Skip to main content
Log in

Numerical simulation of a modified KdV equation on the whole real axis

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The numerical simulation of the solution to a modified KdV equation on the whole real axis is considered in this paper. Based on the work of Fokas (Comm Pure Appl Math 58(5):639–670, 2005), a kind of exact nonreflecting boundary conditions which are suitable for numerical purposes are presented with the inverse scattering theory. With these boundary conditions imposed on the artificially introduced boundary points, a reduced problem defined on a finite computational interval is formulated. The discretization of the nonreflecting boundary conditions is studied in detail, and a dual-Petrov–Galerkin spectral method is proposed for the numerical solution to the reduced problem. Some numerical tests are given, which validate the effectiveness, and suggest the stability of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M.J., Clarkson P.A. (1991) Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, New York

    MATH  Google Scholar 

  2. Alpert B., Greengard L., Hagstrom T. (2002) Nonreflecting boundary conditions for the time-dependent wave equation. J. Comput. Phys. 180, 270–296

    Article  MATH  MathSciNet  Google Scholar 

  3. Alpert B., Rokhlin V. (1991) A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Statist. Comput. 12, 158–179

    Article  MATH  MathSciNet  Google Scholar 

  4. Antoine X., Besse C., Descombes S.: Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations. SIAM J. Numer. Anal (to appear)

  5. Arnold A., Ehrhardt M., Sofronov I. (2003) Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Commun. Math. Sci. 1(3): 501–556

    MATH  MathSciNet  Google Scholar 

  6. Basakov V.A., Popov A.V. (1991) Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion 14, 123–128

    Article  MathSciNet  Google Scholar 

  7. Don W.S., Gottlieb D. (1994) The Chebyshev–Legendre method: implementing Legendre methods on Chebyshev points. SIAM J. Numer. Anal. 31: 1519–1534

    Article  MATH  MathSciNet  Google Scholar 

  8. Ehrhardt M., Arnold A. (2001) Discrete transparent boundary conditions for the Schrödinger equation. Riv. Math. Univ. Parma 6(4): 57–108

    MATH  MathSciNet  Google Scholar 

  9. Fokas A.S. (2005) The generalized Dirichlet-to-Neumann map for certain nonlinear evolution PDEs. Comm. Pure Appl. Math. 58(5): 639–670

    Article  MATH  MathSciNet  Google Scholar 

  10. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. (1967) Method for solving the Korteweg-de Vries equation. Phys. Lett. 19, 1095–1097

    Article  MATH  Google Scholar 

  11. Gorenflo R., Mainardi F. (1997) Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A., Mainardi F. (eds) Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien

    Google Scholar 

  12. Gradshteyn I.S., Ryzhik I.M. (2000) Table of integrals, series, and products, 6th edn. Academic, Newyork

    Google Scholar 

  13. Han H.D., Zheng C.X. (2003) Exact nonreflecting boundary conditions for an acoustic problem in three dimensions. J. Comput. Math. 21(1): 15–24

    MATH  MathSciNet  Google Scholar 

  14. Salahuddin M. (1990) Ion temperature effect on the propagation of ion acoustic solitary waves in a relativistic magnetoplasma. Plasma Phys. Control. Fusion 32, 33–41

    Article  Google Scholar 

  15. Shen J.: Efficient Chebyshev–Legendre Galerkin methods for elliptic problems. In: Ilin A.V., Scott R. (eds) Proceedings of ICOSAHOM’95. Houston J. Math., Houston, pp. 233–240 (1996)

  16. Shen J. (2003) A new dual-Petrov–Galerkin method for third and higher odd-order differential equations: application to the KdV equation. SIAM J. Numer. Anal. 41(5): 1595–1619

    Article  MATH  MathSciNet  Google Scholar 

  17. Su C.H., Gardner C.S. (1969) Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation. J. Math. Phys. 10(3): 536–539

    Article  MATH  MathSciNet  Google Scholar 

  18. Sun Z.Z., Wu X.N. (2006) The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions. J. Comp. Phys. 214(1): 209–223

    Article  MATH  MathSciNet  Google Scholar 

  19. Szeftel J. (2006) A nonlinear approach to absorbing boundary conditions for the semilinear wave equation. Math. Comp. 75, 565–594

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiong Zheng.

Additional information

Supported by the National Natural Science Foundation of China under Grant No. 10401020, the Alexander von Humboldt Foundation, and the Key Project of China High Performance Scientific Computation Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, C. Numerical simulation of a modified KdV equation on the whole real axis. Numer. Math. 105, 315–335 (2006). https://doi.org/10.1007/s00211-006-0044-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0044-z

Keywords

Navigation