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Abstract: We discuss the derivation of order conditions for the discretization of (uncon-
strained) optimal control problems, when the scheme for the state equation is of Runge-
Kutta type. This problem appears to be essentially the one of checking order conditions
for symplectic partitioned Runge-Kutta schemes. We show that the the computations using
bi-coloured trees are naturally expressed in this case in terms of oriented free tree. This
gives a way to compute them by an appropriate computer program.

Our software is able to compute conditions up to order 7 (we display them up to order
6). The results are in accordance with those of Hager (where they were computed for order
up to 4) as well as those of Murua where the number of conditions up to order 7 is stated.
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Calcul des conditions d’ordre de schémas de
Runge-Kutta symplectiques partitionnés avec application
4 la commande optimale

Résumé : L’article traite le calcul des conditions d’ordre pour la discrétisation de problémes
de commande optimale sans contraintes, lorsque le schéma est de type Runge-Kutta. Ce
probléme se réduit a celui de la vérification de conditions d’ordre de méthodes de Runge-
Kutta symplectiques partitionnées. Nous montrons que le calcul basé sur les arbres bicolores
avec racine s’exprime de maniére naturelle en utilisant des arbres libres orientés. Ceci permet
d’exprimer ces conditions par un programme.

Notre code calcule les conditions jusqu’a l’ordre 7 (ils sont présentés jusqu’a l'ordre 6).
Les résultats sont en accord avec ceux de Hager (qui a calculé les conditions jusqu’a 'ordre
4) et Murua (qui a dénombré ces conditions jusqu’a 'ordre 7).

Mots-clés : Commande optimale, systémes hamiltoniens, schémas de Runge-Kutta par-
titionnés, schémas symplectiques, conditions d’ordre, P-séries, H-arbres, arbres orientés.
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1 Introduction

The motivation of this work comes from an analysis by Hager [7] of order conditions for
optimal control problems (of an ordinary differential equation). The idea is to discretize the
state equation by a Runge-Kutta scheme, with a different value of control associated with
each “inner state”. Hager observes that the resulting optimality system, after some change
of variable, is a partitioned Runge-Kutta scheme. He computes then (by hand, i.e., without
computer code) the order conditions for order up to 4. See also the results of [5] and [6] on
constrained optimal control problems (a first order state constrained problem, discretized
by Euler’s scheme, and a control constrained problem with a Runge-Kutta discretization).

There are essentially two hypotheses in the analysis of [7], one on the original problem and
the other is a restriction on the scheme. One has to assume that the Hamiltonian is strongly
convex w.r.t. the control, or more generally that the second derivative of Hamiltonian
w.r.t. the control is invertible. This allows to eliminate the control thanks to the implicit
theorem, so that we have an equivalent scheme for the reduced (state, adjoint state) system.
The second hypothesis is that none of the coefficients b;’s (of the particular Runge-Kutta
scheme) is zero.

The main result of Hager [7] is that, if the original Runge-Kutta scheme is of (global)
order p (i.e., when applied to an uncontrolled differential equation) then the resulting scheme
has order ¢ < p, with equality if p < 2 but strict inequality in some cases whenever p > 3.
In addition, ¢ = p if the scheme is explicit of order at most 4.

For order greater than four, one cannot do computations by hand. It is then useful to
rely on the theory of order conditions for partitioned Runge-Kutta scheme. This theory,
based on bicolour rooted trees with which are associated certain numbers, is an extension
of the original work by Butcher for (non partitioned) Runge-Kutta schemes, see Butcher [4,
p. 88].

It appears that the class of partitioned Runge-Kutta schemes coming from the discretiza-
tion of optimal control problems are in fact partitioned symplectic Runge-Kutta schemes,
characterized by relation (4) below. So the question boils down to the one of expressing or-
der conditions for this class. The main result of this paper is that we can obtain the desired
expressions using a “calculus” on oriented free trees. To be specific, with each oriented free
tree are associated some weights, and the main operation is to “split” any rooted tree into a
sum (with coefficients 1) of such oriented free trees.

