setting, which opens a new and simpler way to construct dual Lagrange multiplier bases for higher order finite element spaces. As examples, we consider quadratic and cubic tetrahedral elements and quadratic serendipity hexahedral elements. Numerical results illustrate the performance of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuß, N., Rentz–Reichert, H., Wieners, C.: UG – a flexible software toolbox for solving partial differential equations. Computing and Visualization in Science 1, 27–40 (1997)

    Article  Google Scholar 

  2. Ben Belgacem, F.: The mortar finite element method with Lagrange multipliers. Numer. Math. 84, 173–197 (1999)

    Article  Google Scholar 

  3. Ben Belgacem, F., Maday, Y.: The mortar element method for three dimensional finite elements. M2AN 31, 289–302 (1997)

    Google Scholar 

  4. Ben Belgacem, F., Seshaiyer, P., Suri, M.: Optimal convergence rates of hp mortar finite element methods for second-order elliptic problems. M2AN Math. Model. Numer. Anal. 34(3), 591–608 (2000)

    Google Scholar 

  5. Bernardi, C., Debit, N., Maday, Y.: Coupling finite element and spectral methods: First results. Math. Comp. 54, 21–39 (1990)

    Google Scholar 

  6. Bernardi, C., Maday, Y., Patera, A.T.: Domain decomposition by the mortar element method. In: H. Kaper et al., (ed) Asymptotic and numerical methods for partial differential equations with critical parameters, Reidel, Dordrecht, 1993 pp 269–286

  7. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In H. Brezzi et al., (ed) Nonlinear partial differential equations and their applications, Paris, 1994 pp 13–51

  8. Braess, D., Dahmen, W.: Stability estimates of the mortar finite element method for 3–dimensional problems. East–West J. Numer. Math. 6, 249–264 (1998)

    Google Scholar 

  9. Braess, D., Dahmen, W., Wieners, C.: A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37, 48–69 (1999)

    Article  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer–Verlag, New York, 1991

  11. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)

    Google Scholar 

  12. Dahmen, W., Faermann, B., Graham, I.G., Hackbusch, W., Sauter, S.A.: Inverse inequalities on non-quasiuniform meshes and application to the mortar element method. Math. Comp. 73, 1107–1138 (2004)

    Article  Google Scholar 

  13. DeVore, R.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Google Scholar 

  14. Gopalakrishnan, J., Pasciak, J.: Multigrid for the mortar finite element method. SIAM J. Numer. Anal. 37, 1029–1052 (2000)

    Article  Google Scholar 

  15. Grisvard, P.: Elliptic problems in nonsmooth domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985

  16. Huang, J., Zou, J.: A mortar element method for elliptic problems with discontinuous coefficients. IMA J. Numer. Anal. 22(4), 549–576 (2002)

    Article  Google Scholar 

  17. Kim, C., Lazarov, R.D., Pasciak, J.E., Vassilevski, P.S.: Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39, 519–538 (2001)

    Article  Google Scholar 

  18. Lamichhane, B.P., Wohlmuth, B.I.: Higher order dual Lagrange multiplier spaces for mortar finite element discretizations. CALCOLO 39, 219–237 (2002)

    Article  Google Scholar 

  19. Lamichhane, B.P., Wohlmuth, B.I.: A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D. M2AN 38, 73–92 (2004)

    Google Scholar 

  20. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I Springer-Verlag, New York, 1972 Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181

  21. Oswald, P.: Multilevel finite element approximation: Theory and applications. B.G. Teubner, Stuttgart, 1994

  22. Oswald, P., Wohlmuth, B.I.: On polynomial reproduction of dual FE bases. In: N. Debit, M. Garbey, R. Hoppe, J. Pèriaux, D. Keyes, and Y. Kuznetsov (eds.) Thirteenth International Conference on Domain Decomposition Methods 2001 pp 85–96

  23. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)

    Google Scholar 

  24. Seshaiyer, P., Suri, M.: Uniform hp convergence results for the mortar finite element method. Math. Comp. 69(230), 521–546 (2000)

    Article  Google Scholar 

  25. Triebel, H.: Interpolation theory, function spaces, differential operators, Volume 18 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 1978

  26. Wieners, C., Wohlmuth, B.I.: Duality estimates and multigrid analysis for saddle point problems arising from mortar discretizations. SISC 24, 2163–2184 (2003)

    Google Scholar 

  27. Wohlmuth, B.I.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012 (2000)

    Article  Google Scholar 

  28. Wohlmuth, B.I.: Discretization Methods and Iterative Solvers Based on Domain Decomposition, Volume 17 of LNCS. Springer Heidelberg, 2001

  29. Wohlmuth, B.I.: A comparison of dual Lagrange multiplier spaces for mortar finite element discretizations. M2AN 36, 995–1012 (2002)

    Google Scholar 

  30. Wohlmuth, B.I., Krause, R.H.: Multigrid methods based on the unconstrained product space arising from mortar finite element discretizations. SIAM J. Numer. Anal. 39, 192–213 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Lamichhane.

Additional information

This work was supported in part by the Deutsche Forschungsgemeinschaft, SFB 404, C12, the Netherlands Organization for Scientific Research and by the European Community's Human Potential Programme under contract HPRN-CT-2002-00286.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamichhane, B., Stevenson, R. & Wohlmuth, B. Higher Order Mortar Finite Element Methods in 3D with Dual Lagrange Multiplier Bases. Numer. Math. 102, 93–121 (2005). https://doi.org/10.1007/s00211-005-0636-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0636-z

Mathematics Subject Classification (2000)

Navigation