The paper is organized as follows. In the next section we detail the discretization of
optimal control problems by Runge-Kutta schemes, and show the relation with partitioned
symplectic Runge-Kutta schemes. satisfying (4). Then in section 3 we review the theory of
order conditions for partitioned Runge-Kutta schemes. Section 4 introduces oriented free
trees, and shows how the order conditions can be expressed in terms of the latter. Finally
section § discusses the numerical implementation, and displays the results for order up to 6
and the number of conditions for order up to 7.

RR n° 5398



4 J. Frédéric BONNANS , Julien LAURENT-VARIN

2 Discretization of unconstrained optimal control prob-
lems

Let f and ® be C functions IR™ x IR™ — IR"™ and cR"™ — IR, respectively. Consider the
following unconstrained optimal control problem:

Min ®(y(T));
y(t) = flu(t),y(t)), tel[0,T]; (P)
y(0) = 4°.

We restrict the analysis to continuous control functions. Denote by H(u,y,p) :=p - f(u,y)
the pseudo-Hamiltonian of the problem. The first order necessary optimality conditions of
this problem may be written in the following form:

i = Fal).u),
p(t()) z ZyEU(t (t),p((t)), t€[07T]7 (00)

We say that (@, 7, p) is an extremal if it satisfies (OC) (@ being a continuous function). Let
(@,y,p) be an extremal. If

u— Hyy(u,y,p) is invertible along the trajectory, (1)

then by the implicit functions theorem, in a small L°>° neighborhood of this trajectory, we
have that H, (u(t),y(t),p(t)) = 0 iff u = ¢(y(t),p(t)), where ¢ is a C>° mapping. Define
the true Hamiltonian as H(y,p) := H(d(y,p),y,p). Using Hu((y(t),p(t)), y(t),p(t)) = 0,

obtain
Hy(y,p) = Hy(o(y,p),y,0);  Hp(y,p) = Hp(é(y,p),y,p). (2)

Consequently, under hypothesis (1), (OC) is locally equivalent to the reduced Hamiltonian
system
g(t) = Mp(d(y,p),y.p), t€0,T],
—].?(t) = Hy(¢(yap)7yup)7 te [OvT}v (3)
p(T) = '(y(T)), y(0)=2y"

We now turn to the discussion of the discretization of the optimal control problem (P).
The Runge-Kutta discretization considered in [7] is

Min ®(yn);
Yk1 = Uk + R iy bif (Wki, Yni),
; DP
Yei = Ykt he Do aij f (kg Yej), (DP)
_ 0
yO - y Y

forallk =0to N —1and¢ =1 tos. Here hy > 0 is the site of the kth time step, and
(a,b) is the set of Runge-Kutta coefficients. Let us underline the choice of using different

INRIA
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values of controls uy; associated with inner states yy;; this contrasts with other approaches
in which the discretization of controls is coarser than the one of the state, i.e., for control is
taken constant, or only affine on each time step (e.g. [1, 2, 3]).

We may rewrite (DP;) under the equivalent form

Min ®(yn);
0= hg Z biKri + Yk — Yr+1,
=1 . (DF)
0= fuki, yr + hi 3251 aijKij) — Kk,
0=19"— .

In the expression below we contract yi + hy Z§:1 ai; Ky; into yi;. The Lagrangian function
associated with (DPy) is:

N-1 s s
c1>(yN)—i-Z: {pk+1 : <hk ZbiKki + Yk — Z/k+1> + kai (f(ukis Yri) — Kki)}+p0'(y0—y0)-
k=0 =1 =1

Here py1 1, &ri, and p° are the Lagrange multipliers associated with the constraints of (D P).
Variables p; will be interpreted as the discretization of co-state of continuous formulation.
Setting to zero the derivative of this Lagrangian function w.r.t. the primal variables yy, yo,
ypfork=1to N — 1, Ky; and uy; for k=0...N —1, i=1...s, we obtain

v = P'(yn),
p1 = povs
Pk —Pk+1 = 21':1 fy(UM,ym)Tfm,
0 = hbiprrr +he Y ajify(urg, yni) i — Skis
j=1
0 = fulugisyr;) &pis E=0...N—1, i=1...s.

Using now the hypothesis that b; # 0, set pr; := &ki/(hgb;) for all K =0 to N — 1, and
i = 1 to s. Eliminating &; from the above relations, we obtain the equivalent optimality
conditions

Yktt = Ykt 3y bif (ukis i), Yei = Yk e 5o aij f (ukg, ykj),
Pre1 = Pk —he Doy biHy (ki ki ki), Pri = i — Tl D25 GigHy (Wi, ykgs Prj),s
0 = Hyu(ukisYki> ki), v = y°, oy = ¥(yn),
(DOC)
where coefficients b and G are defined by the following relations:
Z)ilzbi, &ij::bj——jaji, fora,llz':l,...,s andj:l,...,s. (4)

b;
If the algebraic constraints H, (uk;, Yri, Pri) = 0 are locally equivalent to ug; = ¢(yki, Pri),
then (DOC) is equivalent to the same partitioned Runge-Kutta scheme applied to the re-

duced system (3). This approach based on formulation (DP,) is slightly simpler, but equiv-
alent to the one of Hager [7].

RR n° 5398



6 J. Frédéric BONNANS , Julien LAURENT-VARIN

Tt is said that a partitioned Runge-Kutta scheme (or more generally any one step scheme)
is symplectic of the corresponding flow is symplectic. It is known that partitioned Runge-
Kutta schemes satisfying (4) are symplectic, see [10, Theorem 4.6]. We obtain that the
scheme obtained by discretization of problem (P) is symplectic. In particular the following
diagram commutes, when we use the above discretization:

discretization
(P) —————— (DP)
optimality optimality (D)
conditions conditions

(00) discretization (DOC)

For a detailed presentation of partitioned Runge-Kutta and symplectic methods we refer
to the books [8, 9].

3 Order conditions for partitioned Runge-Kutta schemes

A Dbasic tool in the study of order conditions for Runge-Kutta schemes is the theory of
B-series and associated calculus on rooted trees, due to Butcher (see [4]). For partitioned
Runge-Kutta schemes an extension of this theory is the one of expansion in P-series, and the
associated calculus on bicoloured rooted trees, see [8]. The latter allows to state the order
conditions in terms of coefficients a, b, &, and b, of the following type: certain polynomials
(which are in fact sum of monomials with unit coefficients) in these variables have to be equal
to certain fractional numbers. The substitution of a, and b (using (4)) would give complicated
expressions, since instead of each monomial we would have a sum of rational fractions. We
will show that among all these terms it is sufficient to express a condition on a “principal
term” since the other terms of the sum are already determined by previous conditions. This
allows a tremendous simplification that permits us to display these conditions up to order
6, in terms of a and b alone.

In order to fix notation we will need some definitions. A graph G is a pair (V, E) where
V had a finite cardinal and F C P(V). Elements of V (resp. F) are called vertices (resp.
edges). Here P(V) denotes is the set of subset of V. The set of graph will be denote G. An
oriented graph G is a pair (V, E) where V is as before and and £ C V x V; elements of E
are called oriented edges. The set of oriented graph will be denote G.

Example. V ={a,b,c,d} and E = {(a,b), (¢,a), (d,b), (a,d)}
c d

A path of a graph is a finite sequence of vertices (at least two) such that there exists
an edge between two successive vertices. A graph is connected if any pair of vertices are

INRIA



Order conditions for symplectic partitioned Runge-Kutta schemes 7

member of at least one path. A circuit is a path whose first and last elements coincide. A
tree G is a connected graph without circuits. The set of trees will be denote 7. A rooted
tree ¢ is a pair of a tree and of one of its vertices, called the root, and denoted r(t). The
leaves are the vertices with only one adjacent edge, other than the root. We may identify a
rooted tree with an oriented graph, where all edges point in direction of leaves.

The set of rooted tree will be denote 7*. We sometimes speak of free trees, as opposed
to rooted trees. We define in a similar manner oriented trees, also called H-trees in [12].
The set of oriented free tree is denoted 7 .

Bicoloured graphs are graphs together with a mapping that to each vertex v associates
a colour ¢(v), of value B or W (black and white). The set of bi-coloured oriented graphs
(resp. bi-coloured rooted trees) will be denote BG (resp. BT™).

We note Vi = ¢ 1 ({B}) (resp. Viw = ¢ 1({W})) the set of black (resp. white) vertices
and Ep (resp. Ew) the set of edges ending on black (resp. white) vertice.

For a given rooted tree, whose vertices are associated with letters i, j, ... it is convenient
to denote

bi, = b;, if vertex k is white, b;, otherwise. )
Gini, = ai; if vertex ¢ is white, a;; otherwise.
Here i), associates with each vertex k € {1,...,#t} a variable i), (varying from 1 to s in the

subsequent expressions).
With each rooted tree ¢ is associated a value 7(¢) in an inductive way: y(®) =1, and

Y(t) = #t x y(t1) X -+ X y(tm), (6)

where by t1, ..., t, we denote the branches of ¢ (the connected graphs obtained by removing
the root from ¢, viewed as rooted trees, the root being the vertex whose one adjacent edge
has been removed).

Next, we need to recall the definition of the elementary weight of a tree ¢, where t is a
bicoloured rooted graph, for given Runge-Kutta coefficients a and b:

P(t) = Z bii (). (7)

The above functions ¢;(t) are themself defined in an inductive way, by ¢;(®) = ¢;(°) =1

and
¢it) = iltr) x - X Piltm), ®)
Vilte) = 22521 Qiju D
We have the following result (see [8, Thm II1.2.5]):
Theorem 1. A partitioned Runge-Kutta scheme has (global) order q iff

o(t) = forallt € BT*, #t<gq. (9)

1
Y(t)’
Substituting the expressions of G and b in (4) in the formula of ¢(¢) would give complicated

expressions. We show in the next section how to state equivalent, but simpler conditions.

RR n° 5398



8 J. Frédéric BONNANS , Julien LAURENT-VARIN

4 Calculus on oriented free trees

In this section we choose as convention that the set of vertices V' is of the form : {1,...,#V}
we do not lose generality. Then we start by stating alternative expressions of the elementary
weight ¢(¢), where ¢ is a rooted bicoloured tree, defined in (9), for a general partitioned
scheme. Taking into account the definition of functions ;(tx), obtain the more explicit

expression
S S
(t) = Z bi, Z H Qiyig - (10)
=1 ig,ige=1(k0)EE
Here again i) associates with each vertex k € {1,...,#t} (vertex 1 is the root) a variable

ir (varying from 1 to s). Formula (10) may be written as

-S S IIh I % )

vEV iy=1kEV  (kl)cE

Indeed, all b;, in the above expression cancel except b;,, so that (10) and (11) coincide.
Observe, however, that the above formula makes sense for (non necessarily connected) bi-
coloured oriented graphs. Any such graph ¢ is a finite union of connected graphs with empty
intersection of vertices, called connected components of ¢, and denoted {t?,q € @} (not to
be confused with branches of a rooted tree, denoted ;).

Lemma 2. The elementary weight of a bi-coloured oriented graph t = (V, E,c), with con-
nected components {t?,q € Q}, is the product of the elementary weights of its connected
components, i.e.,

t) =[] o). (12)

q€Q
Proof. We have that

o(t) =

<M

<.

“‘IZI
0‘1

H a“““
k,0)e

7/[

=

o=

- . 11 5
i ke, k,0)e

1(

'

<
m
<
=
e

Il
-
Q
m
O

- > Mae T %))
keV, b

€ vEV, ipy=1 (z,y)€E, e

Q
O

where the last equality uses the identity (valid for arbitrary families of sets I, and functions
Ay)

I D4 | => > (T] 4 |- (13)

qeQ \i€l, reQicl, \qeQ

INRIA
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The conclusion follows. O

Given an oriented graph t = (V, E), and F C E, the set of arcs in opposite direction to
those of F' is denoted as

ET :={(z,y) €V xV; (y,2) € E}. (14)

Theorem 3. The elementary weight of a bi-coloured oriented graph t = (V, E,¢), when (4)
holds, satisfies A
o)=Y (~DFFG(V, Ew U E). (15)

EpeP(Ep)

Proof. Substituting the expressions of @ and b in (4), we may write elementary weights as

follows: .
o= S TIwe I %= T (1-%=). (16

vEV i,=1keV  (kO)EEw “ (k()EEs K

Expanding the last term, get

o= > U3 TIe [T 5 IT 5% an

EpcP(Ep) VeV i,=1keV  (k,0OEEw ' (kt)cEp
The conclusion follows. O

Our procedure computes order conditions in a recursive way. When dealing with order p,
all conditions of order smaller than p have already been obtained. We claim that elementary
weights of all terms in the sum of (15) have already been computed, except (perhaps) for
the one in which Fp = Ep.

Indeed, for an arcin Ep \EB then there is no contribution from this arc: we can interpret
this as a deletion of the arc, whereas for an arc in Fp, we obtain the usual term (for a non
partitioned Runge-Kutta scheme) except that we have a;,;, instead of a;, ;,, which would be
the usual term if the direction of arc had been changed, and an associated minus sign.

Now whenever an arc is deleted, it follows from lemma 2 that the term is a product of
elementary weights for trees of smaller size. Since black nodes have all possible locations,
when conditions of order less than p were computed, the elementary weights of all trees of
weight at most p — 1 have been computed.

The idea now is to focus on this graph interpretation, and compute order conditions.
With theorem 15 we can associate to a bi-coloured tree a set of oriented graph for which
only one is connected. This means that we can obtain order conditions for each graph. Let
us now take a tutorial sample to show how the method works.

RR n° 5398
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Bi-coloured tree t

o(t) = 1/~(t)

S
E bidijajkajl =

1

12

i,5,k,1=1
S S
(b(t) = qb(tl) - ¢(t2) Z bibjajkajl - Z bjajiajkajl
ivgikl=1 ik l=1
ko1
t1 — 1o ¥ J _
LX)

This example illustrates how we can compute order conditions associate with a given graph.
In this example ¢; has two connected components, and hence, ¢(¢1) is the product of two
elementary weights that have been already evaluated (when dealing with order 4 conditions).
Therefore the the new condition can be expressed as ¢(t2) = ¢(t1) — 1/~(t), where the right-
hand-side reduces to a rational number.

Note that we get one order condition for each bi-coloured graph. Since there are less
oriented free tree than bi-coloured trees, it may happen that all terms of the sum in (15)
are already evaluated.

Remark. The above discussion is coherent with the result of Murua [12]: there exist as
many order conditions for order n for an integration method as there exist oriented free tree
with n nodes.

5 Implementation and numerical results

5.1 Implementation

Given a rooted bicoloured tree t, denote by (o3, g;); the associated family of oriented graphs
obtained by the operation of either cutting of reversing black edges; denote by ¢* the con-
nected element of this family (obtained by reversing all black edges). Let v(g) be the value
of the elementary weight, stored in a data base called Bank. Since elementary weights

INRIA



Order conditions for symplectic partitioned Runge-Kutta schemes 11

are rational numbers, we store them as a pair of irreducible integers. The procedure for
obtaining order conditions at a given order n may be written as

OrderGen(n)
For t € BT* ordered by increasing degree, with [t| <n
Compute the family of oriented graphs(c;, g;):
Evaluate elementary weights of all no-connected g;
If ¢* € Bank
Then check if Y, o;v(g;) + 0 v(g*) = 1/7(¢)
Else Bank «— Bank U {v(g*) = o*(1/7(t) — >, 0iv(9:))}
End For
Return Bank

Remark. The Gauss-Legendre Runge-Kutta method (in which ¢ and b are equal to & and
I;) is known to be symplectic, of order 2s where s is the number of stages. Therefore the
check of compatibility conditions that occurs when g* already belongs to Bank has to be
satisfied. We use it only as a debugging tool.

Our implementation uses the program for trees generation of Li and Ruskey [11]. Then
we build all possible colorations for a given tree, and apply procedure OrderGen. The code
is written in the C language. The coloration procedure is as follows:

ColorGen(t)

If ¢t = 7 return [W,B]

Else Express ¢ as links from root to branches ¢ = [t]*...t7¢]
For i=1 to s ColorGen(t;)
Combine all coloration into Tab

Return(Tab)

Remark. Let n.(t;) denote the number of coloration of branch ¢;. Then the number of

colorations of t is
S

nc(tl-)!
il;[l nl'(nc(tl — TLl)'

This explain the combinatorial explosion and the limitation of our result to n = 7.

Remark. Most of the computing time is spent in the search of a given graph (whenever it
exists) in the bank. Our implementation checks bijection with all graphs of same number of
vertices and edges. Obviously this procedure could be improved. For order greater than 6,
conditions are too numerous to be displayed. However, it can be useful to formulate them
in order to compute the order for specific values of a and b.

RR n° 5398
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Table 1: Number of order conditions

Order 1 2 3 4 5 6 7
Simple 11 2 4 9 20 48
Symplectic |1 1 3 8 27 91 350
Partitioned | 2 4 14 52 214 916 4116

5.2 Computational result

We first display the number of order conditions in table 1. Observe the rapid increase of these
numbers with p for symplectic schemes, and even more with general partitioned schemes.
In the next tables, we use the usual notations d; = Y, b;a;; and ¢; = > | ; Gij- All indexes
in the sum vary from 1 to s, where s is the number of stages in the Runge-Kutta method.
All (latex source of) tables are generated automatically by the computer code. Conditions
for order 1 to 4 were already obtained by Hager [7].

Table 2: Ordre 1

Condition

Graph

> bi=1

Table 3: Ordre 2

Graph Condition
1
Table 4: Ordre 3
Graph Condition Graph Condition

>

INRIA
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Table 5: Ordre 4

Graph Condition

Graph

Condition

Z _alkdkdl

1
Z ajkdjck = ﬁ

1
8
)
Z bk} alkpzdk - _4

Z biaijcicj = é

SRR

SHIRARVI

1 1

27 _ S ==

Z%dﬂ'—ﬁ 2 b=y

1 1

Z 2 2: 3 _
de bl2 dl Z
Table 6: Ordre 5

Graph Condition Graph Condition

A3

Zﬁa' a»dc—i
br ik @il kl—40

=

1
Z biaikaijcjck = %

1
Z aipagcid; = 120

1
Zbiaikakjcicj = %

b; 11
E —kOCidy = ———
b

Zﬁa a; c'd—i
b Ik zkzl—40

120
> b;—ijajwikcicj = % > %azmaudldm ==
Z iamlalkdkdm = 3_10 Z iamkalkdld .
2 b blbm aim 11—5 S audia

1, 1
) @amldz dm = 15

1 7
> —andierd; = —
bkalk kClay 120

A3 A AR A B D D B

1
Z _U«lkckdkdl 0

P P AN A D) D
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Table 6: Ordre 5

Graph

Condition Graph

Condition

43

b; 3
Z Eaikcfdk = % :%

1
Zbiaijc?cj = E

1
S by - =

Zblcf = é

7
AR

1, 1
Z@Cldz =%

Ao | M| ] A

id‘l _1
b?n m 5
Table 7: Ordre 6
Graph Condition Graph Condition
E.::' Z o Aim Qi1 Anldmdn = 11 % Z b QimGikQuediCm = 0
L L bi 13
Z aanmamkalkdldn == Z aalmamkalkczdl = 360

3 1 1
bka kAmnQl kd] 1

Za ariajrd;c _
Im Akl ‘]kjm7720
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Table 7: Ordre 6
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Table 7: Ordre 6
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Condition
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Table 7: Ordre 6

Graph Condition Graph Condition
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